TiO_2纳米管阵列的阳极氧化制备与光电催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自Fujishima等发现TiO_2半导体光电极具有分解水的功能,纳米TiO_2光催化氧化技术作为一种制氢技术引起广泛重视。垂直于电极的TiO_2纳米管阵列具有高的光生电子传输效率,并且通过金属、非金属掺杂和与窄带半导体复合,可以提高TiO_2半导体光阳极对可见光的吸收,从而提高分解水的效率。
     本工作主要开展了电化学阳极氧化制备TiO_2纳米管阵列的研究,系统探讨了工艺参数对纳米管阵列生长的影响。另一方面在紫外和可见光下,研究了TiO_2纳米管阵列光电催化分解水的性能,通过对TiO_2纳米管阵列进行改性,明显提高了光电转换效率。主要研究结果和进展如下:
     1.HF水基电解液由于对TiO_2高的溶解速度限制了纳米管的生长,所以仅能得到长度小于500nm的阵列。采用NH4F/乙二醇/水体系电解液,制得的TiO_2纳米管阵列膜的厚度可达36μm,在含水量少、高的阳极氧化电压条件下,纳米管顶部沿管轴向垂直劈裂为直径20nm、长度达几微米的无定型TiO_2纳米线。
     2.在NH4F/甘油/水新体系电解液研究中,随着电解液pH值的减小,TiO_2纳米管的表面平整度增加,管底部的溶解速度增加。在碱性和加入缓蚀剂(HMT和NaAc)的电解液中,由于大大降低了电解液对管口处TiO_2的溶解速度,增加了纳米管的净生长速度。经550℃热处理、管结构完整、管径为60nm、长度为3.3μm的TiO_2纳米管阵列膜在强度为1.6mW/cm2紫外光的照射下,光电催化分解水的效率达23.8%。
     3.采用还原气氛热处理工艺,在TiO_2中引入氧缺位,提高了纳米管阵列对可见光的吸收,使光电解水的电流密度提高1倍。交流电沉积法制备的Pt/TiO_2纳米管阵列,在测试电压为–0.95V处(vs. Ag/AgCl)出现Pt2+催化峰;浸渍提拉法制备的Pt/TiO_2纳米管阵列,在测试电压为–0.95和–0.7V处(vs. Ag/AgCl)出现Pt2+和Pt0两个催化峰。
     4.首次采用交流电沉积技术制备了核/壳异质结型CdS@TiO_2纳米管阵列,沉积的CdS层经过400℃热处理1h后呈六方结构。在管径为150nm、长度为2.5μm的TiO_2纳米管阵列基底上,按照交流电压5V、沉积30min的工艺获得的光阳极,在可见光区具有较高的光电分解水的电流密度。
Since the discovery of photoelectrochemical splitting of water into hydrogen and oxygen on n-TiO_2 electrodes, semiconductor-based photoelectrolysis of water has received much attention in hydrogen fuel. A variety of reports have indicated that the highly ordered vertically oriented nature of the crystalline TiO_2 nanotube (NT) arrays makes them excellent electron percolation pathways for vectorial charge transfer between interfaces. Furthermore, to increase water splitting efficiency, several attemps have been made to obtain a good visible light adsorption for n-TiO_2 NT arrays by metal and non-metal doping, combinainon with narrow-band gap semiconductor.
     In the present work, we focused on the development of electrochemical anodic oxidation technique to prepare self-organized TiO_2 NT arrays on titanium foil. The effects of the process parameters on the TiO_2 NT arrays growth were systemically studied. On the other hand, we examined the use of TiO_2 NT arrays as anode for the photocleavage of water under UV and Xe lamp irradiation, with particular emphasis on the enhancement of photoelectric efficiency by modifying the TiO_2 NT arrays, such as introducing vacancies in oxygen lattice sites, depositing Pt or CdS microcrystals onto TiO_2 NT. The main results and progresses of this dissertation are outlined as following:
     1. Highly density, well ordered and uniform TiO_2 NT arrays were fabricaed by electrochemical anodization of titanium sheets in the HF/water electrolyte. The results confirmed that the length of NT arrays was limited to 500nm due to high chemical dissolution rate of solution to the top of TiO_2 NT arrays. In NH4F/glycol electrolytes, the ordered TiO_2 NT arrays with lengths up to 36μm were achieved because of the low quality barrier layers through which ionic transport may be enhanced. We have demonstrated that TiO_2 nanowires with a diameter of 20nm and a length up to several micron only can be synthesized in NH4F/glycol solution with a small amount of water and high anodic voltage. The nanowires originated from the vertical splitting of anodically grown nanotubes.
     2. A new NH4F/glycerol system has been developed to prepare the controllable architecture of TiO_2 NT arrays. It was found that uniform surface morphology of the NT arrays was obtained in acidic condition. However, the basic and inhibitor (HMT and NaAc) added environments were much more efficient for relatively longer nanotubes by effectively slowing the chemical dissolution rate at the tube mouth. The TiO_2 NT arrays with 60nm inner pore diameter, 3.3μm length and 20nm wall-thickness, annealed at 550℃, behaved a remarkable water photoelectrolysis efficiency of 23.8% upon UV illumination at intensity of 1.6mW/cm2.
     3. Optical absorption spectra showed that TiO_2 NT arrays annealed under H2 atmosphere noticeably absorbed the light at visible light by introducing vacancies in oxygen lattice sites, whereas the TiO_2 NT arrays annealed under air and Ar atmosphere did not. So the TiO_2 NT arrays (H2) generated photocurrents double of what the others (air and Ar) sample do in the Xe illustration. Pt nanoparticles were successfully deposited on the surface of TiO_2 NT arrays by ac electrodeposition and dipping method. There was one catalytic peak of the electrodeposition electrode, which was at -0.95 V vs. Ag/AgCl attributed mainly to Pt2+ catalysis. There were two catalytic peaks of the dipped electrodes, one was at -0.95 V vs. Ag/AgCl attributed mainly to Pt2+ catalysis and the other was at -0.7 V vs. Ag/AgCl attributed to Pto catalysis.
     4. Furthermore, a novel fabrication route for core/sheath heterostructure CdS@TiO_2 NT arrays was proposed using ac electrodeposition for application in photoelectrochemical cells. The deposited material was found to be hexagonal CdS structure annealed at 400℃. The maximum photocurrent density was obtained with the core/sheath heterostructure CdS/TiO_2 nanotube arrays with 2.5μm tube length, which were fabricated by CdS deposition at 5 V for 30 min.
引文
[1] O’Regan B, Gratael M, A low-cost and high efficiency solar cell based on dye-seneitized colloidal TiO2 films, Nature, 1991, 353: 737~740
    [2] Zukalova M, Zukal A, Kavan L, et al. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Letters, 2005, 5(9): 1789~1792
    [3] Gratze M, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145~153
    [4] Schmidt-Mende L, Bach U, Humphry-Baker R, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells, Advanced Materials, 2005, 17(7): 813~815
    [5] Wang P, Zakeeruddin SM, Humphry-Baker R, et al. Molecular-scale interface engineering of TiO2 nanocrystals: improving the efficiency and stability of dye-sensitized solar cells, Advanced Materials, 2003, 15(24): 2101~2104
    [6] Bach U, Lupo D, Comte P, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395(6702): 583~585
    [7] Zhao HL, Jiang DL, Zhang SL, et al. Photoelectrocatalytic oxidation of organic compounds at nanoporous TiO2 electrodes in a thin-layer photoelectrochemical cell, Journal of Catalysis, 2007, 250(1): 102~109
    [8] Reyes-Gil KR, Reyes-Garcia EA, Raftery D, Photoelectrochemical analysis of anion-doped TiO2 colloidal and powder thin-film electrodes, Journal of the Electrochemical Society, 2006, 153(7): A1296~A1301
    [9] Pinhedo L, Pelegrini R, Bertazzoli R, et al. Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode, Applied Catalysis B: Environmental, 2005, 57(2): 75~81
    [10] Mor GK, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays, Nano Letters, 2005, 5(1): 191~195
    [11] Gratzel M, Photoelectrochemical cells, Nature, 2001, 414 (6861): 338~344
    [12] Benkstein KD, Semancik S, Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms, Sensors and Actuators B, 2006, 113(1): 445~453
    [13] Manera MG, Cozzoli PD, Curri ML, et al. TiO2 nanocrystal films for sensing applications based on surface plasmon resonance, Synthetic Metals, 2005, 148(1): 25~29
    [14] Tan OK, Cao W, Hu Y, et al. Nano-structured oxide semiconductor materials for gas-sensing applications, Ceramics International, 2004, 30(7): 1127~1133
    [15] Hossein-Babaei F, Keshmiri M, Kakavand M, et al. A resistive gas sensor based on undoped p-type anatase, Sensors and Actuators B, 2005, 110(1): 28~35
    [16] Ruiz AM, Cornet A, Morante JR, Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors, Sensors and Actuators B, 2004, 100(1-2): 256~260
    [17] Tai WP, Oh JH, Fabrication and humidity sensing properties of nanostructured TiO2-SnO2 thin films, Sensors and Actuators B, 2002, 85(1-2): 154~157
    [18] Lopez T, Ortiz-Islas E, Manjarrez J, et al. Biocompatible titania microtubes formed by nanoparticles and its application in the drug delivery of valproic acid, Optical Materials, 2006, 29(1): 70~74
    [19] Oh S, Jin S, Titanium oxide nanotubes with controlled morphology for enhanced bone growth, Materials Science and Engineering C, 2006, 26(8): 1301~1306
    [20] Lovern SB, Strickler JR, Klaper R, Behavioral and physiological changes in daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx), Environmental Science & Technology, 2007, 41(12): 4465~4470
    [21] Nakamura H, Tanaka M, Shinohara S, et al. Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose, Biosensors and Bioelectronics, 2007, 22(9-10): 1920~1925
    [22] Wang BX, Zhao XP, Wettability of bionic nanopapilla particles and their high electrorheological activity, Advanced Functional Materials, 2005, 15(11): 1815~1820
    [23] Wang H, Yip CT, Cheung KY, et al. Titania-nanotube-array-based photovoltaic cells, Applied Physics Letters, 2006, 89(2): 023508
    [24] Kang SH, Kim JY, Kim Y, et al. Surface modification of stretched TiO2 nanotubes for solid-state dye-sensitized solar cells, Journal of Physical Chemistry C, 2007, 111(26): 9614~9623
    [25] Zhu K, Neale NR, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Letters, 2007, 7(1): 69~71
    [26] Xie YB, Zhou LM, Huang HT, Enhanced photoelectrochemical current response of titania nanotube, Materials Letters, 2006, 60(29-30): 3558~3560
    [27] Paulose M, Mor GK, Varghese OK, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178(1): 8~15
    [28] de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, et al. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response, Journal of Physical Chemistry B, 2006, 110(50): 25347~25355
    [29] Beranek R, Tsuchiya H, Sugishima T, et al. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes, Applied Physics Letters, 2005, 87(24): 243114
    [30] Quan X, Yang SG, Ruan XL, et al. Preparation of titania nanotubes and their environmental applications as electrode, Environmental Science & Technology, 2005, 39(10): 3770~3775
    [31] Albu SP, Ghicov A, Macak JM, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications, Nano Letters, 2007, 7(5): 1286~1289
    [32] Lai YK, Sun L, Chen YC, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity, Journal of the Electrochemical Society, 2006, 153(7): D123~D127
    [33] Xie YB, Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes, Advanced Functional Materials, 2006, 16(14): 1823~1831
    [34] Senevirathna MKI, Pitigala PKDDP, Tennakone K, High quantum efficiency Pt/TiO2 catalyst for sacrificial water reduction, Solar Energy Materials & Solar Cell, 2006, 90(17): 2918~2923
    [35] Zhuang HF, Lin CJ, Lai YK, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity, Environmental Science & Technology, 2007, 41(13): 4735~4740
    [36] Paulose M, Varghese OK, Mor GK, et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology, 2006, 17(2): 398~402
    [37] Varghese OK, Gong DW, Paulose M, et al. Hydrogen sensing using titania nanotubes, Sensors and Actuators B, 2003, 93(1-3): 338~344
    [38] Mor GK, Varghese OK, Paulose M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements, Thin Solid Films, 2006, 496(1): 42~48
    [39] Liu SQ, Chen AC, Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing, Langmuir, 2005, 21(18): 8409~8413
    [40]张招贤,钛电极工学,北京:冶金工业出版社,2000
    [41]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002
    [42]熊家林,贡长生,张克立,无机精细化学品的制备和应用,北京:化学工业出版社,1999
    [43]申半文,车云霞,无机化学丛书(第八卷,钛分族),北京:科学出版社,1998
    [44] Farin D, Kiwi J, Avnir D, Size effects in photoprocesses on dispersed catalysts, Journal of Physical Chemistry, 1989, 93(15): 5851~5854
    [45] Gratzel M, Sol-gel processed TiO2 films for photovoltaic applications, Journal of Sol-Gel Science and Technology, 2001, 22(1-2): 7~13
    [46] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56~58
    [47]李言荣,谢孟贤,恽正中等,纳米电子材料与器件,北京:电子工业出版社,2005
    [48] Thorne A, Kruth A, Tunstall D, et al. Formation, structure, and stability of titanate nanotubes and their proton conductivity, Journal of Physical Chemistry B, 2005, 109(12): 5439~5444
    [49] Bavykin DV, Friedrich JM, Walsh FC, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, Advanced Materials, 2006, 18(21): 2807~2824
    [50] Lakshmi BB, Patrissi CJ, Martin CR, Sol-gel template synthesis of semiconductor oxide micro- and nanostructurs, Chemistry of Materials, 1997, 9(11): 2544~2550
    [51] Lakshmi BB, Dorhout PK, Martin CR, Sol-gel template synthesis of semiconductor nanostructures, Chemistry of Materials, 1997, 9(3): 857~862
    [52] Zhang M, Bando Y, Wada K, Sol-gel template preparation of TiO2 nanotubes and nanorods, Journal of Materials Science Letters, 2001, 20(2): 167~170
    [53] Park IS, Jang SR, Hong JS, et al. Preparation of composite anatase TiO2 nanostructure by precipitation from hydrolyzed TiCl4 solution using anodic alumina membrane, Chemistry of Materials, 2003, 15(24): 4633~4636
    [54] Peng TY, Yang HP, Chang G, et a1. Synthesis of bambooshaped TiO2 nanotubes in nanochannels of porous aluminum oxide membrane, Chemistry Letters, 2004, 33(3): 336~337
    [55] Shen Q, Sato T, Hashimoto M, et a1. Photoacoustic and photoelectrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires, Thin Solid Films, 2006, 499(1-2): 299~305
    [56] Wang KX, Wei MD, Morris MA, et al. Mesoporous titania nanotubes: their preparation and applications electrode materials for rechargeable lithium batteries, Advanced Materials, 2007, 19(19): 3016~3020
    [57] Hoyer P, Formation of a titanium dioxide nanotube array, Langmuir, 1996, 12(6): 1411~1413
    [58] Hoyer P, Semiconductor nanotube formation by a two-step template process, Advanced Materials, 1996, 8(10): 857~859
    [59] Sander MS, Cote MJ, Gu W, et al. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Advanced Materials, 2004, 16(22): 2052~2057
    [60] Shin HJ, Jeong DK, Lee JG, et al. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness, Advanced Materials, 2004, 16(14): 1197~1200
    [61] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube, Langmuir, 1998, 14(12): 3160~3163
    [62] Zhang YX, Li GH, Jin YX, et a1. Hydrotherrnal synthesis and photoluminescence of TiO2 nanowires, Chemical Physics Letters, 2002, 365(3-4): 300~304
    [63] Yu JG, Yu HG, Cheng B, et a1. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes, Journal of Molecular Catalysis A: Chemical, 2006, 249(1-2): 135~142
    [64] Tian ZRR, Voigt JA, Liu J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes, Journal of the American Chemical Society, 2003, 125(41): 12384~12385
    [65] Guo Y, Lee NH, Oh HJ, et al. Structure-tunable synthesis of titanate nanotube thin films via a simple hydrothermal process, Nanotechnology, 2007, 18(29): 295608
    [66] Miyauchi M, Tokudome H, Toda Y, et al. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction, Applied Physics Letters, 2006, 89(4): 043114
    [67] Miyauchi M, Tokudome H, Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by a hydrothermal reaction, Journal of Materials Chemistry, 2007, 17(20): 2095~2100
    [68] Gong D, Grimes CA, Varghese OK, et al. Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, 2001, 16(12): 3331~3334
    [69] Mor GK, Varghese OK, Paulose M, et al. Fabrication of tapered, conical-shaped titania nanotubes, Journal of Materials Research, 2003, 18(11): 2588~2593
    [70] Raja KS, Misra M, Paramguru K, Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium, Electrochimica Acta, 2005, 51(1): 154~165
    [71] Fujishima A, Honda K, Electrochemical Photolysis of water at a semiconductor electrode, Nature, 1972, 238: 37~38
    [72] Frank SN, Bard AJ, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, Journal of Physical Chemistry B, 1977, 81(15): 1484~1486
    [73]胡风平,沈培康,乙醇在碳修饰的二氧化钛纳米管负载的钯电催化剂上的催化氧化,催化学报,2007, 28(1): 80~84
    [74] Macak JM, Barczuk PJ, Tsuchiya H, et al. Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol, Electrochemistry Communications, 2005, 7(12): 1417~1422
    [75] Varghese OK, Paulose M, Shankar K, et al. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays, Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1158~1165
    [76] Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length, Journal of Physical Chemistry B, 2006, 110(33): 16179~16184
    [77]戴松元,王孔嘉,邬钦崇等,NPC电池高光电转化效率的原因探讨,太阳能学报,1996, 17(3): 220~225
    [78]曾隆月,史成武,方霞琴等,纳米ZnO在染料敏化薄膜太阳能电池中的应用,中国科学院研究生院学报,2004,21(3): 393~397
    [79] Dai SY, Wang KJ, Optimum nanoporous TiO2 film and its application to dye-sensitized solar cells, Chinese Physics Letters, 2003, 20(6): 953~955
    [80] Mohammad K, Nazeeruddin PP, Thierry R, et al. Engineering of efficient panchromatic sensitized for nanocrystalline TiO2-based solar cells, Journal of the American Chemical Society, 2001, 123(3): 1613~1624
    [81] Gratzel M, Sol-gel processed TiO2 films for photovoltaic applications, Journal of Sol-Gel Science and Technology, 2001, 22(1-2): 7~13
    [82] Nazeetuddin MK, Gratzel M, Conversion of light to electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicaboxylate) ruthenium charge-transfer sensitizes (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, Journal of the American Chemical Society, 1993, 115(14): 6382~6390
    [83] Gratzel M, Perspectives for dye-sensitized nanocrystalline solar cells, Progress in Photovoltaics, 2000, 8(1): 171~185
    [84] Paulose M, Shankar K, Varghese OK, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes, Nanotechnology, 2006, 17(5): 1446~1448
    [85] Mor GK, Varghese OK, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters, 2006, 6(2): 215~218
    [86] Varghese OK ,Mor GK , Grimes CA , et a1. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations, Journal of Nanoscience and Nanotechnology, 2004, 4(7): 733~737
    [87] Grimes CA, Ong KG, Varghese OK, et al. A sentinel sensor network for hydrogen sensing, Sensors, 2003, 3(3): 69~82
    [88] Mor GK, Varghese OK, Paulose M, et al. A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor, Sensor Letters, 2003, 1(1): 42~46
    [89] Zhou HS, Li DL, Hibino M, et al. A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities, Angewandte Chemie International Edition, 2005, 44(5): 797~802
    [90] Kavan L, Rathousky J, Gratzel M, et al. Surfactant-templated TiO2 (anatase): characteristic features of lithium insertion electrochemistry in organized nanostructures, Journal of Physical Chemistry B, 2000, 104(50): 12012 ~12020
    [91] Kavan L, Kalbac M, Zukalova M, et al. Lithium storage in nanostructured TiO2 made by hydrothermal growth, Chemistry of Materials, 2004, 16 (3): 477~485
    [92] Subasri R, Shinohara T, Mori K, TiO2-based photoanodes for cathodic protection of copper, Journal of the Electrochemical Society, 2005, 152(3): B105~B110
    [93] Subasri R, Shinohara T, Mori K, Modified TiO2 coatings for cathodic protection applications, Science and Technology of Advanced Materials, 2005, 6(5): 501~507
    [94] Park H, Kim KY, Choi W, Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode, Journal of Physical Chemistry B, 2002, 106(18): 4775~4781
    [95] Park H, Kim KY, Choi W, A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel, Chemical Communications, 2001, 3: 281~282
    [96] Liu L, Hu JM, Leng WH, et al. Novel bis-silane/TiO2 bifunctional hybrid films for metal corrosion protection both under ultraviolet irradiation and in the dark, Scripta Materialla, 2007, 57 (6): 549~552
    [97] Shen GX, Chen YC, Lin CJ, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method, Thin Solid Films, 2005, 489(1-2): 130~136
    [98] Li HY, Bai XD, Ling YH, et al. Fabrication of titania nanotubes as cathode protection for stainless steel, Electrochemical and Solid State Letters, 2006, 9(5): B28~B31
    [99]李静云虹林昌健,铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护,第十四次全国电化学会议,2007,D040: 562~563
    [100] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces, Nature, 1997, 388(1): 431~432
    [101]杨云,赖跃坤,林龙翔等,TiO2纳米管薄膜超亲水-超疏水表面血液相容性研究,第十四次全国电化学会议,2007,C071: 457~458
    [102] Lai YK, Zhang HF, Sun L, et al. HA micropattern on superhydrophilic -superhydrophobic TiO2 nanotube films,第十四次全国电化学会议,2007,C032: 390~391
    [103] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy, Surface and Interface Analysis, 1999, 27(7): 629~637
    [104] Macak JM, Tsuchiya H, Schmuki P, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angewandte Chemie International Edition, 2005, 44(14): 2100~2102
    [105] Bauer S, Kleber S, Schmuki P, TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes, Electrochemistry Communications, 2006, 8(8): 1321~ 1325
    [106] Beranek R, Hildebrand H, Schumki P, Self-organized porous titanium oxide prepared in H2SO4-HF electrolytes, Electrochemical and Solid-State Letters, 2003, 6(3): B12~B14
    [107] Zhao JL, Wang XH, Chen RZ, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Communications, 2005, 134(10): 705~710
    [108] Macak JM, Sirotna K, Schmuki P, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes, Electrochimica Acta, 2005, 50(18): 3679~3684
    [109] Taveira LV, Macak JM, Tsuchiya H, et al. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes, Journal of the Electrochemical Society, 2005, 152(10): B405~B410
    [110] Ghicov A, Tsuchiya H, Macak JM, et al. Titanium oxide nanotubes prepared in phosphate electrolytes, Electrochemistry Communications, 2005, 7(5): 505~509
    [111] Tsuchiya H, Macak JM, Taveira L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochemistry Communications, 2005, 7(6): 576~580
    [112] Ruan CM, Paulose M, Varghese OK, et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte, Journal of Physical Chemistry B, 2005, 109(33): 15754~15759
    [113] Macak JM, Tsuchiya H, Taveira L, et al. Smooth anodic TiO2 nanotubes, Angewandte Chemie International Edition, 2005, 44(45): 7463~7465
    [114]李异,刘钧泉,李建三等,金属表面抛光技术,北京:化学工业出版社,2006
    [115] Yasuda K, Schmuki P, Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes, Electrochimica Acta, 2007, 52(12): 4053~4061
    [116]梁治齐,宗惠娟,李金华,功能性表面活性剂,北京:中国轻工业出版社,2002
    [117] Shankar K, Mor GK, Prakasam HE, et al. Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnology, 2007, 18(6): 605707
    [118] Lim JH, Choi J, Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model, Small, 2007, 3(9): 1504~1507
    [119] Law M, Greene L, Johnson JC, et al. Nanowire dye-sensitized solar cells, Nature Materials, 2005, 4(6): 455~459
    [120] Frank AJ, Kopidakis N, van de Lagemaat J, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coordination Chemistry Reviews, 2004, 248(13-14): 1165~1179
    [121] Ong KG, Varghese OK, Mor GK, et al. Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption, Journal of Nanoscience and Nanotechnology, 2005, 5(11): 1801~1808
    [122]王世荣,李祥高,刘东志等,表面活性剂化学,北京:化学工业出版社,2005
    [123] Cai Q, Paulose M, Varghese OK, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation, Journal of Materials Research, 2005, 20(1): 230~235
    [124] Allam NK, Grimes CA, Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte, Journal of Physical Chemistry C, 2007, 111(33): 13028~13032
    [125] Barbe CJ, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic application, Journal of the American Chemical Society, 1997, 80(12): 3157~3171
    [126] Varghese OK., Gong D, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, Journal of Materials Research, 2003, 18(1): 156~165
    [127] Memming, R. Semicondutor Electrochemistry, Wiley-VCH: Weinheim, Germany, 2001: Chapter 1
    [128]吴辉煌,电化学,北京:化学工业出版社,2004
    [129] Mor GK, Varghese OK, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Solar Energy Materials & Solar Cell, 2006, 90(14): 2011~2075
    [130] Macak JM, Ghicov A, Hahn R, et al. Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thickness, Journal of Materials Research, 2006, 21(11): 2824~2828
    [131] Khan SUM, Al-Shahry M, Ingler WB, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 2002, 297(5590): 2243~2245
    [132] Mohapatra SK, Misra M, Mahajan VK, et al. A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water, Journal of Catalysis, 2007, 246(2): 362~369
    [133] Hahn R, Ghicov A, Salonen J, et al. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment, Nanotechnology, 2007, 18(10): 105604
    [134] Park JH, Kim S, Bard AJ, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Letters, 2006, 6(1): 24~28
    [135] Xu CK, Shaban YA, Ingler WB, et al. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting, Solar Energy Materials & Solar Cells, 2007, 91(10): 938~943
    [136] Ghicov A, Macak JM, Tsuchiya H, et al. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes, Nano Letters; 2006, 6(5): 1080~1082
    [137] In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts, Journal of the American Chemical Society, 2007, 129(45): 13790 ~13791
    [138] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293: 268~271
    [139] Ghicov A, Macak JM, Tsuchiya H, et al. TiO2 nanotube layers: dose effects during nitrogen doping by ion implantation, Chemical Physics Letters, 2006, 419(4-6): 426~429
    [140] Vitiello RP, Macak JM, Ghicov A, et al. N-doping of anodic TiO2 nanotubes using heat treatment in ammonia, Electrochemistry Communications, 2006, 8(4): 544~548
    [141] Shankar K, Tep KC, Mor GK, et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties, Journal of Physics D: Applied Physics, 2006, 39(11): 2361~2366
    [142] Piera E, Tejedor-Tejedor MI, Zorn ME, et al. Relationship concerning the nature and concentration of Fe(III) species on the surface of TiO2 particles and photocatalytic activity of the catalyst, Applied Catalysis B: Environmental, 2003, 46(4): 671~685
    [143]肖美群,杨建纯,沈嘉年等,添加Fe3+对二氧化钛薄膜吸收光谱及光催化活性的影响,材料科学与工程学报,2005,23(1): 48~52
    [144] Arana J, Diaz OG, Saracho MM, et al. Maleic acid photocatalytic degradation using Fe-TiO2 catalysts: dependence of the degradation mechanism on the Fe catalysts content, Applied Catalysis B: Environmental, 2002, 36(2): 113~124
    [145]任成军,钟本和,陈国强等,铜离子掺杂对二氧化钛薄膜光催化性能的影响,硅酸盐学报,2006,34(1): 39~43
    [146] Liu G, Zhang X, Xu Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol–gel and solid phase reaction methods respectively and their photocatalytic activities, Chemosphere, 2005, 59(9): 1367~1371
    [147]郑怀礼,唐鸣放,龚迎昆等,掺镧TiO2纳米薄膜材料的制备与光催化性能研究,光谱学与光谱分析,2003,23(2): 246~248
    [148] Ranjit KT, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants, Journal of Materials Science, 1999, 34(21): 5273~5280
    [149] Xu AW, Gao Y, Liu HQ, The preparation, characterization and their photocatalytic activites of rare-earth-doped TiO2 nanoparticles, Journal of Catalysis, 2002, 207(2): 151~157
    [150] Bonamali P, Ikeda S, Kominami H, et al. Photocatalytic redox-combined synthesis of l-pipecolinic acid from l-lysine by suspended titania particles: effect of noble metal loading on the selectivity and optical purity of the product, Journal of Catalysis, 2003, 217(1): 152~159
    [151] Tan TTY, Yip CK, Beydoun D, et al. Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions, Chemical Engineering Journal, 2003, 95(1-3): 179~186
    [152] He C, Xiong Y, Chen J, et al. Photoelectrochemical performance of Ag-TiO2/ITO film and photoelectrocatalytic activity towards the oxidation of organic pollutants, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 71~79
    [153] Zou JJ, Chen C, Liu CJ, et al. Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst, Materials Letters, 2005, 59(27): 3437~3440
    [154] Anpo M, Takeuchi M, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, 2003, 216(1-2): 505~516
    [155] Kumar A, Jain AK, Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole, Journal of Molecular Catalysis A: Chemical, 2001, 165(1-2): 265~273
    [156]周秀文,朱祖良,赵君科,TiO2/CdS复合光催化剂的制备及结构研究,材料导报,2005,19(5): 71~73,70
    [157] Yamada S, Nosaka AY, Nosaka Y, Fabrication of CdS photoelectrodes coated with titania nanosheets for water splitting with visible light, Journal of Electroanalytical Chemistry, 2005, 585(1): 105~112
    [158] Jang JS, Ji SM, Bae SW, et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (lambda >= 420 nm), Journal of Photochemistry and Photobilolgy A-Chemistry, 2007, 188(1): 112~119
    [159] Jia HM, Xu H, Hu Y, et al. TiO2@CdS core-shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties, Electrochemistry Communications, 2007, 9(3): 354~360
    [160] Litter MI, Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental, 1999, 23(2-3): 89~114
    [161] Liu G, Li X, Zhao J, et al. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, Journal of Molecular Catalysis A: Chemical, 2000, l53(1-2): 22l~229
    [162] Qu P, Zhao J, Shen T, et al. TiO2-assisted photodegradation of dyes: a study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution, Journal of Molecular Catalysis Chemical, 1998, 129(2-3): 257~268
    [163] Vautier M, Guillard C, Herrmann JM, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine,Journal of Catalysis, 2001, 20l(1): 46~59
    [164] Enache CS, Schoonman J, de Krol RV, Addition of carbon to anatase TiO2 by n-hexane treatment-surface or bulk doping?, Applied Surface Science, 2006, 252(18): 6342~6347
    [165]刘恩科,朱秉生,半导体物理学,上海:上海科学技术出版社,1984
    [166] Di Valentin C, Pacchioni G, Selloni A, Theory of carbon doping of titanium dioxide, Chemistry of Materials, 2005, 17(26): 6656~6665
    [167]赖跃坤,孙岚,左娟等,氧化钛纳米管阵列制备及形成机理,物理化学学报,2004,20(9): 1063~1066
    [168] Chen SG, Paulose M, Ruan CM, et al. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177(2-3): 177~184
    [169] Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, Journal of Physical Chemistry, 1996, 100(33): 14037~14047
    [170] Kundu M, Khosravi AA, Kulkarni SK, et al. Synthesis and study of organically capped ultra small clusters of cadmium sulphide, Journal of Materials Science, 1997, 32(14): 245~258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700