废铅膏有机酸浸出及低温焙烧制备超细铅粉的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废铅酸蓄电池是危险废物,不合理的处置会对生态环境和人类健康造成严重危害。传统火法回收废铅酸蓄电池工艺中二氧化硫、铅尘污染严重。因此,开发清洁的铅回收技术是再生铅工业可持续发展的迫切要求。铅膏是废铅酸蓄电池最难回收处理的部分。本文采用有机酸湿法浸出工艺处理铅膏,转化为前驱体柠檬酸铅,然后低温焙烧制备超细铅粉,对该工艺的相关理论进行了初步研究。研究成果主要包括以下几方面的内容:1、废铅酸蓄电池铅膏的表征废铅酸蓄电池铅膏样品来源于湖北金洋冶金股份有限公司破碎分选系统分离获得的废铅膏。废铅膏首先洗涤至中性后,经过烘干、破碎筛分,小于120μm的细铅膏样品用于进行后续的湿法回收工艺。铅膏粒径小于120μm的细铅膏约占铅膏总重量的80%,比重约6.95 g/cm3。铅膏主要矿物组分有PbSO4、PbO2、PbO和金属Pb,其中PbSO4的含量约56.5%-64.5%,Pb02约29.5-32.5%,PbO约4-5%,金属Pb约为0.5-5.5%,此外还有微量杂质Sb、Fe等。2、铅膏在柠檬酸-柠檬酸钠体系中湿法转化规律以PbO、PbO2、PbSO4铅膏单组份为研究对象,考察了在两种不同比例的柠檬酸-柠檬酸钠体系中的湿法浸出转化规律。经过化学计量的推算以及XRD、FT-IR、TG等手段表征,结果表明形成了两种不同配位数的前驱体柠檬酸铅:pH为3-4条件下,柠檬酸铅的化学式为Pb(C6H6O7)-H2O,粒径为10-50μm,板片状形貌;pH为5-6的条件下,柠檬酸铅化学式为Pb3(C6H5O7)2·3H2O,粒径为1-10μm,薄鳞片状形貌。采用PbO、PbO2、PbSO4及Pb四种单组份混合组成的模拟铅膏,在柠檬酸-柠檬酸钠体系中显示了与单组份浸出实验相同的浸出转化规律。在此基础上,以实际铅膏为研究对象,考察了浸出剂的投加量、反应温度、浸出反应时间对铅膏的转化率与回收率的影响。研究表明,合适的浸出工艺条件为:柠檬酸与总铅的摩尔比为3:1,柠檬酸钠与总铅的摩尔比为9:5,双氧水与二氧化铅摩尔比为2:1,固液比为1:5,反应时间8 h。采用SEM/EDX技术研究了铅膏浸出前后以及浸出过程中形貌及成分的变化过程,结果显示,在浸出转化过程中二氧化铅与氧化铅反应很快,而硫酸铅反应相对较慢。反应过程中硫酸铅颗粒不断变小,因此硫酸铅生成柠檬酸铅的反应是一个缩核反应。铅膏中硫酸铅在柠檬酸-柠檬酸钠溶液浸出动力学方程可用1-(1-a)1/3=Kt+B描述,反应的表观活化能为67·82 kJ·mol-1,浸出过程受化学反应步骤控制。对铅膏中杂质在柠檬酸/柠檬酸钠-双氧水体系中转化规律进行了初步的探讨,结果表明铁元素只有40%左右进入溶液,锑杂质元素进入到液相比例最高只能达到80%左右。3、铅膏在乙酸-柠檬酸钠体系中湿法转化规律PbO、PbO2和PbSO4在乙酸-柠檬酸钠体系脱硫转化生成柠檬酸铅的分子式为Pb3(C6H5O7)2·3H20。合适的浸出条件为柠檬酸钠与铅的摩尔比为4:3,乙酸与铅的摩尔比为8:3,固液比为1/5,反应时间为2 h。温度升高可以促进铅膏脱硫反应,同时对柠檬酸铅形貌有较大影响。浸出生成柠檬酸铅颗粒粒径在5μm以下,过滤困难。可以通过柠檬酸铅的重结晶进行调控,温度是结晶再生长过程的一个重要因素,改变结晶温度与时间可以调控结晶物质的粒径,同时结晶过程可以将部分杂质分离到滤液中,净化最终产物柠檬酸铅。4、柠檬酸铅热分解制备超细铅粉的初步探讨热重与红外联用对柠檬酸铅的热分解研究结果表明:柠檬酸铅在空气中热分解过程可大致分为脱水、热分解及燃烧三个阶段。在热分解初始反应均为结晶水的失去,在200-280℃范围内部分有机物产生,而此后主要产物为二氧化碳。两种柠檬酸铅在空气中产物为氧化铅与金属铅。焙烧温度对两种柠檬酸铅在空气中分解起到关键性的作用。柠檬酸铅前驱物Pb(C6H6O7)-H2O在低温时主要焙烧产物是a-PbO、β-PbO与金属铅,温度较高时焙烧产物为β-PbO。在400-450℃范围内延长反应时间可以得到Pb304。柠檬酸铅前驱物Pb3(C6H5O7)2·3H2O在不同温度下产物与柠檬酸铅Pb(C6H6O7)·H2O的焙烧产物相似,但是延长焙烧时间没有Pb304的产生,这可能是由于前驱物中配位数的差异造成的。通过微电极电化学实验表明:两种前驱体制备的超细铅粉循环伏安扫描曲线可逆性较好、循环稳定性较优,证明该自制铅粉有一定的应用前景。本论文的研究成果为废铅膏有机酸湿法回收利用提供了实验依据;将传统的湿法冶金与金属配合物理论有机结合,丰富了有机酸为浸出剂的金属提取与回收的湿法冶金体系;同时对于其他电子废弃物的湿法回收具有一定的参考价值。
Discarded and spent lead acid batteries are hazardous wastes which could cause serious damages to both eco-environment and human health if treated and pilled improperly. Since the noxious lead dust and SO2 emission in the traditional pyrometallurgy, it is urgent to develop clean lead recovery technology for the sustainable development of secondary lead industry, among which lead paste is the most difficult part for recovery and disposal. In this thesis, lead paste was leached with organic acid to produce lead citrate precursor which would prepare ultra-fine lead oxide when calcinated at relatively low temperature. And there are also some efforts attached on systematical research on the theories and principles related to this technology. The main researches include the following contents:1. Characterization of lead paste in spent batteriesThe lead paste studied in this thesis comes from the crushing and separation device of Hubei Jin Yang Co., LTD. Before leaching experiments lead paste would be first pre-treated such as neutralizing, drying, crushing and further separation. Then chemical analysis and hydrometallurgy leaching was conducted by using part of the paste whose particle size is less than 120μm, which accounts for 80% by mass, and its specific gravity is 6.95 g/cm3. The major mineral constituents of lead paste are PbO, PbO2, and PbSO4. And the main components are PbSO4 (56.5-64.5%), PbO2 (29.5-32.5%), PbO (4-5%) and Pb (0.5-5%) by mass. In addition, there are trace impurities as Sb and Fe.2. The conversion of lead paste in the citric acid-sodium citrate systemThe hydrometallurgical converting law of PbO, PbO2, or PbSO4 leaching with the mixture of citric acid and sodium citrate in the different proportions respectively has been studied. Calculating by stoichiometry method and characeriation of XRD, FT-IR SEM and TG, it was found that the leaching product is Pb(C6H6O7)H2O at pH=3-4 who has board flake shape with particle size of 10-50μm, while the precipitate is Pb3(C6H5O7)2·3H2O at pH=5-6 which is thin scales shape with particle size of 1-10μm. And the converting law of simulative paste consisting of PbO, PbO2, PbSO4 and Pb in the citric acid-sodium citrate system is nearly the same with that of the single component. Having accomplished the leaching study of simulative paste, experiments were conducted to study the effect of the dosage of leaching reagent, temperature and time on both desulphurization rate of lead paste and recovery rate of lead paste by using the real lead paste. The optimal condition was found to be:3:1 of mol ratio of citric acid to total lead,9:5 of mol ratio of sodium citrate to total lead,2:1 of mol ratio of hydrogen peroxide to lead dioxide,1/5 as the starting paste/water mass ratio,8h of leaching time.The results of SEM/EDX showed that in leaching process, PbO2 and PbO reacted quickly, while PbSO4 reacted relative slowly. And since during the reacting process the particle size of PbSO4 reduced continuously, the reaction of generating lead citrate from PbSO4 fited well with the core-shrinking model. The leaching of PbSO4 in the citric acid and sodium citrate solution fited the kinetic equation:1-(1-a)1/3=Kt+B. The apparent activation energy was 67.82 kJ-mol"1 and the leaching process was controlled by chemical reaction procedure. Initial study indicates that about 40% of Fe entered in solution, while Sb can reach to 80% to the utmost extent.3. The conversion of lead paste in the acetic acid-sodium citrate systemThe product prepared by leaching of PbO, PbO2 and PbSO4 in acetic acid and sodium citrate solution was deduced to be Pb3(C6H5O7)2·3H2O by stoichiometry method. The optimal condition for leaching real lead paste was found to be:8:3 of mol ratio of acetic acid to total lead,4:3 of mol ratio of sodium citrate to total lead,2:1 of mol ratio of hydrogen peroxide to lead dioxide,1/5 as the starting paste/water ratio,2h of leaching time. The temperature increase had a positive impact on both desulphurization rate of lead paste and the morphology of the crystallized lead citrate. The smaller size of lead citrate particles (<5μm) was formed at room temperature, thus resulting on the difficulty in the filtration process. However recrystallization of the precursor could deal with the filtration difficulty by appropriately changing the particle size of the precursor resulting from optimizing the crystallizing duration and temperature. Moreover, the crystallizing process could remove the impurities into the filtrate which would lead to cleaner lead citrate precursor.4. Preparation of ultra-fine Lead oxide from lead citrateTG-FTIR analysis of the lead citrate precursor revealed that the thermal decomposition process of lead citrate in air was approximately divided into dewatering stage, main organic constituent decomposing stage and burning stage. TG-FTIR data of two kinds of lead citrate showed that dehydrating crystal water was the initial reaction of thermal decomposition, and subsequently organic matters were produccd within 200-280℃, the main products were CO2 thereafter. The final products from two kinds of lead citrate were mainly both PbO and Pb. Calcination temperature played a crucial role in the decomposition of lead citrate in air. The main product of Pb(C6H6O7)-H2O at relatively low temperature was a-PbO, (3-PbO and Pb, while at relatively higher temperature it was P-PbO. And if prolonging the calcination duration at the temperature of 400-450℃, Pb3O4 would be produced. And the calcinating products of Pb3(C6H5O7)2·3H2O at different temperature was similar with those of the Pb(C6H6O7)·H2O, except that no PbsO4 could be formed by prolonging the duration. Through electrochemical test by self-made micro-electrode, ultra-fine lead oxide has shown regular redox mechanism, good reversible property and cycle stability, which promised certain application prospect.The result of this study could guide the utilization of hydrometallurgy method on recycling of spent lead-acid battery; combining the traditional hydrometallurgy and the metal complexes theory would enrich the extraction and recovery of metal by using organic acid, it also could direct the hydrometallurgical recovery of other E-waste.
引文
[1] 天津大学无机化学教研室.无机化学(下册).北京:高等教育出版社,1992
    [2] 彭容秋.铅冶金.长沙:中南大学出版社,2004
    [3] 胡永达.国内铅价弱于外盘.中国有色金属,2011,(29):25-27
    [4] 《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003
    [5] 周国宝.关于铅锌工业发展的思考.有色金属工业,2003,(9):11~13
    [6] 郑听.铅锌市场分析和展望:[硕士论文].北京,北京邮电大学,2008
    [7] 再生铅技术现状与发展,中国有色金属通报,2010,(35):17~19
    [8] 兰兴华,殷建华.发展中的中国再生铅工业.中国资源综合利用,2000,(8):19~21
    [9] 蒋继穆.我国铅锌冶炼现状与持续发展.中国有色金属学报,2004,14(1):5262
    [10] http://xibunongye.com/future_yemian.asp?id=24688
    [11]朱松然.铅蓄电池技术(第2版).北京:机械工业出版社,2002
    [12]徐品弟,柳厚田.铅酸蓄电池-基础理论和工艺原理.上海:上海科学技术文献出版社,1996
    [13]张红润,李军鸿.铅酸蓄电池使用寿命影响因素与电池失效原因.机电产品开发与创新,2010,23(5):60~63
    [14]潘香英.阀控铅酸蓄电池早期容量衰减的研究:[硕士论文].天津:天津大学,2007
    [15]周正华.从废旧蓄电池中无污染火法冶炼再生铅及合金.上海有色金属,2002,(23),157~163
    [16] L.C. Ferracin, A. E. Chacon-Sanhueza, R. A. Davoglio, et al. Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electrohydrometallurgical process. Hydrometallurgy,2002,65:137~144
    [17] http://news.sohu.com/20100423/n271701740.shtmL
    [18] http://www.asianmetal.cn/
    [19] 《废铅酸蓄电池收集和处理污染控制技术规范》编制组. 《废铅酸蓄电池收集和处理污染控制技术规范》编制说明,2008
    [20]周国宝.关于铅锌工业发展的思考.有色金属工业,2003,(9):11~13
    [21]祁嘉义.过量铅对健康的影响.微量元素与健康研究,1999,16(2):75~77
    [22]张懋奎,周晓明,王蓓兰.铅对人类的危害及铅中毒的预防.社区卫生保健,2007,6(5):359~360
    [23]张艳梅.铅暴露与人体健康.预防医学论坛,2008,14(3):254~256
    [24] W. Duan, G. Chen, Q. Ye, et al. The situation of hazardous chemical accidents in China between 2000 and 2006. Journal of hazardous materials,2001,186:1489-1494
    [25] http://www.msnbc.msn.com/id/43414249/ns/world_news-world_environment/t/chin a-criticized-lead-poisoning-children/
    [26]刘岚.铅对人类健康的危害及防治.职业与健康,2005,20(5):665~666
    [27]刘辉,银星宇,覃文庆等.铅膏碳酸盐化转化过程的研究.湿法冶金,2005,24(3):146~149
    [28] N. K. Lyakov, D. A. Atanasova, V. S. Vassilev. Desulphurization of damped battery paste by sodium carbonate and sodium hydroxide. Journal of Power Sources,2007, 171:960~965
    [29]桂双林.废铅蓄电池中铅泥浸出特性及氯盐法浸出条件研究:[硕士论文].南昌:南昌大学,2008
    [30]杨家宽,朱新锋,刘万超等.废铅酸电池铅膏回收技术的研究进展.现代化工2009,29(3):32~37
    [31] Z. Vaysgant, A. Morachevsky, A. Demidov, et al. A low-temperature technique for recycling lead-acid battery scrap without wastes and with improved environmental control. Journal of Power Sources,1995,53:303~306
    [32] V. P. Yanakieva, G. A. Haralampiev, N. K. Lyakov. Desulphurization of the damped lead battery paste with potassium carbonate. Journal of Power Sources,2000,85: 178-180
    [33] K. Arai, J. M. Toguri. Leaching of lead sulphate in sodium carbonate solution. Hydrometallurgy,1984,12:49-59
    [34] Y. Gong, J. E. Dutrizac, T. T. Chen. The reaction of anglesite (PbSO4) with sodium carbonate solutions. Hydrometallurgy,1992,31:175-199
    [35] N. K. Lyakov, D. A. Atanasova. Desulphurization of damped battery paste by sodium carbonate and sodium hydroxide. Journal of Power Sources,2007,171:960-965
    [36] Y. Gong, J. E. Dutrizac, T. T. Chen. The conversion of lead sulphate to lead carbonate in sodium carbonate media. Hydrometallurgy,1992,28:399-421.
    [37] D. Andrews, A. Raychaudhur, C. Frias. Environmentally sound technologies for recycling secondary lead. Journal of Power Sources,2000,88:124-129
    [38]郭翠香,赵由才.从废铅蓄电池中湿法回收铅的技术进展.东莞理工学院学报,2006,13(1):81~86
    [39]孙佩极,赵素藩,王艳红等.废蓄电池渣泥二段脱硫工艺研究.有色金属(冶炼部分),1994,(4):41~43
    [40]孙佩极,赵素藩.用酸式碳酸盐处理废蓄电池渣泥的动力学.有色金属(冶炼部分),1992,(6):3~7
    [41]陆克源.固相电解法-一种再生铅的新技术.有色金属再生及利用,2005,(12):16-17
    [42] H. D. Mcdonald. Method of recovering lead values from battery sludge:US, 4229271.1980-10-21
    [43] R. D. Prengaman. Recovering lead from batteries. Journal of Metals,1995,47(1):31-33
    [44] J. Cole, R. Ernest, A. Y. Lee, et al. Update on recovering lead from scrap batteries. Journal of Metals,1985,37(2):79-83
    [45] M. Olper, P. Fracchia. Hydrometallurgical process for an overall recovery of the components of exhausted lead-acid batteries:US,4769116.1988-9-6
    [46]陈维平,龚建森.Fe2+还原废蓄电池泥渣中Pb02的试验研究.湖南大学学报,1995,22(6):53~58
    [47]陈维平.一种湿法回收废铅蓄电池填料的新技术.湖南大学学报,1996,23(6):111-115
    [48] M. Olper, M. Maccagni, C. J. N. Buisman. Electrowinning of lead battery paste with the production of lead and elemental sulphur using bioprocess technologies[C]//Dutrizac JE, Gonzalez JA. LEAD-ZINC 2000 symposium. Pittsburgh Pennsylvania USA:Minerals Met & Mat Soc,2000,803~813
    [49]王升东,王道藩,唐忠诚等.废铅蓄电池回收铅与开发黄丹、红丹以及净化铅蒸汽新工艺研究.再生资源研究,2004,(2):25~28
    [50]宋剑飞,李立清,李丹等.用废铅蓄电池制备黄丹和红丹.化工环保,2004,24(1):52~54
    [51]傅欣,贡佩芸,傅毅诚.废铅蓄电池的综合回收利用研究.资源再生,2008,(2):30~32
    [52]刘辉.从铅的矿物资源及二次资源直接制备超细粉体材料的研究:[硕士论文].长沙:中南大学,2005
    [53]叶少峰,谭国进,蒋林斌.湿法回收废铅蓄电池制备三碱式硫酸铅.无机盐工业,2006,38(4):46~48
    [54]杨新生.从废铅蓄电池渣泥中制取铅系列化工产品的试验研究.江西冶金,1995,15(2):22~23
    [55] J. E. Manders, L. T. Lam, K. Peters, et al. Lead-acid battery technology. Journal of Power Sources,1996,59:199~207
    [56]赵瑞瑞,陈红雨.铅酸蓄电池用铅粉的研究进展.蓄电池,2009,(2):68~71
    [57] G. Mayer, D. A. J. Rand. Leady oxide for lead/acid battery positive plates:scope for improvement. Journal of Power Sources,1996,59:17~24
    [58] T. L. Blair. Lead oxide technology-Past, present, and future. Journal of Power Sources,1998,73:47~55
    [59] J. P. McKinley, M. K. Dlaska, R. Batson. Red lead:understanding red lead in lead_acid batteries. Journal of Power Sources,2002,107:180~186
    [60]王景川,徐小义.红丹(Pb304)及其在铅酸蓄电池中的应用.蓄电池,2000,(3):31-33
    [61] J. R. Pierson. Control of vital chemical processes in the preparation of lead-acid battery active materials. Journal of Power Sources,2006,158:868~873
    [62] J. H. Shin, K. W. Kim. Preparation for leady oxide for lead-acid battery by cementationreaction. Journal of Power Sources,2000,89:46~51
    [63] J. Morales, G. Petkova. Synthesis and characterization of lead dioxide active material for lead-acid batteries. Journal of Power Sources,2006,158:831~836
    [64] M. Bervas, M. Perrin, S. Genies, et al. Low-cost synthesis and utilization in mini-tubular electrodes of nano PbO2. Journal of Power Sources,2007,173:570~ 577
    [65] S. F. Radtke. Developments in lead-acid battery technology. Lead-Zinc 2000, Proc. of the Lead-Zinc 2000 Symp. TMS Fall Extraction & Process Metallurgy Meeting, eds. J E Dutriac et al, Pittsburg, U.S.A:Published by TMS,2000,887~897
    [66] H. Karami, M. A. Karami. Synthesis of uniform nano-stuctured lead oxide bysonochemical method and its application as cathode and anode of lead-acid batteries. Materials Research Bulletin,2008,43(11):3054~3065
    [67] H. Karami, M. A. Karami. Synthesis of lead nanoparticles by sonochemical method and its application as cathode and anodeof lead-acid batteries. Journal of Power Sources,2008,108:337~344
    [68]李娟,龚良玉,夏熙α-PbO纳米粉体的固相合成及其对MnO2电极材料的改性作用.应用化学,2001,18(4):264~268
    [69]龚良玉,李娟,夏熙.固相合成β-PbO纳米粉体及相关过程的研究.无机材料
    学报,2001,16(5):969~970
    [70]高艳阳,张月,王金霞.棒状纳米PbO的固相合成.中北大学学报(自然科学版),2007,28(1):57~59
    [71]刘建斌,许民,黄志明.纳米β-PbO粉体的固相合成.有色金属(冶炼部分),2004,(2):44~46
    [72]马凤国,邵自强,宋毅等.纳米级氧化铅粉体的合成.合成化学,2001,9(5):449~450
    [73] S. Y. Li, W. Yang, M. Chen, et al. Preparation of PbO nanoparticles by microwave irradiation and their application to Pb (Ⅱ)-selective electrode based on cellulose acetate. Materials Chemistry and Physics,2005,90:262~269
    [74] H. Haddadian, A. Aslani, A. Morsali. Syntheses of PbO nano-powders using new nano-structured lead (Ⅱ) coordination polymers. Inorganica Chimica Acta,2009,362: 1805-1809
    [75] M. Salavati-Niasari, F. Mohandes, F. Davar. Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron,2009,28:2263~2267
    [76]胡彬彬,季振国,袁苑等.直流反应磁控溅射制备氧化铅薄膜.真空科学与技术学报,2004,26(2):84~87
    [77] P. F. Ren, X. P. Zou, J. Cheng, et al. Growth of lead oxide nanorods by electrochemical reduction method. Journal of Materials Science & Engineering, 2007,25(6):902~905
    [78] M. Cuzr, L. Hemna, J. Moarles, et al. Spary pyrolysis as method for preparing PbO coating maenbale to use in lead-acid batteries. Journal of Power Sources,2002,108: 35-40
    [79] M. J. S. Fard-Jahromi, A. Morsali. Sonochemical synthesis of nanoscale mixed-ligands lead (Ⅱ) coordination polymers as precursors for preparation of Pb(SO4)O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies. Ultrasonics Sonochemistry,2010,17:435~440
    [80] J. Yang, J. F. Ma, Y. Y. Liu. Organic-acid effect on the structures of a series of lead (Ⅱ) complexes. Inorganic Chemistry,2007,46:6542~6555
    [81] A. Pellisser, Y. Bretonniere, N. Chatterton, et al. Relating structural and thermodynamic effects of the Pb (Ⅱ) lone pair:A new picolinate ligand designed to accommodate the Pb (Ⅱ) lone pair leads to high stability and selectivity. Inorganic Chemistry,2007,46:3714~3725
    [82] M. Kourgiantakis, C.P. Raptopoulou, M. Matzapetakis, et al. Lead-citrate chemistry. synthesis, spectroscopic and structural. Inorganica Chimica Acta,2000,297:134~ 138
    [83]李加荣,陈博仁,欧育湘等.3-硝基-1,2,4-三哇酮-5(NTO)的铅盐[Pb(NTO)2·H2O]的晶体结构.北京理工大学学报,1993,13(2):157~161
    [84] S. S. Kety. The lead citrate complex and its role in the physiology and therapy of lead poisoning. The Journal of biological chemistry,1941,28:181-192
    [85] E. Bottari, M. Vicedomini. On the complex formation between lead (Ⅱ) and citrate ions in acid solution. Journal of Inorganic and Nuclear Chemistry,1973,35(4):1269-1278
    [86] E. Bottari, M. Vicedomini. On the complex formation between lead (Ⅱ) and citrate ions in alkaline solution. Journal of Inorganic and Nuclear Chemistry,1973,35(7): 2447~2453
    [87] L. G. Ekstrom, A. Olin. On the complex formation between lead (Ⅱ) and citrate in acid, neutral and weakly alkaline solution. Chemica Scripta.1978,79(13):10~15
    [88]石晶,徐家宁,张萍[Pb6(H2O)2(cit)4]·3H2O和Pb(tar)(H2O)2两种柔性酸和铅的配位聚合物的水热合成与表征.高等学校化学学报,2007,28(9):1617~1621
    [89] R. V. Kumar, M. S. Sonmez, V. P. Kotzeva. Lead recycling. UK Patent,0622249.1, 2006
    [90] M. S. Sonmez, R. V. Kumar. Leaching of waste battery paste components. Partl: Lead citrate synthesis from PbO and PbO2. Hydrometallurgy,2009,95:53~60
    [91] M. S. Sonmez, R. V. Kumar. Leaching of waste battery paste components. Part 2: Leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution. Hydrometallurgy,2009,95:82~86
    [92] A. Worayingyong, P. Kangvansura, S. Ausadasuk, et al. The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,315:217~225
    [93] S. Vivekanandhan, M. Venkateswarlu, N. Satyanarayana. Effect of different ethylene glycol precursors on the Pechini process for the synthesis of nano-crystalline LiNio.5Co0.5VO4 powders. Materials Chemistry and Physics,2005,91:54~59
    [94] S. Verma, S. D. Pradhan, R. Pasricha, ct al. A noval low-temperature synthesis of nanosized NiZn ferrite. Journal of the American Chemical Society,2005,88:2597~ 2599
    [95] T.T. Chen, J.E. Dutrizac. The mineralogical characterization of lead-acid battery paste, Hydrometallurgy,1996,40:223~245.
    [96]朱新锋,刘万超,杨海玉等.以废铅酸电池铅膏制备超细氧化铅粉末.中国有色金属学报,2011,20(1):132~136
    [97] J. K. Yang, X. F. Zhu, R. V. Kumar. Ethylene glycol-mediated synthesis of PbO nanocrystal from PbSO4:A major component of lead paste in spent lead acid battery. Materials Chemistry and Physics,2011,131:336-342
    [98]侯建华,赵凤起,高红旭等.柠檬酸铈的热分解机理及反应动力学.火炸药学报,2007,30(4):1~5
    [99]景茂样,沈湘黔,沈裕军.柠檬酸盐凝胶法制备纳米氧化镍的研究.无机材料学报,2004,19(2):289~294
    [100] L. Li, J. Ge, F. Wu, R. Chen, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, Journal of Hazardous Materials,2010,176:288~293
    [101]严永华,刘期崇,夏代宽等.磷酸分解磷矿石的动力学,高校化学工程学报,1998,1(2):265~270
    [102]梁晓蓉,刘晓荣,顾怡卿等.废铅蓄电池湿法再生过程PbO2的还原研究.上海应用技术学院学报,2009,9(2):126~129
    [103]石晶.铅的配位聚合物的水热合成.结构表征与性质研究:[博士论文].长春:吉林大学,2008
    [104] S. R. Fan, L. G. Zhu. Secondary synthesis of two cobalt complexes by the use of 5-sulfosalicylate and 1,10-phenanthroline and their crystal structures. Chinese Journal of Chemistry,2005,23(10):1292-1296
    [105] A. Soudi, A Morsali, S. Moazzenchi. A first 1,2,4-triazole Pb(II) complex: thermal, spectroscopic and structural studies, [Pb2(trz)2(CH3COO)(NO2)]n· Inorganic Chemistry Communications,2006,12:1259-1262
    [106]孙召明.冶金化学动力学研究中应注意的几个问题.稀有金属与硬质金属,2001,146:27~29
    [107]李洪桂,郑清远,张启修等.湿法冶金学.长沙:中南工业大学出版社,2002
    [108]张玉军.物理化学.北京:化学工业出版社,2008
    [109]周星,张炜,杨栋等.基于动力学和扩散分段控制的Mg/H2O反应模型及数值分析.国防科技大学学报,2011,33(1):35~38
    [110] A. A. Geidarov, M. M. Akhmedov, M. A. Karimov, et al. Kinetics of leaching of lead sulfate in sodium chloride solutions. Russian Metallurgy,2009, (6):469~472
    [111]周贤玉,李珊,陈小泉等.Fe304在过氧化氢-柠檬酸中的溶解特性研究.核科学与工程,1997,17(4):377~381
    [112]周贤玉.过氧化氢-柠檬酸-离子交换树脂体系的可行性论证.中南工学院学报,1995,9(2):46~51
    [113]周贤玉,李珊.铁的模拟腐蚀产物在柠檬酸、过氧化氢溶液中的溶解特性.湘潭大学自然科学学报,1998,(1):62-66
    [114]沈娟,蒋琪英,钟国清.锑(Ⅲ)配合物的合成及其空问立体化学.化学进展,
    2007,19(1):107~116
    [115]季海冰,何孟常,赵承易.环境中锑的形态分析研究进展.分析化学,2003,31(11):1393~1398
    [116]钱文华,温孝慈,张其楷等.治疗日本吸血虫的锑剂研究.药学学报,1956,4(4):295~299
    [117]王静康,化学工程手册:结晶(第2版),北京:化学工业出版社,1996
    [118]丁绪准,谈遒.工业结晶.北京:化学工业出版社,1995
    [119]叶铁林.化工过程结晶原理与应用.北京:北京工业大学出版社,2006
    [120]沈兴.差热、热重分析与非等温固相反应动力学.北京:冶金工业出版社,1995
    [121]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001
    [122]谭洪.生物质热裂解机理试验研究:[博士论文].杭州:浙江大学,2005
    [123]李永玲,吴占松.秸秆热解特性及热解动力学研究.热力发电,2008,37(7):1~5
    [124]王子曦,李桂菊,张晓镭.制革污泥热解动力学研究.中国皮革,2008,37(3):34~38
    [125]陈亚,陈建林,刘龙茂等.城市污水污泥热解动力学研究.河南科学,2009,27(6):727~730
    [126] R. Bassilakis, R. M. Carangelo, M. A. Wojtowicz. TG-FTIR analysis of biomass pyrolysis. Fuel,2001,80 (12):1765-1786
    [127] W. Jong, A. Pirone, M. A. Wojtowicz. Pyrolysis of Miscanthus Giganteus and wood pellets:TG-FTIR analysis and reaction kinetics. Fuel,2003,82(9):1139~ 1147.
    [128] M. E. Brown. Thermal decomposition of lead citrate. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1973, 69:1202~1212
    [129] M. J. Munson, R. E. Riman. Observed phase transformations of oxalate-derived lead monoxide powder. Journal of Thermal Analysis,1991,37:2555~2566
    [130] J. M. Criado, F. Gonzalez, M. Gonzalez, et al. Influence of the grinding of PbC3 on the texture and structure of the final products of its thermal decomposition. Journal of Materials Science,1982,17:2056~2060
    [131]郝润蓉,方锡义,钮少冲.《无机化学丛书》(第3卷)碳硅锗分族.北京:科学出版社,1998
    [132]刘广林.铅酸蓄电池工艺学概论.北京市:机械工业出版社,2008
    [133] D. L. Perry, T. J. Wilkinson. Synthesis of high-purity alpha-PbO and beta-PbO and possible applications to synthesis and processing of other lead oxide materials. Applied Physics Materials Science and Processing,2007,89(1):77~80
    [134] W. Visscher. Cyclic voltammetry on lead electrodes in sulphuric acid solution. Journal of Power Sources,1977,1(3):257~266
    [135]唐爱东,黄可龙,赵家昌.尖晶石型LiMn2O4电极循环伏安研究.电源技术.2003,27(6):502~504
    [136]徐秋红,常照荣,张士国.粉末微电极循环伏安法快速评价LiCoO2合成条件研究.河南师范大学学报(自然科学版),2009,37(5):89~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700