人脂肪干细胞向表皮细胞表型转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     皮肤缺损是外科中的常见问题。尽早封闭创面,减少机体消耗和内环境紊乱是治疗皮肤缺损的关键。烧伤外科中大面积烧伤病人皮源缺乏,自体皮肤移植是目前临床治疗全层皮肤缺损最有效的方法。但是自体刃厚皮移植皮片易收缩,不耐摩擦,中厚皮有瘢痕挛缩等问题。随着组织工程技术的发展,皮肤替代物的研究取得了实质性的进展。种子细胞的体外培养、扩增是组织工程学研究中最基础的工作。
     2001年,Zuk [1]等首次分离培养出能够自我复制、稳定增殖,并具有多向分化潜能的脂肪间充质干细胞。ADSCs来自中胚层,在特定条件下可分化为脂肪、骨、软骨、心肌细胞、肝细胞、神经细胞等[1‐4]。ADSCs具有来源丰富、方便取材、低免疫原性、容易体外扩增等优点,在组织工程、创面修复及基因治疗方面具有良好的应用前景。近年来研究表明,ADSCs在体外培养过程中加入不同的刺激因子,模拟皮肤的微环境,能诱导成为具有各种表型的细胞。Ramos等[5]证实,将分选纯化后的ADSCs植入裸鼠体内,可显著促进创面愈合,且具有表皮细胞再生的能力。人角质形成细胞是皮肤创面修复的重要细胞,而表皮生长因子(epithelial growth factor,EGF)是创面修复过程中的关键因子。EGF能促进细胞增殖、表皮再生、血管形成,同时能刺激表皮细胞合成分泌胶原、透明质酸等细胞外基质,促进结缔组织细胞的生长[6]。Shikiji等[7]成功地应用EGF诱导体外培养于立体胶原表面的人表皮细胞向胶原内生长并形成汗腺管结构。因此,本实验研究利用pcDNA3.1(+)/SP+EGF质粒经脂质体介导转染的HaCat细胞诱导人ADSCs体外转化为表皮细胞表型的可行性,为其在组织工程中的应用提供理论依据。
     【研究目的】
     1、探索高效分离和扩增人脂肪干细胞的方法,观察其生物学特性,并通过形态学、免疫表型及多向分化能力进行鉴定。
     2、探索人脂肪间充质干细胞向表皮细胞表型转化的方法。
     【研究内容】
     1、胶原酶消化法分离培养ADSCs,利用形态学及MTT比色法观察细胞生物学特性。
     2、通过流式细胞仪及诱导多向分化鉴定ADSCs。
     3、利用转染EGF的HaCat细胞,与ADSCs共培养,诱导ADSCs向表皮细胞分化。
     4、利用外源性EGF诱导ADSCs向表皮细胞分化。
     【研究结果】
     1、原代和传代细胞呈梭形外观,生长增殖能力良好。细胞传代后2天内处于潜伏期,第3天进入生长期,5天后进入平台期。
     2、流式细胞仪检测CD29、CD31、CD34、CD45、CD90、CD105阳性率分别为73.4%、3.6%、4.5%、2.0%、97.3%、80.4%。经定向诱导分化后,细胞分别呈现脂肪细胞、骨细胞的表型特征。
     3、ADSCs与转染EGF的HaCat细胞共培养后ADSCs表达表皮细胞特征性表面抗原,提示利用此方法可诱导ADSCs向表皮细胞分化。
     4、加入EGF刺激后ADSCs中表皮细胞表面抗原CK19、integrin-β的mRNA水平随时间增加而上升,诱导4w后时表达最高。
     【研究结论】
     1、酶消化法能有效分离纯化人ADSCs,细胞生长稳定,增殖能力活跃,具有ADSCs的一般生物学特性。
     2、转染EGF的HaCat细胞可诱导ADSCs向表皮细胞表型分化,从而为其成为组织工程理想的种子细胞提供了进一步的支持。
     3、EGF在诱导ADSCs向表皮细胞分化的过程中起着决定性作用,
     4、合理有效地利用ADSCs在创面愈合的研究与治疗方面具有广阔的前景。
【Background】
     Skin defects are common problems in surgery. Wound closure as soon as possible to reduce the body's consumption and disorder within the environment is the key to the treatment of skin defects. Autologous skin graft is the most effective way for large area burns patients of full thickness skin defects in burns surgery clinical treatment. However, autologous thin skin graft show contraction and not rubbing, and the thick skin bring out scar and other problems. With the development of tissue engineering, skin substitutes made substantial progress in research. Seed cells amplification in vitro is the most basic tissue engineering work.
     In 2001, Zuk et al first isolated and cultured, such as self-replicating, stable and proliferation, and differentiation potential of multipotent mesenchymal stem cells in adipose tissue, called adipose derived stem cells. ADSCs from the mesoderm, under certain conditions can differentiate into fat, bone, cartilage, heart cells, liver cells, nerve cells, etc. ADSCs have the advantages of rich source, easily derived, low immunogenicity, so it has a good prospect in tissue engineering, wound healing and gene therapy. Recent studies show that, ADSCs can be induced to other cells with various phenotypes when cultured in vitro to stimulate the process of adding different factors to simulate the skin's micro-environment.
     Ramos et al confirmed that implanted the purified ADSCs in nude mice, can significantly promote wound healing, and ADSCs has a capacity of epidermal cell regeneration. Human keratinocytes is important to wound healing, and epidermal growth factor (EGF) is the key factor of wound healing process. EGF can promote cell proliferation, epidermal regeneration, angiogenesis, and also could stimulate epithelial cells synthesis and secretion of collagen, hyaluronic acid and other extracellular matrix, promote the growth of connective tissue cells.
     Shikiji et al successfully applied EGF to induct human epithelial cells that were cultured on the surface of three-dimension collagen, and then formated tube structure of sweat glands. Therefore, our research use pcDNA3.1 (+) / SP + EGF plasmid liposome transfected HaCat cells induced ADSCs into epithelial cells in vitro phenotype, and find the feasibility of its application in tissue engineering provide a theoretical basis.
     【Purposes】
     1、To explore a method for effective isolation and multiplication of human adipose derived mesenchymal stem cells, observe its biological characteristics and verification by morphology and multi-potential differentiation.
     2、To explore a method that inverts human adipose derived mesenchymal stem cells into epithelial cells.
     【Contents】
     1、ADSCs were isolated and cultured by collagenase digestion, and morphological and biological characteristics of cells were observed by inverse microscope and MTT assay.
     2、ADSCs were identified by flow cytometry and the induction of different cells types.
     3、ADSCs and HaCat cells transfected with EGF were co-cultured, then the former could be induced into epithelial cells types.
     4、Use of exogenous EGF to induce ADSCs into epithelial cells types.
     【Results】
     1、The ADSCs in both primary and passage culture were fusiform shapes, and stable in growth with active proliferation. ADSCs were in latency for 2 days, converted into growth period on the 3rd day and entered the stationary phase on the 5th day.
     2、FCM results indicated that the positive rate of CD29, CD31, CD34, CD45, CD90, CD105 were respectively 73.4%, 3.6%, 4.5%, 2.0%, 97.3%, 80.4%. After purposively induced, ADSCs had the phenotype characterisitics of adipocyte or osteocyte.
     3、HaCat cells transfected with EGF could induce ADSCs to invert to epithelial cells, which will further make ADSCs as ideal seed cells for tissue engineering.
     【Conclusions】
     1、The methods of stirring digestion within collagenase can be effectively used to isolate and purify human ADSCs. The cultured ADSCs are stable in growth with active proliferation and share the general biological characterisitics of ADSCs.
     2、HaCat cells transfected with EGF could induce ADSCs into the epithelial cells phenotypic, which will further make ADSCs as ideal seed cells for tissue engineering.
     3、After adding EGF, the mRNA expression level of the epidermal cells surface antigen such as CK19, integrin-βin ADSCs were increased with time up, and the expression level reach to the highest after 4 weeks.
     4、Reasonable and effective use of ADSCs in wound healing research and has broad prospects for treatment.
引文
[1] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001. 7(2): 211-28.
    [2] Winter A, Breit S, Parsch D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 2003. 48(2): 418-29.
    [3] Safford KM, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002. 294(2): 371-9.
    [4] Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003. 75(3): 775-9.
    [5] Ramos TV, Wang T, Maki CB, Pascual M, Izadyar F. Adipose stem cell side population in the mouse. J Tissue Eng Regen Med. 2009. 3(6): 430-41.
    [6] Gope R. The effect of epidermal growth factor & platelet-derived growth factors on wound healing process. Indian J Med Res. 2002. 116: 201-6.
    [7] Shikiji T, Minami M, Inoue T, Hirose K, Oura H, Arase S. Keratinocytes can differentiate into eccrine sweat ducts in vitro: involvement of epidermal growth factor and fetal bovine serum. J Dermatol Sci. 2003.33(3): 141-50.
    [8] Lin Y, Li H, Huang J, Zeng S. Following the fate of murine epidermal stem cells in a syngeneic dermal equivalent in vivo. Burns. 2005. 31(8): 1007-12.
    [9] Fathke C, Wilson L, Hutter J, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004. 22(5): 812-22.
    [10] Kamolz LP, Kolbus A, Wick N, et al. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns. 2006. 32(1): 16-9.
    [11] Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001. 104(2): 233-45.
    [12] Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008. 26(10): 2713-23.
    [13] Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008. 60(5): 538-44.
    [14] Lei L, Liao W, Sheng P, Fu M, He A, Huang G. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture. Sci China C Life Sci. 2007. 50(3): 320-8.
    [15] Oedayrajsingh-Varma MJ, van HSM, Knippenberg M, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristicsare affected by the tissue-harvesting procedure. Cytotherapy. 2006. 8(2): 166-77.
    [16] Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001. 189(1): 54-63.
    [17] De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003. 89(2-3): 267-70.
    [18] Darling EM, Topel M, Zauscher S, Vail TP, Guilak F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech. 2008. 41(2): 454-64.
    [19] Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004. 103(5): 1662-8.
    [20] Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 2007. 13(6): 1291-8.
    [21] Aksu AE, Rubin JP, Dudas JR, Marra KG. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg. 2008. 60(3): 306-22.
    [22] Wang B, Han J, Gao Y, et al. The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing withOECs. Neurosci Lett. 2007. 421(3): 191-6.
    [23] Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004. 32(6): 370-3.
    [24] Zuk PA. Tissue engineering craniofacial defects with adult stem cells? Are we ready yet. Pediatr Res. 2008 .
    [25] Egusa H, Iida K, Kobayashi M, et al. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 2007. 13(10): 2589-600.
    [26] Xu Y, Balooch G, Chiou M, Bekerman E, Ritchie RO, Longaker MT. Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system. Biochem Biophys Res Commun. 2007. 359(2): 311-6.
    [27] Kim YJ, Bae YC, Suh KT, Jung JS. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem Pharmacol. 2006. 72(10): 1268-78.
    [28] De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003. 174(3): 101-9.
    [29] Dragoo JL, Carlson G, McCormick F, et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 2007. 13(7): 1615-21.
    [30] Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002. 290(2): 763-9.
    [31] Rangappa S, Fen C, Lee EH, Bongso A, Sim EK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003. 75(3): 775-9.
    [32] Song YH, Gehmert S, Sadat S, et al. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun. 2007. 354(4): 999-1003.
    [33] Planat-Benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004. 94(2): 223-9.
    [34] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003. 114(6): 763-76.
    [35] Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun. 2007. 363(3): 674-9.
    [36] Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005. 328(1): 258-64.
    [37] Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007. 46(1): 219-28.
    [38] Snykers S, Vanhaecke T, De Becker A, et al. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. BMC Dev Biol. 2007. 7: 24.
    [39] Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007. 46(1): 219-28.
    [40] Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med. 2007. 30 Suppl 1: S35-40.
    [41] Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun. 2005. 333(1): 116-21.
    [42] Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg. 2003. 111(6): 1922-31.
    [43] Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol. 2004. 187(2): 319-28.
    [44] Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002. 174(1): 11-20.
    [45] Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of humanadipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004. 109(5): 656-63.
    [46] Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005. 332(2): 370-9.
    [47] Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004. 110(3): 349-55.
    [48] Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004. 109(10): 1292-8.
    [49]雷永红,付小兵,盛志勇,孙同柱,董晓红,于勇.诱导脂肪干细胞向表皮细胞表型的转分化研究.中华实验外科杂志. 2006. (12): 1536-1538.
    [50] Brzoska M, Geiger H, Gauer S, Baer P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun. 2005. 330(1): 142-50.
    [51]王先成,乔群,管利东,王韫芳,裴雪涛,何利娟.人脂肪间充质干细胞生物学特征及体外向类角质细胞的分化.中国组织工程研究与临床康复. 2007. (37): 7333-7336.
    [52] Ramos TV, Wang T, Maki CB, Pascual M, Izadyar F. Adipose stem cell side population in the mouse. J Tissue Eng Regen Med. 2009. 3(6): 430-41.
    [53]方利君,孙同柱,程飚,王玉新.在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察.中华创伤杂志. 2003. (04): 19-21.
    [54]都义日,李存保,方利君.表皮细胞生长因子在体诱导猪骨髓间充质干细胞向皮肤组织分化作用的研究.创伤外科杂志. 2005. (02): 127-130.
    [55] Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003. 9(9): 1195-201.
    [56] Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005. 11(4): 367-8.
    [57] Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther. 2009. 9(7): 879-87.
    [58] Raida M, Heymann AC, Gunther C, Niederwieser D. Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med. 2006. 18(4): 735-9.
    [59] Chen X, Katakowski M, Li Y, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res. 2002. 69(5): 687-91.
    [60] Farhadi J, Jaquiery C, Barbero A, et al. Differentiation-dependent up-regulation of BMP-2, TGF-beta1, and VEGF expression by FGF-2 in human bone marrow stromal cells. Plast Reconstr Surg. 2005. 116(5): 1379-86.
    [61] Jost MM, Ninci E, Meder B, et al. Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: a potential role during arteriogenesis. FASEB J. 2003. 17(15): 2281-3.
    [62] Crisostomo PR, Wang M, Herring CM, et al. Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: role of the 55 kDa TNF receptor (TNFR1). J Mol Cell Cardiol. 2007. 42(1): 142-9.
    [63] Akavia UD, Shur I, Rechavi G, Benayahu D. Transcriptional profiling of mesenchymal stromal cells from young and old rats in response to Dexamethasone. BMC Genomics. 2006. 7: 95.
    [64] Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000. 102(4): 451-61.
    [65] Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001. 104(2): 233-45.
    [66] Chunmeng S, Tianmin C, Yongping S, et al. Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res. 2004. 121(1): 13-9.
    [67] Pearton DJ, Yang Y, Dhouailly D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci U S A. 2005. 102(10): 3714-9.
    [68] Zhuang S, Yan Y, Han J, Schnellmann RG. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. J Biol Chem. 2005. 280(22): 21036-42.
    [69] Hoffmann M, Chang HH, Huang S, Ingber DE, Loeffler M, Galle J. Noise-driven stem cell and progenitor population dynamics. PLoS One. 2008. 3(8): e2922.
    [70] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007. 131(5): 861-72.
    [71] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007. 131(5): 861-72.
    [72] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007. 448(7151): 313-7.
    [73] Odelberg SJ. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals. Semin Cell Dev Biol. 2002. 13(5): 335-43.
    [74]蔡飒,付小兵,雷永红等.在体诱导表皮细胞去分化的初步实验研究.第三军医大学学报. 2008. (21): 1998-2002.
    [75] Piazuelo E, Jimenez P, Lanas A, Garcia A, Esteva F, Sainz R. Platelet-derived growth factor and epidermal growth factor play a major role in human colonic fibroblast repair activities. Eur Surg Res. 2000. 32(3): 191-6.
    [76] Gope R. The effect of epidermal growth factor & platelet-derived growth factors on wound healing process. Indian J Med Res. 2002. 116: 201-6.
    [77]王世岭,柴家科,廖镇江,利天增,付小兵.重组人表皮生长因子软膏对烧伤创面修复的促进作用.中国修复重建外科杂志. 2002. (03): 173-176.
    [78]胡大海,汤朝武,陈璧等.三苯氧胺抑制瘢痕成纤维细胞DNA及胶原合成.第四军医大学学报. 2000. 21(12): 1527-1529.
    [79]胡大海,汤朝武,阎小军.表达hEGF导入基因的角朊细胞促进体外培养的正常角朊细胞增殖.西北国防医学杂志. 2000. (02): 83-86.
    [80] Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol. 1988. 106(3): 761-71.
    [81] Schoop VM, Mirancea N, Fusenig NE. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol. 1999. 112(3): 343-53.
    [82] Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008. 45(2): 115-20.
    [83] Ogawa R, Mizuno H, Watanabe A, Migita M, Hyakusoku H, Shimada T. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice-including relationship of sex differences. Biochem Biophys Res Commun. 2004. 319(2): 511-7.
    [84] Casteilla L, Charriere G, Laharrague P, et al. [Adipose tissue, plastic andreconstructive surgery: come back to sources]. Ann Chir Plast Esthet. 2004. 49(5): 409-18.
    [85] Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002. 13(12): 4279-95.
    [86]李宾公,曾秋棠,王红祥,邹萍,王庆海.脂肪来源与骨髓来源的基质干细胞的比较.中华器官移植杂志. 2006. 27(3): 142-144.
    [87] Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet. 2001. 358(9287): 1067-8.
    [88] Michel M, Torok N, Godbout MJ, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 1996. 109 ( Pt 5): 1017-28.
    [89] Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993. 73(4): 713-24.
    [90]蔡飒,孙同柱,付小兵.人表皮角质细胞系培养过程中细胞生物学行为和表型的变化.感染.炎症.修复. 2007. (04): 199-201+257.
    [91] Bagutti C, Hutter C, Chiquet-Ehrismann R, Fassler R, Watt FM. Dermal fibroblast-derived growth factors restore the ability of beta(1) integrin-deficient embryonal stem cells to differentiate into keratinocytes. Dev Biol. 2001. 231(2): 321-33.
    [92] Li HH, Zhou G, Fu XB, Zhang L. Antigen expression of human eccrine sweat glands. J Cutan Pathol. 2009. 36(3): 318-24.
    [93] Sagawa K, Kimura A, Saito Y, et al. Production and characterization of a monoclonal antibody for sweat-specific protein and its application for sweat identification. Int J Legal Med. 2003. 117(2): 90-5.
    [94] Kealey T. The metabolism and hormonal responses of human eccrine sweat glands isolated by collagenase digestion. Biochem J. 1983. 212(1): 143-8.
    [95] Collie G, Buchwald M, Harper P, Riordan JR. Culture of sweat gland epithelial cells from normal individuals and patients with cystic fibrosis. In Vitro Cell Dev Biol. 1985. 21(10): 597-602.
    [96] Lee CM, Carpenter F, Coaker T, Kealey T. The primary culture of epithelia from the secretory coil and collecting duct of normal human and cystic fibrotic eccrine sweat glands. J Cell Sci. 1986. 83: 103-18.
    [97] Hongpaisan J, Zhang AL, Mork AC, Roomans GM. Use of primary cell cultures and intact isolated glandular epithelia for X-ray microanalysis. J Microsc. 1996. 184(Pt 1): 22-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700