白血病细胞多药耐药性的诱导及对三氧化二砷敏感性的细胞分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白血病获得性多药耐药(multidrug resistance, MDR)现象是白血病治疗领域尚未解决的难题和主要的关键难点之一。尽管长期以来围绕白血病耐药性的发生机制、调控通路以及干预措施诸方面进行了大量的探索性研究,但迄今为止尚没有对白血病细胞耐药性的发生和调控机制得到清晰的认识,也无有效且临床实用的干预对策。近年来有关白血病干细胞(leukemia stem cells, LSC)在白血病多药耐药性中的关键作用受到关注,推测LSC可能是白血病药物耐受性的核心和白血病常规治疗失败、复发的根源。因此,研究白血病细胞的耐药特性及细胞分子机制,有针对性地探寻干预白血病耐药性的药物或策略,以期可为临床耐药性白血病的治疗提供新的潜在靶点。
     我们采用阿霉素(Adriamycin, ADM)模拟体内化疗过程,逐步提高药物浓度、长期、间歇性刺激的方法诱导人白血病HL-60细胞获得耐药特性,建立稳定的白血病多药耐药细胞株(HL-60/R),并动态观察白血病细胞获得耐药性的过程中药物敏感性、耐药基因/蛋白表达及功能、蛋白质组、LSC含量等的变化。研究发现,历经22个月的ADM诱导后,耐药性的HL-60/R细胞对ADM的耐受性增高85.68倍,且与顺铂、长春新碱、依托泊苷、阿糖胞苷和柔红霉素等多种化疗药物交叉耐受。HL-60/R细胞在无ADM条件下培养3个月以上或冻存-重新复苏其耐药性均无降低,证明该细胞具备稳定的多药耐药性。动态观察显示,HL-60/R细胞在生长速度、细胞形态以及细胞周期分布等方面均与亲本HL-60细胞有不同程度的差异;随诱导时间延长和诱导药物浓度提高,药物转运蛋白ABCC1/MRP1、 ABCB1/P-gp和ABCG2/BCRP的表达逐步增高,尤以mdrl/P-gp为著,且诱导耐药细胞对ADM或rhodamine123(Rhl23)的蓄积明显减少、外排显著增加。蛋白质表达谱(蛋白质组)初步揭示HL-60/R细胞存在大量的差异表达蛋白,有待进一步的质谱鉴定分析。ADM诱导过程中HL-60细胞群体中表面标志为CD34+CD38-CD123+的的LSC的含量同步增高且HL-60/R细胞较亲本HL-60细胞具有显著增强的集落形成能力。ADM诱导后的HL-60细胞在无ADM培养基中随着扩增培养时间延长,细胞群体中LSC的比例逐渐降低,稳定在10%左右,ADM重新诱导复又增高。提示在ADM的长期反复诱导过程中HL-60细胞群体中的LSC因其天然耐药性而存活下来,并可能因药物的反复诱导而获得高耐药特性和独特调控通路,成为耐药性白血病细胞群体的源泉。有趣的是,不同于其它已知的多药耐药性白血病细胞,我们诱导建立的HL-60/R对三氧化二砷(arsenic trioxide, AS2O3)具有很强的交叉耐受性。
     As203因具有显著疗效且与常规抗肿瘤药物无交叉耐药性而被广泛用于白血病及实体肿瘤的治疗,取得显著的疗效。研究证实大多数MDR白血病细胞并不对As203产生交叉耐药性,甚至具有更高的敏感性,可能与As203并非P-gp的底物且能抑制P-gp活性有关,同时,细胞的抗砷性与MPR1、MPR2和ASNA1等转运蛋白对砷的转运密切相关。我们采用ADM诱导的mdr1/P-gp高表达的HL-60/R耐药细胞对As203高度耐受,但同样是ADM诱导和mdr1/P-gp高表达的K562/ADM耐药细胞却对As203具有高敏感性。为探讨白血病MDR细胞对As203耐受还是敏感的分子机制,我们对比观察了对K562/ADM细胞、HL-60/R细胞及其亲本药物敏感的K562细胞和HL-60细胞砷转运相关蛋白的表达,以及与对As203敏感性的相关性。结果揭示,与亲本K562细胞和HL-60细胞相比较,K562/ADM细胞具有较低的MRP1、MRP2和ASNA1的表达,而HL-60/R细胞则表达更高,且明显高于K562/ADM细胞。As203促进HL-60/R细胞MRP1、MRP2和ASNA1的表达,却对K562/ADM细胞的表达具有不同程度的抑制作用。我们的研究首次证实对常规抗肿瘤药物抵抗的白血病耐药细胞是否与As203交叉耐受,主要与耐药细胞MPR1、 MPR2和ASNA1等砷转运相关蛋白的表达水平,以及As203作用对这些转运蛋白表达的影响密切相关。
     我们的研究证实As203对白血病K562/ADM耐药细胞具有较高的凋亡诱导效应,且可明显提高内质网分子伴侣GRP78/Bip的表达。为探讨除As203抑制ABC转运蛋白表达外,内质网应激(endoplasmic reticulum stress, ERS)反应是否参与K562/ADM细胞对As203诱导凋亡敏感性的机制,我们进一步比较研究了As203诱导K562/ADM细胞及其亲本K562细胞凋亡过程中GRP78、CHOP/GADD153、 XBP1和caspase-12等内质网应激相关基因/蛋白和rndr1/P-gp、Bcl-2等耐药相关基因/蛋白的表达改变,以及Ca2+信号变化。研究结果证实As203可激活内质网应激反应的信号通路而诱发K562/ADM细胞和K562细胞发生内质网应激反应,并通过下调mdr1/P-gp表达增强未折叠蛋白反应(unfolded protein response, UPR)触发caspase依赖的细胞凋亡途径,下调Bcl-2促进Ca2+释放而启动内质网应激性凋的钙离子起始信号,诱导耐药性白血病K562/ADM细胞发生更强的内质网应激反应性细胞凋亡。
     综上所述,采用ADM长期、反复、间歇性地提高药物浓度诱导白血病HL-60细胞(HL-60/R)获得了稳定的多药耐药特性,并具备高表达耐药相关基因/蛋白、蛋白质表达谱改变和LSC含量增高等特性,且与经典白血病MDR细胞不同,HL-60/R细胞具有对As203高耐受性的独特特性。ADM诱导耐药性的源泉可能为长期反复诱导过程中HL-60细胞群体中存活的耐药性LSC, LSC可能会因反复暴露于药物而发生适应性突变获得高耐药特性或独特调控信号通路,并传递给其后代细胞而形成耐药性白血病细胞群体。As203因与常规抗肿瘤药物无交叉耐药性而被用于耐药性白血病的治疗,但耐药性白血病细胞是否与As203交叉耐受,与其MPR1、MPR2和ASNA1等砷转运相关蛋白的表达及As203对转运蛋白表达的影响密切相关。As203激发内质网应激反应,并通过下调1ndr1/P-gp表达增强UPR触发caspase依赖的细胞死亡通路和下调Bcl-2促进Ca2+释放而启动内质网应激性细胞凋亡的钙离子起始信号,是其诱发某些耐药性白血病细胞如K562/ADM细胞更强凋亡效应的主要细胞分子机制。
The phenomenon of acquired multi-drug resistance (MDR) in leukemia is one of the major and pivotal impediments in leukemia therapy which has not yet been overcome. Over many years, a large number of extensive studies around leukemia drug-resistance, regulatory pathways and intervention measures have been launched but so far, the mechanisms remain incompletely understood and few effective or clinically practical countermeasures have been identified.Recently, the cardinal role of leukemia stem cells (LSC) in leukemia-MDR has attracted widespread attention and it has been speculated that they are the core factor underlying leukemia drug resistance and also the key cause of conventional chemotherapy failure and relapse in leukemia. Therefore, it is necessary to study the resistance characteristics of leukemia and its cellular and molecular mechanisms and to specifically explore ways to overcome these to provide new potential targets for clinical treatment of drug-resistant leukemia. In this study, human promyelocytic leukemia HL-60cells were selected for the adriamycin (ADM)-resistant phenotype, imitating the process of intra-individual chemotherapy, using long-term, intermittent and continuous stepwise increments of ADM concentration, to set up a stable MDR leukemia subline (HL-60/R). We then dynamically observed the effect on their drug sensitivity, expression of drug-resistance-related genes/proteins and their function, as well as their proteomic and LSC content. We found that after22months ADM-induction, the resistance of HL-60/R to ADM increased85.68-fold over that of their parental HL-60cells, which, meanwhile, cross-tolerated many other chemotherapeutics including cisplatin, daunorubicin, cytarabine, vincristine and etoposide. Additionally, drug-resistance was maintained even after culture in the absence of ADM for3months or6months' refrigeration. Dynamic observations showed that growth speed, cell morphology and cell cycle distribution of HL-60/R cells were distinct from those of HL-60cells, and expression of the transporters ABCC1/MRP1, ABCB1/P-gp, ABCG2/BCRP, and especially mdr1/P-gp, gradually increased with increasing ADM concentration and induction time. Simultaneously, there was a sharp reduction in accumulation of intracellular ADM or rhodamine123(Rh123) and a marked efflux was observed. Protein expression spectrum (proteomics) preliminarily revealed a large number of differentially-expressed proteins in HL-60/R cells compared to parental HL-60cells, which, however, still need further identification by mass spectrometry. The proportion of CD34+CD38-CD123+LSC present, which remarkably enhanced colony-forming ability compared to parental cells, was synchronously increased with the process of ADM-induction in total HL-60cells, and then gradually dropped to almost10%after culture in the absence of ADM with increasing time in culture and as a result of cell multiplication, but increased again upon repeat exposure to ADM, indicating that LSC, due to their characteristics and natural resistance, survived to become the source of leukemia cell proliferation. Simultaneously, because of the repeated stimulus of the cytotoxic drugs, LSC became super-resistant and gained special regulation pathways that were transmitted to the daughter cells which, therefore, became the source of leukemia cells. Interestingly, different from other recognized chemo-resistant leukemia cell lines, the established HL-60/R sub-lines were also strongly cross-resistant to As2O3.
     As2O3is widely used in chemotherapy for most types of leukemia and solid tumors. It shows remarkable curative effects and has little cross-resistance with conventional chemotherapeutics. Studies show that most MDR leukemia cells do not manifest cross-resistance but have higher sensitivity to As2O3, and a possible explanation for this may be because As2O3is not a P-gp substrate and may even inhibit P-gp activity. Additionally, cellular arsenic resistance is closely related to arsenic transfer by MPR1, MPR2and ASNA1transporters. In this study, ADM induced MDR in HL-60/R cells. These cells also over-expressed mdrl/P-gp, and were quite resistant to As2O3, to which MDR K562/ADM cells, also induced by ADM and over-expressing P-gp, possess comparatively high sensitivity. To investigate the molecular mechanism underlying the resistance or sensitivity of MDR leukemia cells to As2O3, the drug-resistant K562/ADM cell line, HL-60/R cell line, their parental chemo-sensitive K562cells and HL-60cells were used as model cells to carry out paired-observation expression studies of arsenic transport-related proteins, as well as correlation with arsenic-sensitivity. The results revealed that expression levels of MRP1, MRP2and ASNA1were all lower in K562/ADM cells compared to their parental K562cells and to sensitive HL-60cells, but were highest in HL-60/R cells. As2O3could upregulate MRP1, MRP2and ASNA1in HL-60/R cells but inordinately suppress them in K562/ADM cells. Our study first confirmed whether or not cross-resistance to AS2O3in MDR leukemia cells existed, mainly related to intracellular contents of MPR1, MPR2and ASNA1arsenic transporters and the effect of AS2O3on them.
     Our studies showed an outstanding apoptosis-inducing effect and increased expression of GRP78in leukemia K562/ADM cells after arsenic treatment. To explore whether ERS (endoplasmic reticulum stress) is involved in As2O3-mediated apoptosis as well as the inhibitory effect on ABC transporters, we analyzed the effect of changes in expression of ERS-pathway-related genes and proteins including GRP78, CHOP/GADD153, XBP1, caspase-12and Bcl-2. We also investigated the influence of these changes on mdrl/P-gp and Ca2+signaling, comparing results in K562/ADM cells and their parental K562counterparts after As2O3treatment. The results proved that arsenic can induce ERS-related apoptosis in K562/ADM and K562cells by activating the ERS-response signaling pathway. Arsenic can also induce apoptosis in drug-resistant K562/ADM leukemia cells via down-regulation of mdrl/P-gp expression, thus strengthening the UPR(unfolded protein response)-triggered caspase-dependent cell-death pathway and down-regulating Bcl-2expression, consequently promoting Ca2+release and triggering calcium signaling in ERS-induced apoptosis.
     In conclusion, leukemia HL-60/R sub-lines acquired chemo-resistance as a result of intermittent and consecutive ADM-resistance-inducing methods and also developed characteristics of over-expression of resistance-related genes/proteins and changes in the protein expression spectrum as well as increases in the LSC population, which, distinct from classical leukemia MDR cells, are also a unique feature of high As2O3-resistance.The source of cellular resistance may be derived from surviving chemo-resistant LSC in the HL-60population subjected to long and consecutive stimulation with ADM. The LSC may adaptively mutate to gain characteristics of high chemo-reagent resistance or develop a special signal-regulated pathway that can be transmitted to their daughter cells to form a new chemo-resistant leukemia cell population. As2O3has been used in chemotherapy for most types of leukemia and solid tumors due to its remarkable curative effects and lack of cross-resistance with conventional chemotherapeutic drugs. However, whether drug-resistant leukemia cells possess cross-resistance to As2O3is closely related to their expression of the arsenic transporters MPR1, MPR2and ASNA1. As2O3induces expression of ERS. down-regulating mdr1/P-gp expression to strengthen the UPR-triggered caspase-dependent cell-death pathway and down-regulating Bcl-2expression. Consequently promoting Ca2+release and triggering calcium signaling in ERS-induced apoptosis are the major cellular and molecular mechanisms underlying the stronger apoptotic effect in some resistant leukemia cells, such as K562/ADM cells.
引文
[1]Boffa LC, Scarfi S, Mariani MR, et al. Dihydrotestoterone as a selective cellular/nuclear location vector anti-gene peptide nucleic acid in prostatic carcinoma cells [J]. Cancer Res. 2002,60:2258-2262
    [2]Jonker J W, Freeman J, Bolscher E, et al. Contribution of the ABC transporters Bcrpl and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice [J]. Stem Cell,2005,23:1059-1065.
    [3]Huss WJ, Gray DR, GreenbergNM, et al. Breast Cancer Resistance Protein-Mediated Efflux of Androgen in Putative Benign and Malignant Prostate Stem Cells [J]. Cancer Res,2005,65: 6640-6650.
    [4]Naoyuki U,Brad D, Kristin L, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status [J]. Blood,2004,103: 4487-4495.
    [5]Reya T, Morrison RJ, Clarke MF, et al. Stem cell, cancer and cancer stem cells [J]. Nature. 2001; 414:105-111.
    [6]De FL, Pintao MC, Oliveira LC, et al. Determination of P- glycoprotein, MDR- related protein 1, breast cancer resistance protein, and lung- resistance protein expression in leukemic stem cells of acute myeloid leukemia [J]. Cytometry B Clin Cytom,2008,74:163-168.
    [7]Ho MM, Hogge DE, Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia [J]. Exp Hematol 2008.36:433-442.
    [8]Loo TW, Bartlett MC, Clarke D M. Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane [J]. J Biol Chem,2004,279:7692-7697.
    [9]Linton K J. Structure and function of ABC transporters [J]. Physiology,2007,22:122-130.
    [10]Lee JY, Urbatsch IL, Senior AE, et al. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy [J]. J Biol Chem,2008,283 (9):5769-5779.
    [11]Henressy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter [J]. Pharmacol Res,2007,55:1-15.
    [12]Bergman AM, Pinedo HM, Talianidis I, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein overexpressing human cancer cell lines[J]. Br J Cancer,2003,88:1963-1970.
    [13]Abd El-ghaffar HA, Aladle DA, Farahat SE. Abd El-Hady N, et al. P-glycoprotein (P-170) expression in acute leukemias[J]. Hematology,2006,11:35-41.
    [14]范红,程远东,范梅,等.MDR1在急性髓系白血病中的表达及其与预后的关系[J].山东医药.2009,49:4445.
    [15]Ambudkar S V, Kim I W and Sauna Z E. The power of the pump:mechanisms of action of P-glycoprotein (ABCB1) [J]. Eur J Pharm Sci,2006,27:392-400.
    [16]Mahjoub F, Golalipour M, Ghavamzadeh A, et al. Expression of MRP1 gene in acute leukemia [J]. Sao Paulo Med J,2008,126:172-179.
    [17]Litman T, BrangiM, Ross DD, et al. The multidrug resistant phenotype associated with overexpression of the new ABC half transporter, MXR (ABCG2) [J]. J Cell Sci,2000,113: 2011-2021.
    [18]Hipfner DR, Deeley RG, Cole SPC, et al. Structural mechanistic and clinical aspects of MRP1 [J]. BBA Biomembrans,1999,1461(2):359-376.
    [19]Doyle LA, Yang WD, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl Acad Sci USA.1998,95(26):15665-15670.
    [20]Hens MJ, Zaman GJR, Izquierdo MA, et al. Tissue distribution of the multidrug resistance protein [J]. American J Pathology,1996,148:1237-1243.
    [21]Kage K, Tsakahara S,Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance as drug effluex pump through the inhibition of S-shomodimerzation [J]. Int J Cancer,2002,97:626-630.
    [22]HussWJ, GrayDR, GreenbergNM, et al. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate Stem Cells [J]. Cancer Res,2005,65: 6640-6650.
    [23]Sugimoto Y, Tsukahara S, Ishihara E, et al. Breast cancer resistance protein:molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics [J]. Cancer Sci,2005, 96(8):457-465.
    [24]周庚寅,张晓芳.肿瘤多药耐药机制及其逆转[J].临床与实验病理学杂志,2009,25:348-351.
    [25]Yasunami T, Wang YH, Tsuji K, et al. Multidrug resistance protein expression of adult T-cell leukemia/lymphoma [J]. Leuk Res,2007,31:465-470.
    [26]Scheffer GL, Wijngaard PL, Flens MJ, et al. The drug resistance-related protein LRP is the human major vault protein [J]. Nat Med,1995.1:578-582.
    [27]Huang BT, Xiao Z, Shi YT, et al. Expressions of LRP, GST-pi and MRP1 inacute leukemia patients and its clinical significance [J]. Zhongguo Shiyan Xueyexue Zazhi,2007,15: 262-266.
    [28]Fan J, Zhou H, Zhang L, et al Expression and clinical significance of lung resistance-related protein in acute leukemia [J]. Chin J Cancer prev Treat,2007,14:1477-1479.
    [29]方宁,农晓琳.肿瘤多药耐药机制研究现状[J].实用肿瘤学杂杂志.2008,22:553-556.
    [30]Tzyh-Chyuan H, Jun C, Chao YH, et al. Characterization of chemoresistance mechanisms in a series of cisplatin resistant transitional carcinoma cell lines [J]. Anticancer Res,2000,20: 3221-3226.
    [31]Benderra Z, Faussat A M. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias [J]. J Clin Cancer Res.2004,10:7896-7902.
    [32]Cantero G, Campanella C, Mateos S, et al. Topoisomerase Ⅱ inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin [J]. Oxford.2006,21: 321-325.
    [33]Liang SH, Hong D, Clarke MF, et al. Cooperation of a single lysine mutation and a C-treminal domain in the cytoplasmic sequestration of the P53 protein [J]. J Biol Chem,1998, 273:19817-19821.
    [34]徐朝阳,谭石慈,邢达.P53基因在肿瘤治疗中的应用[J].激光生物学报,2001,10:71-75.
    [35]Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy [J]. Oncogene.2007,26:1324-1337.
    [36]Jones RG, Bui T, White C, et al. The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca2+ homeostasis [J]. Immunity,2007, 27:268-280.
    [37]Szegezdi E, Macdonald DC, Ni Chonghaile T, et al. Bcl-2 family on guard at the ER [J]. Am J Physiol Cell Physiol.2009,296:C941-C953.
    [38]Jauharoh SN, Saegusa J, Sugimoto T, et al. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production [J]. Biochem Biophys Res Commun,2012,417:582-587.
    [39]Matsumoto H, Wada T, Fukunaga K, et al. Bax to Bcl-2 ratio and Ki-67 index are useful predictors of neoadjuvant chemoradiation therapy in bladder cancer[J]. Jpn J Clin Oneol,2004, 34,124-130.
    [40]Schrattenholz A, Klemm M. Neuronal cell culture from human embryonic stem cells as in vitro model for neuroprotection [J]. ALTEX 2007,24:9-15.
    [41]Whitlow S, Buergin H, Clemann N. The embryonic stem cell test for the early selection of pharmaceutical compounds [J]. ALTEX,2007:24:3-7.
    [42]Reubinoff B. Current status of human embryonic stem cell research [J]. Reprod Biomed Online,2007:14:121-124
    [43]Trounson A. Use of embryonic s tem cells for endocrine disorders. Horm Res,2007, 67:28-31.
    [44]Baker DE, Harrison NJ, Maltby E, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo[J]. Nat Biotechnol,2007,25:207-215.
    [45]Bonnet D, Dickj E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J]. Nat Med,1997,3:730-737.
    [46]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci U S A,2003,100:3983-3988.
    [47]Kondo T, Setoguchi T, Taga T, et al. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line [J]. Proc Natl Acad Sci USA,2004,101:781-786.
    [48]Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties[C]. Hepatology,2006,44:240-251.
    [49]Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro [J]. Glia,2002,39:193-206.
    [50]Frank N Y, Schatton T, Frank MH, et al. The therapeutic promise of the cancer stem cell concept [J]. J Clin Invest,2010,120:41-50.
    [51]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance [J]. Nat Rev Cancer,2005,5: 275-284.
    [53]Kim HR, Wheeler MA, Wilson CM, et al. Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44[J]. Cancer Res,2004,64:4569-4576.
    [54]Golshani R, Lopez L, Estrella V, et al. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44 [J]. Cancer Res,2008,68: 483-491.
    [55]Chan KS, Espinosa I, Chao M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumorinitiating cells [J]. Proc Natl Acad Sci USA,2009,106:14016-14021.
    [56]Blair A, Hogge DE, Ailles LE, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo [J]. Blood,1997,89: 3104-3112.
    [57]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice [J]. Nature,1994.367(6464):645-648.
    [58]Jiang X, Zhao Y, Forrest D, et al. Stem cell biomarkers in chronic myeloid leukemia [J].Dis Markers,2008; 24:201-216
    [59]An Y, Ongkeko WM. ABCG2:the key to chemoresistance in cancer stem cells? [J]. Curr Drug Metab,2009,5:1529-1542.
    (60] Naoyuki U,Brad D, Kristin L, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status [J]. Blood,2004,103: 4487-4495.
    [61]Lou H, Dean M. Targeted therapy for cancer stem cells:the patched pathway and ABC
    transporters [J]. Oncogene,2007,26:1357-1360
    [62]Hauswirth AW, Florian S, Printz D, et al. Expression of the target receptor CD33 in CD34 (+)/CD38 (-)/CD123(+) AML stem cells [J]. Eur J Clin Invest,2007,37:73-82.
    [63]Lock RB, Jin L, Lee EM, et al. CD123 (IL-3 Receptor{alpha} chain) neutralization by a monoclonal antibody selectively eliminates human acute myeloid leukemic stem cells [J]. Blood (ASH Annual Meeting Abstracts),2007; 110:161.
    [64]Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia [J].Clin Cancer Res,2006; 12:340-344.
    [65]Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells [J].Proc Natl Acad Sci USA,2002; 99:16220-16225.
    [66]Huntly BJ, Gilliland DG. Leukemia stem cells and the evolution of cancer stem cell research [J]. Nav Rev Cancer,2005,5:311-321.
    [67]Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH 1 in human T cell acute lympholastic leukemia [J]. Science,2004,306:269-271.
    [68]Martelli AM, Nyakem M, Tabellini G, et al. Phosphoinositide 3-kinase/Akt signaling pathway and it's therapeutical implications for human acute myeloid leukemia [J].Leukemia, 2006,20:911-928.
    [69]Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia initiating cells [J]. Nature,2006,441:475-482.
    [70]Yilmaz OH, Morrison SJ. The PI-3Kinase pathway in hematopoietic stem cells and leukemia initiating cells a mechanistic difference between normal and cancer stem cells [J]. Blood Cells Mol Dis,2008; 41:73-76.
    [71]Naoyuki U, Brad D, Kristin L, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status [J]. Blood,2004,103: 4487-4495.
    [72]Eaker SS, Hawley TS, Ramezani A, et al. Detection and enrichment of hematopoietic stem cells by side population phenotype [J]. Methods Mol Biol,2004,263:161-80.
    [73]徐瑞荣,王敬毅,崔兴,等.免疫磁珠分选系统在急性髓系白血病干细胞分离中的席用[J].浙江中西医结合杂志,2008,18:610-612,
    [74]Bapat SA, Mali AM, Koppikar CB et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer [J]. Cancer Res,2005,65:3025-3029.
    [75]Dean M. ABC transporters, drug resistance and cancer stem cells [J]. J Mammary Gland Biol Neoplasia,2009,14:3-9.
    [76]Jagani Z. Khosravi-Far R. Cancer stem cells and impaired apoptosis [J]. Adv Exp Med Biol, 2008,615:331-344.
    [77]Bissell M J, Labarge MA. Context, tissue plasticity, and cancer:are tumor stem cells also regulated by the microenvironment [J], Cancer Cell,2005,7:17-23.
    [78]Voog J, Jones D L. Stem cells and the niches a dynamic due [J]. Cell Stem Cell,2010,6: 103-115.
    [79]Sneddon JB, Werb Z. Location, location, location:the cancer stem cell niche [J], Cell Stem Cell,2007,1:607-611
    [80]Mitsiadis T A, Barrandon O, Rochat A, et al. Stem cell niches in mammals [J]. Experimental Cell Research,2007,313:3377-3385
    [81]Leung J, Pang A, Yuen WH, et al. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells [J]. Blood,2007,15,109:740-746.
    [82]Richa A, MoushamiM, Subhash C L. Heat shock genes-integrating cell survival and death [J]. J Biosci,2007,32:595-610.
    [83]陈静,马艳云,王蓓,et al.三氧化二砷诱导K562/ADM耐药细胞内质网应激反应性凋亡的机制研究[J].中华血液学,2009,30:477-479.
    [84]Shang D, Ito N, Watanabe J, et al. Synergy of interferon-α and 5-fluorouracil in human renal cell carcinoma requires p53 activity [J]. Eur Urol.2007,52:1131-1139.
    [85]Behzad F, Horst Z, Verena B, et al. Molecular cytogenetic analysis of chemoresistant non-Hodgkin's lymphoma patients with p53 abnormalities using fluorescence in situ hybridisation and comparative genomic hybridization [J]. Archives of Iranian medicine.2011,14:321-326.
    [86]Zio D D, Cianfanelli V, Cecconi F. New insights into the link between DNA damage and apoptosis [J]. ARS 2012,10, ahead of print.
    [87]李林静,陈静,程杰,等.胰岛素抵抗肝细胞多药耐药基因的表达[J].中国糖尿病杂志,2008,16:670-673.
    [88]李晓凤,巴彩霞,袁海清,等.B7-H1和Bcl-2在人结直肠癌中表达及其临床意义[J].肿瘤,2012,32:555-558
    [89]赵园园,王舒宝.三氧化二砷对人胃癌耐药细胞株SGC7901/ADM的耐药逆转作用及机制研究[J].博士学位论文,2005.
    [90]Nagata S. Fas ligand-induced apoptosis [J]. Annu Rev Genet,1999,33:29-55.
    [91]Liu WH, Chang LS. Fas/FasL-dependent and -independent activation of caspase-8 in doxorubicin- treated human breast cancer MCF-7 cells:ADAM 10 down-regulation activates Fas/FasL signaling pathway [J]. Int J Biochem Cell Bio!,2011,43:1708-1719.
    [92]Bayir H. Fadeel B, Palladino MJ, et al. Apoptotic interactions of cytochrome c:redox flirting with anionic phospholipids within and outside of mitochondria [J]. Biochim Biophys Acta, 2006,1757:648-659.
    [93]张玮莹,彭建新.凋亡体与细胞凋亡[J].生物学杂志,2010,27:75-78.
    [94]Levresse V, Butterfield L, Zentr ich E, et a.l. Akt negatively regulates the c- Jun N- terminal kinase pathway in PC12 cells[J]. Neurosci Res,2000,62:799-808.
    [95]汪军兵,胡景鑫.JNK信号转导通路在NGF抗6-OHDA诱导PC12细胞凋亡中的作用[J].中国病理生理杂志,2010,26:277-281.
    [96]Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress- induced apoptosis [J].Methods Mol Biol.2008,414:13-21.
    [97]D'Costa AM, Denning M F. A casppase- resistant mutant of PKC- delta protects keratinocytes friom UV-induced apoptosis [J]. Cell Death Differ,2005,12:224-232.
    [98]Logette E, Solary E, Corcos L. Identification of a functional DNA binding site for the SREBP- 1c transcription factor in the first intron of the human caspase-2 gene [J]. Biochim Biophys Aceta.2005,1738:1-5.
    [99]Lee SC, Chan J, Clement MV, et al. Functional proteomics of resveratrol- induced colon cancer cell apoptosis:caspase-6- mediated cleavage of lamin A is a major signaling loop [J]. Proteomics,2006,6:2 386-2394.
    [100]Visconti R, DAdamio L. Functional cloning of genes regulating apoptosis in neuronal cells [J]. Methods Mol Biol,2007,399:125-131.
    [101]Donepudi M, Mac SweeneyA, Briand C, et al. Insights into the regulatory mechanism for caspase-8 activation [J]. Mol Cell,2003,11:543-549.
    [102]Hebert DN, Bernasconi R, Molinari M. ERAD substrates:Which way out? [J]. Semin Cell Dev Biol,2010,21:526-532.
    [103]Willer M, Forte GM, Stirling CJ. Sec61p is required for ERAD-L:genetic dissection of the translocation and ERAD-L functions of Sec61P using novel derivatives of CPY [J]. J Biol Chem,2008,283:33883-33888.
    [104]Lederkremer GZ. Glycoprotein folding, quality control and ER-associated degradation [J]. Curr Opin Struct Biol,2009,19:515-523.
    [105]Quan EM, Kamiya Y, Kamiya D, et al. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation [J]. Mol Cell,2008,32:870-877.
    [106]Hosokawa N, Kamiya Y, Kamiya D, et al. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans [J]. J Biol Chem,2009,284:17061-17068.
    [107]Cormier JH, Tamura T, Sunryd JC, et al. EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex [J]. Mol Cell,2009,34:627-633.
    [108]Ji C, Kaplowitz N, Lau MY, et al. Liver-specific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice [J]. Hepatology,2011,54:229-239.
    [109]S Z Luo, C H Mao, B Lee and A S Lee. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development [J]. Mol Cell Biol,2006,26:5688-5697.
    [110]Paquet ME, Leach MR, Williams DB. In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control [J]. Methods,2005,35: 338-347.
    [111]Sevier CS, Kaiser CA. Formation and transfer of disulfide bonds in living cells [J]. Molecular cell Biology,2002,3:836-847.
    [112]Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer [J]. Curr Mol Med,2006, 6:45-54.
    [113]Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress [J]. Methods,2005,35:373-381.
    [114]Li J, Ni M, Lee B, et al. The unfolded protein response regulator GRP78/Bip is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells [J]. Cell Death Differ,2008,15:1460-1471.
    [115]Schroder M, Kaufman RJ. The mammalian unfolded protein response [J]. Annu Rev Biochem,2005,74:739-789.
    [116]Sundar Rajan S, Srinivasan V, Balasubramanyam M, et al. Endoplasmic reticulum (ER) stress & diabetes [J]. Indian J Med Res,2007,125:411-424.
    [117]Kohno K. Stress-sensing mechanisms in the unfolded protein response:similarities and differences between yeast and mammals [J].J Biochem,2010,147:27-33.
    [118]Li M, Ding J. Liao ZH. The signal transduction of unfolded protein response [J]. Chin Bull Life Sci,2008,20:246-251.
    [119]Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response [J]. Nat Rev Mol Cell Biol.2007,8:519-529.
    [120]Chen J, Wei HL, Xie B, et al. Endoplasmic reticulum stress contributes to arsenic trioxide-induced apoptosis in drug-sensitive and -resistant leukemia cells [J]. Leukemia Res, 2012.36:1526-1535.
    [121]Shotaro N, Hiramatsu N, Hayakawa K, et al. Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR:involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt [J]. Mol Cell Biol,2011,31:1710-1718.
    [122]Wang M, Wey S, Zhang Y, et al. Role of the Unfolded Protein Response Regulator GRP78/BiP in Development, Cancer, and Neurological Disorders [J]. Antioxid Redox Signal, 2009,11:2307-2316.
    [123]Liu CY, Xu Z, Kaufman RJ. Structure and intermolecular interactions of the luminal dimerization domain of human IRE1[J]. J Biol Chem,2003,278:17680-17687.
    [124]Wey S, Luo B, Tseng CC,et al. Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling [J]. Blood,2012, 119:648-649.
    [125]Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response [J]. Cell Dev Biol,2007,18:716-731.
    [126]Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J]. Nature,2002,415:92-96.
    [127]Zu K, Bihani T, Lin A, et al. Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells [J]. Oncogene,2006,25:546-554.
    [128]Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress [J]. J Biol Chem,2002,277:18728-18735.
    [129]Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of Bip/GRP78 binding and unmasking of Golgi localization signals [J]. Dev Cell 2002,3:99-111.
    [130]Kem J, Untergasser G, Zenzmaier C, et al. GRP78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib [J]. Blood,2009,114:3960-3967.
    [131]Wang M, Ye R, Barron E, et al. Essential role of the unfolded protein response regulator GRP78/Bip in protection from neuronal apoptosis.Cell Death Differ,2010,17:488-498.
    [132]Zheng HC. Takahashi H, Li XH. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas [J]. Hum Pathol,2008,39: 1042-1049.
    [133]FuY and Lee AS. Glucoseregulated proteins in cancer progression, drug resistance and immunotherapy[J]. Cancer Biol Ther,2006,5:741-744.
    [134]Mitra SK, Hanson DA, Sehlaepfer DD. Focal adhesion kinase:in command and control of cell motility [J]. Nat Rev Mol Cell Biol,2005,6:56-58.
    [135]Gonzalez-GronowM, CuehacoviehM, LlanosC. Prostate cancer cell proliferation in vitro is modulated by antibodies against glueoseregulated protein78 isolated from patieniserum [J]. Caneer Res,2006,66:11424-11431.
    [136]Pyrko P, Schonthal AH, Hofman FM, et al.The unfolded protein response regulator GRP78/BIP as a novel target for increasing chemosensitivity in malignant gliomas [J]. Cancer Res,2007,67:9809-9816
    [137]Daneshxnand S, Quek ML, Lin E, et al.Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival [J]. Hum Pathol,2007, 38:1547-1552.
    [138]Meister S, Frey B, Lang VR, et al. Calcium channel blocker verapamil enhances endoplasmic reticulum stress and cell death induced by proteasome inhibition in myeloma cells [J]. Neoplasia,2010; 12:550-561.
    [139]Ledoux S, Yang R, Friedlander G, et al. Glucose depletion enhances P-glycoprotein expression in hepatoma cells:Role of endoplasmic reticulum stress response [J]. Cancer Res, 2003,63(21):7284-7290.
    [140]Morand JPF, Macri J, Adeli K. Proteomic profiling of hepatic endoplasmic reticulum-associated Proteins in an animal model of insulin resistance and metabolic dyslipidemia [J]. J Biol Chem,2005,280:17626-17633.
    [141]梁虹,张育,张建东,等.三氧化二砷对耐药白血病细胞血管内皮生长因子和P-糖蛋白表达的影响[J].中西医结合学报,2007,5:647-649.
    [142]许民,冯玫,乔振华.MEK抑制剂联合三氧化二砷对髓系白血病细胞凋亡的研究[J]临床医药实践杂志,2008,17:803-805.
    [143]Namba T, Tanaka KI, Ito Y, et al. Positive Role of CCAAT/Enhancer- Binding Protein Homologous Protein, a Transcription Factor Involved in the Endoplasmic Reticulum Stress Response in the Development of Colitis [J]. Am J Pathol,2009,174:1786-1798.
    [144]Qu LF, Liu Z, Zhang HF, et al. Endoplasmic reticulum stress-induced cell survival and apoptosis [J]. Chinese Clinical Medicine,2009,4:452-459.
    [145]Walter MJ, Payton JE, Ries RE, et al. Acquired copy number alterations in adult acute myeloid leukemia genomes [J]. Proc Natl Acad Sci USA,2009,106:12950-12955.
    [146]Radtke I, Mullighan CG, Ishii M, et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia [J]. Proc Natl Acad Sci USA,2009; 106:12944-12949.
    [147]Szegezdi E, MacDonald D C, Chonghaile T N, et al. Bcl-2 family on guard at the ER [J]. Am J Physiol Cell Physiol,2009,296:C 941-C 953.
    [148]Scorrano L, Oakes SA. Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis [J]. Science,2003,300:135-139.
    [149]Morishima N, Nakanishi K. Tsuchiya K, et al. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis [J]. J Biol Chem,2004,279:50375-50381.
    [150]Breckenridge DG, Nguyen M, Kuppig S, et al. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum [J]. Proc Natl Acad Sci USA, 2002,99:4331-4336.
    [151]马艳云,陈静,易娟,等.三氧化二砷诱导K562/ADM耐药细胞内质网应激反应性细胞凋亡[J].基础医学与临床,2009,16:670-673.
    [152]刘荣华,王世宣,马湘一,等.GRP78在三种不同乳腺癌细胞的表达及其意义[J].中国肿瘤临床,2008,35:520-522.
    [153]苏荣健,李贞,程留芳,等.特异性下调葡萄糖调节蛋白78表达对肝细胞癌侵袭和转移能力的影响[J].细胞生物学杂志,2007,29:889-894.
    [154]Daneshmand S. Quek ML. Lin E. et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival [J]. Hum Pathol,2007,38: 1547-1552.
    [155]Dong D. Ni M. Li J. et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival and tumor angiogenesis in transgene-induced mammary tumor development[J]. Cancer Res,2008,68:498-505.
    [156]Ermakova S P, Kang BS, Choi BY, et al. Epigallocatechin gallate overcomes resistance to etoposide induced cell death by targeting the molecular chaperone glucose regulated protein 78 [J]. Cancer Res,2006,66:9260-9269.
    [157]Ranganathan AC, Zhang L, Adam AP, et al. Functional coupling of p38 induced upregulation of Bip and act ivat ion of RNA- dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells [J]. Cancer Res,2006,66: 1702-1711.
    [158]Qiao HX, Hao CJ, Li Y, et al. JNK activation mediates the apoptosis of xCT-deficient cells [J]. Biochem Biophys Res Commun,2008,370:584-588.
    [159]Lai E, Teodoro T, and Volchuk A. Endoplasmic Reticulum Stress:Signaling the Unfolded Protein Response [J]. Physiology,2007,22:193-201.
    [160]Tiwary R, Yu W, Li J, et al. Role of endoplasmic reticulum stress in alpha-TEA mediated TRAIL/DR5 death receptor dependent apoptosis [J]. PLOS One,2010 29,5:e11865-e11871.
    [161]Lakshmanan AP, Thandavarayan RA, Palaniyandi SS, et al. Modulation of AT-1R/CHOP-JNK-Caspasel2 pathway by olmesartan treatment attenuates ER stress-induced renal apoptosis in streptozotocin-induced diabetic mice [J]. Eur J Pharm Sci,2011,44:627-634.
    [162]关丽英,许彩民,潘华珍.内质网应激介导的细胞凋亡[J].生物化学与生物物理进展,2007,34:1136-1141.
    [163]Yan F, Wang XM, Liu ZC, et,al. JNK1, JNK2, and JNK3 are involved in P-glycoprotein-mediated multidrug resistance of hepatocellular carcinoma cells [J]. Hepatobiliary Pancreat Dis Int.2010,9:287-295.
    [164]Bode AM, Dong Z. The Functional Contrariety of JNK [J]. Mol Carcinog,2007,46: 591-598.
    [165]Pradelli LA, Beneteau M, Ricci JE. Mitochondrial control of caspase-dependent and-independent cell death [J]. Cell. Mol. Life Sci,2010,67:1589-1597.
    [166]Kurokawa M, Kornbluth S. Caspases and kinases in a death grip [J]. Cell,2009,138: 838-854.
    [167]Salvesen GS, Riedl SJ. Caspase mechanisms [J]. Adv Exp Med Biol,2008,615:13-23.
    [168]Pop C, Salvesen GS. Human Caspases:Activation, Specificity, and Regulation [J]. J Biol Chem,2009,284:21777-21781.
    [169]Fischer H, Koenig U, Eckhart L, et al. Human caspase 12 has acquired deleterious mutations [J]. Biochem Biophys Res Commun,2002,293:722-726.
    [170]Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis [J]. J Biol Chem,2005,280:29578-29587.
    [171]Matsuzaki S, Hiratsuka T, Kuwahara R, et al. Caspase-4 is partially cleaved by calpain via the impairment of Ca2+ homeostasis under the ER stress [J]. Neurochem Int,2010,56: 352-356.
    [172]Chan SL, Culmsee C, Haughey N, et al. Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12 [J]. Neurobiol Dis,2002,11:2-19.
    [173]Nagy G, Szarka A, Lotz G, et al. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen induced liver injury [J]. Toxicol Appl Pharmacol,2010,243:96-103.
    [174]Reddy RK, Mao C, Baumeister P, et al. Endoplasmic reticulum chaperone protein GRP78 protects cells fromapoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation [J]. J Biol Chem,2003,278:20915-20924.
    [175]Zhang Y, Soboloff J, Zhu Z, et al. Inhibition of Caz+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells [J]. Mol Phann,2006,70:1424-1434.
    [176]Paolo P, Davide F, Paulo C. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2 [J]. The Journal of Cell Biology,2000,148:857-862.
    [177]李明,丁健,缪泽鸿.未折叠蛋白应的信号转导.生命科学[J],2008,20:246-251.
    [178]Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi V, et al.Sorcin induces a drug-resistant phenotype in human colorectal cancer by modulating Ca(2+) homeostasis[J]. Cancer Res,2011,71:7659-7669.
    [179]Jones RG, Bui T, White C, et al. The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca2+ homeostasis [J]. Immunity,2007, 27:268-280.
    [180]Ding R, Shi J, Pabon K, et al. Xanthines downregulate the drug transporter ABCG2 and reverse multidrug resistance [J]. Mol Pharmacol,2012,81:328-337.
    [181]Matsuo H,WakasugiM, Takanaga H, et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomesmodified withMRK-16, a monoclonal antibody to P-glycoprotein [J]. J Control Release.2001,77:77-86.
    [182]Wei SH, Ma LQ., Saha U, et al. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L[J]. Environmental Pollution,2010,158:1530-1535.
    [183]Raab A, Meharg AA, Jaspars M, et al. Arsenic-glutathione complexes-their stability in solution and during separation by different HPLC modes [J]. J Anal at Spectrom,2004,19: 183-190.
    [184]Leung J, Pang A, Yuen WH, et al. Relationship of exp ression of aquaglyceroporin 9 with arsenic up take and sensitivity in leukemia cells [J]. Blood,2007,109:740-746.
    [185]赵朴.三氧化二砷治疗慢性粒细胞白血病临床研究[J].医学研究杂志,2008,37:54-56.
    [186]花京剩,罗万余,中屠晴雨,等.三氧化二砷联合化疗治疗慢性粒细胞性白血病急变期11例[J].现代中西医结合杂志,2007,16:1096-1098.
    [187]Hayashi T, Hideshima T, Akiyama M, et al. Arsenic trioxide inhibit growth of human multiple myeloma cells in the bone marrow microenvironment [J]. Mol Cancer Ther,2002,1: 851-860.
    [188]郝艳梅.三氧化二砷联合抗坏血酸增强人多发性骨髓瘤细胞凋亡的实验研究[J].实用医学杂志,2007,23:1452-1454.
    [189]Lu D, Bai XC, Gui L,et al. Arsenic trioxide-induced apoptosis of human malignant lymphoma cell lines and its mechanisms[J]. Diyi Junyi Daxue Xuebao,2003,23:997-1001.
    [190]Vey N, Bosly A, Guerci A, et al. Arsenic trioxide in patients with myelodysplastic syndromes (MDS):Preliminary results of a phase Ⅱ clinical study [J]. Clinical Oncology.2006, 24:2465-2471.
    [191]Vey N, Bosly A, Guerci As, et al.Arsenic Trioxide in Patients With Myelodysplastic Syndromes:A Phase Ⅱ Multicenter Study [J]. J Clin Oncol,2006,24:2465-2471.
    [192]向阳,黄世林,郭爱霞,等.复方黄黛片治疗急性早幼粒细胞白血病疗效分析[J].临床血液学杂志,2000,13:11-14.
    [193]徐述,胡晓梅,许勇钢,等.青黄散加补肾健脾中药治疗骨髓增生异常综合征的临床观察[J].中国中西医结合杂志,2008,28:216-218.
    [194]刘琳,陈叔逵,陈惠英,等.三氧化二砷对人肝癌细胞株选择性抑制作用的实验研究[J].临床肿瘤学杂志,1999,4:39-42.
    [195]刘琳,陈叔逵,陈惠英,等.三氧化二砷选择性诱导人肝癌细胞凋亡及相关基因的实验研究[J].中华肝脏病杂志,2000,8(8):70-73.
    [196]李贺,熊茂明,孟翔凌,等,三氧化二砷逆转肝癌细胞株HepG2/ADM多药耐药的作用[J].世界华人消化杂志,2006,14:2691-2694.
    [197]邓友平,林晨,张雪艳,等.三氧化二砷抗肿瘤作用的研究.中国中药杂志[J],2000,8:27-29.
    [198]刘连新,朱安龙,陈炜,等.三氧化二砷对原发性肝癌的作用及其机理研究[J].中华外科杂志,2005,43:33-36.
    [199]Rojewski MT, Baldus C, KnaufW, et al. Dual effects of arsenic trioxide (Aa2O3) on non-acute promyelocytic leukaemia myeloid cell lines:induction of apop tosis and inhibition of proliferation [J]. Br J Haematol,2002,116:555-563.
    [200]Lunghi P, Costanzo A, LevrerO M, et al. Treament with arsenic trioxide (ATO) and inhibitor activates the p73-p53 AIPI apoptotic pathway in leukemia cells [J]. Blood,2004,104: 519-525.
    [201]Rao MV, Avani G. Arsenic induced free radical toxicity in brain of mice [J]. Indian J Exp Biol,2004,42:495-498.
    [202]Liu J, Lu Y, Wu Q, et al. Mineral arsenicals in traditional medicines:orpiment, realgar, and arsenolite [J], Pharmacol Exp Ther,2008,326:363-368.
    [203]Chou W C, Chen H Y, Yu S L, et al. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Spl oxidation[J]. Blood,2005,106:304-310.
    [204]Zhou P, Kalakonda N, Comenzo R L. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO):possible mechanisms to explain ATO resistance in vivo[J]. Br J Haematol,2005.128 636-644.
    [205]张亚莉,魏虎来,郭璐,等.三氧化二砷诱导K562/ADM耐药细胞凋亡中活性氧的作用.中国临床药理学与治疗学,2006,11:1375-1379.
    [206]张亚莉,魏虎来,孙利军.三氧化二砷诱导K562/ADM细胞凋亡过程中对bcl-2、survivin、ROS表达的影响[J].中国肿瘤,2008,17:495-498.
    [207]王婷.三氧化二砷在恶性血液肿瘤的实验研究进展[J].江西医药,2009,44:82-85.
    [208]马晓冬,乔东访,田雪梅,等.三氧化二砷诱导线粒体通透性转变孔道开放的机制研究[J].癌症,2006,5:17-21.
    [1]Blair A, Hogge D E, Ailles L E, et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo [J]. Blood,1997,89: 3104-3112.
    [2]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice [J]. Nature,1994,367:645-648.
    [3]Jiang X, Zhao Y, Forrest D, et al. Stem cell biomarkers in chronic myeloid leukemia [J]. Dis Markers,2008,24:201-216.
    [4]An Y, Ongkeko WM. ABCG2:the key to chemoresistance in cancer stem cells? [J]. Curr Drug Metab,2009,5:1529-1542.
    [5]Naoyuki U,Brad D, Kristin L, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status [J]. Blood,2004,103: 4487-4495.
    [6]Lou H, Dean M. Targeted therapy for cancer stem cells:the patched pathway and ABC
    transporters. Oncogene,2007,26:1357-1360.
    [7]Hauswirth AW, Florian S, Printz D, et al. Expression of the target receptor CD33 in CD34 (+) /CD38 (-)/CD123(+) AML stem cells [J]. Eur J Clin investigate,2007,37:73-82.
    [8]Lock RB, Jin L, Lee EM, et al. CD 123 (IL-3 Receptor{alpha} Chain) Neutralization by a Monoclonal Antibody Selectively Eliminates Human Acute Myeloid Leukemic Stem Cells [J]. Blood (ASH Annual Meeting Abstracts),2007,110:161.
    [9]Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia [J].Clin Cancer Res,2006,12:340-344.
    [10]Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells [J]. Proc Natl Acad Sci USA,2002,99:16220-16225.
    [11]Huntly BJ, Gilliland DG. Leukemia stem cells and the evolution of cancer stem cell research [J]. Nav Rev Cancer,2005,5:311-321.
    [12]Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lympholastic leukemia[J]. Science,2004,306:269-271.
    [13]Jagani Z, Khosravi-Far R. Cancer stem cells and impaired apoptosis [J]. Adv Exp Med Biol, 2008,615:331-344.
    [14]Ling XL, Zhou Y, Li SW, et al. Modulation of Mitochondrial Permeability Transition Pore Affects Multidrug Resistance in Human Hepatocellular Carcinoma Cells [J]. Int J Biol Sci, 2010,6:773-783.
    [15]Martelli AM, Nyakem M, Tabellini G, et al. Phosphoinositide 3-kinase/Akt signaling pathway and it's therapeutical implications for human acute myeloid leukemia[J]. Leukemia, 2006,20:911-928.
    [16]Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematoietic stem cells from leukaemia initiating cells [J]. Nature,2006,441:475-482.
    [17]Viale A, De Franco F, Orleth A, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells [J]. Nature,2009,457:51-56.
    [18]Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer:a review of the evidence and discussion of significance [J]. J Oncol,2011,2011:1-11.
    [19]Saito Y, Uchida N, Tanaka S, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML [J]. Nat Biotechnol,2010,28:275-280.
    [20]McCubrey JA, Abrams SL, Stadelman K, et al. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells [J]. Adv Enzyme Regul, 2010,50:285-307.
    [21]Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer:are tumor stem cells also regulated by the microenvironment [J], Cancer Cell,2005,7:17-23.
    [22]Voog J, Jones DL. Stem cells and the niches a dynamic due [J]. Cell Stem Cell,2010, 6:103-115.
    [23]Sneddon JB, Werb Z. Location, location, location:the cancer stem cell niche [J], Cell Stem Cell,2007,1:607-611.
    [24]Mitsiadis T A, Barrandon O, Rochat A, et al. Stem cell niches in mammals [J]. Exp Cell Res, 2007,313:3377-3385.
    [25]Sarkadi B, Homolya L, Szakacs G, et al. Human multidrug resistance ABCB and ABCG transporters:participation in a chemoimmunity defense system [J]. Physiol Rev,2006,86: 1179-1236.
    [26]Dean M. ABC transporters, drug resistance and cancer stem cells [J]. J Mammary Gland Biol Neoplasia,2009,14:3-9.
    [27]Suneet S, Robey RW. Bate SE et al. Sunitinib (Sutent, SU11248), a small-Molecule receptor tyrosine kinase inhibitor. blocks function of the ATP-Binding cassette (ABC ransponers P-Glycoprotein ABCB1) and ABCG2 [J]. DMD,2009,37:359-365.
    [28]Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Molecular Pharmacology Fast Forward,2012, doi:10.1124/mol.112.079129.
    [29]HussWJ, Gray DR, Greenberg NM, et al. Breast cancer resistance protein- mediated efflux of androgen in putative benign and malignant prostate stem cells [J]. Cancer Res,2005,65: 6640-6650.
    [30]Ambudkar S V, Kim I W and Sauna Z E. The power of the pump:mechanisms of action of P-glycoprotein (ABCB1) [J]. Eur J Pharm Sci,2006,27:392-400.
    [31]金雷,朱峰,秦锡虎.Caspase-3和P-gp在原发性肝细胞癌中的表达和相关性研究[J].国际肿瘤学杂志,2010,9:715-718.
    [32]Johnstone RW, Cretney E, Smyth MJ. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death [J]. Blood,1999,93:1075-1085.
    [33]Chappell J, Dalton S. Altered cell cycle regulation helps stem-like carcinoma cells resist apoptosis [J]. BMC Biol,2010,8:63-65.
    [34]Thomas X, Cannas G. Leukemia stem cells and new strategies to overcome resistance to therapy [J]. Curr Stem Cell Res Ther,2010,5:277-286.
    [35]周庚寅,张晓芳.肿瘤多药耐药机制及其逆转[J].临床与实验病理学杂志,J Clin Exp Pathol 2009,25:348-351.
    [1]Binet F. Cavalli H, Moisan E, et al. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent:effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis [J]. Br J Haematol,2006,132:349-358.
    [2]Noh EK, Kim H, Park MJ, et al. Gefitinib enhances arsenic trioxide (As2O3)-induced differentiation of acute promyelocytic leukemia cell line [J]. Leuk Res,2010,34:1501-1505.
    [3]Xiao YF, Liu SX, Wu DD, et al. Inhibitory effect of arsenic trioxide on angiogenesis and expression of vascular endothelial growth factor in gastric cancer [J]. World J Gastroenterol, 2006,12:5780-5786.
    [4]Chou WC, Chen HY, Yu SL, et al. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Spl oxidation [J]. Blood,2005,106:304-310.
    [5]Wei SH, Ma LQ., Saha U, et al. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L [J]. Environ Pollut,2010,158:1530-1535.
    [6]Raab A, Meharg AA, Jaspars M, et al. Arsenic-glutathione complexes-their stability in solution and during separation by different HPLC modes [J]. J Anal at Spectrom,2004,19: 183-190.
    [7]Hayashi T, Hideshima T, AkiyamaM, et al. Arsenic trioxide inhibit growth of human multip le myeloma cells in the bone marrow microenvironment [J]. MolCancerTher,2002,1:851-860.
    [8]Lunghi P, Costanzo A, LevrerO M, et al. Treament with arsenic trioxide (ATO) and inhibitor activates the p73-p53 A IPI apoptotic pathway in leukemia cells [J]. Blood,2004,104: 519-525.
    [9]RaoMV, Avani G. Arsenic induced free radical toxicity in brain ofmice [J]. Indian J Exp Biol, 2004,42:49-498.
    [10]Liu J, Lu Y, Wu Q, et al. Mineral arsenicals in traditional medicines:orpiment, realgar, and arsenolite [J], Pharmacol Exp Ther,2008,326:363-368
    [11]Chou W C, Chen H Y, Yu S L, et al. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Spl oxidation [J]. Blood,2005,106:304-310.
    [12]Zhou P, Kalakonda N, Comenzo R L. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO):possible mechanisms to explain ATO resistance in vivo[J]. Br J Haematol,2005,128:636-644.
    [13]魏虎来,姚小健,李宇宁,等.三氧化二砷抑制K562/ADM细胞P-糖蛋白表达并提高化疗药物的敏感性[J].中华血液学杂志,2003,24:28-31.
    [14]Wang DH, Wei HL, Zhao HS, et al. Arsenic trioxide overcomes apoptosis inhibition in K562/ADM cells by regulating vital components in apoptotic pathway [J]. Pharmacol Res, 2005,52:376-378.
    [15]Chen J, Wei HL, Xie B, et al. Endoplasmic reticulum stress contributes to arsenic trioxide-induced apoptosis in drug-sensitive and resistant leukemia cells [J]. Leukemia Res, 2012,36:1526-1535.
    [16]刘春霞,姚小健,易娟,等.三氧化二砷联合FLAG方案治疗复发急性髓性白血病及对白血病干细胞的影响[J].中国肿瘤临床,2011,38:915-917.
    [17]Leslie EM. Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCCI), evidence that a triglutathione conjugate is required J]. J Biol Chem, 2004,279:32700-32708.
    [18]Lee TC, Ho IC, Lu WJ, et al. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line [J]. J Biol Chem,2006,281(27):18401-18407.
    [19]Hemmingsson O, Zhang Y, Still M, et al. ASNA1, an ATPase targeting tail-anchored proteins, regulates melanoma cell growth and sensitivity to cisplatin and arsenite [J]. Cancer Chemother Pharmacol 2009,63:491-499.
    [20]郭淑丽,罗先道,杨丽,杨磊.部分ABC转运子与抗砷相关性的研究进展[J].中国地方病学杂志,2009,28:112-114.
    [21]Hemmingsson O, Nojd M, Kao G, et al. Increased sensitivity to platinating agents and arsenite in human ovarian cancer by downregulation of ASNA1 [J]. Oncol Rep,2009,22: 869-275.
    [22]Raab A, Meharg AA, Jaspars M, et al. Arsenic-glutathione complexes-their stability in solution and during separation by different HPLC modes [J]. J Anal At Spectrom,2004,19: 183-190.
    [23]Mahjoub F, Golalipour M, Ghavamzadeh A, et al. Expression of MRP1 gene in acute leukemia[J]. Sao Paulo Med J,2008,126:172-179.
    [24]Litman T, BrangiM, Ross DD, et al. The multidrug resistant phenotype associated with overexpression of the new ABC half transporter, MXR (ABCG2) [J]. J Cell Sci,2000,113: 2011-2021.
    [25]Doyle LA, Yang WD, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proc Natl Acad Sci USA.1998,95(26):15665-15670.
    [26]ASNA1 arsA arsenite transporter, ATP-binding. homolog 1 (bacterial) [Homo sapiens (human)] NCBI WEB, Gene ID:439, updated on 3-Mar-2013.
    [1]Binet F, Cavalli H, Moisan E, et al. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent:effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis [J]. Br J Haematol,2006,132:349-358.
    [2]Noh EK, Kim H, Park MJ, et al. Gefitinib enhances arsenic trioxide (As2O3)-induced differentiation of acute promyelocytic leukemia cell line [J]. Leuk Res 2010,34:1501-1505.
    [3]Xiao YF, Liu SX, Wu DD, et al. Inhibitory effect of arsenic trioxide on angiogenesis and expression of vascular endothelial growth factor in gastric cancer [J]. World J Gastroenterol, 2006,12:5780-5786.
    [4]Chou WC, Chen HY, Yu SL, et al. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation [J]. Blood,2005,106:304-310.
    [5]Krishna R, Mayer L D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs [J]. Eur J Pharm Sci,2000,11:265-283.
    [6]Buda G, Orciuolo E, Maggini V, et al. MDR1 modulates apoptosis in CD34+ leukemic cells. Ann Hematol,2008,87:1017-1018.
    [7]Wang DH, Wei HL, Zhao HS, et al. Arsenic trioxide overcomes apoptosis inhibition in K562/ADM cells by regulating vital components in apoptotic pathway [J]. Pharmacol Res, 2005,52:376-378.
    [8]Wei HL, Su HX, Bai DC, et al. Arsenic trioxide inhibits P-glycoprotein expression of multidrug-resistant human leukemia cells that overexpress mdr-1 gene [J]. Chin Med J,2003, 116:1644-1648.
    [9]Zang YL, Wei HL, Guo L. Changes of mdrl and Survivin genes expressions during apoptosis induced by Arsenic trioxide in multidrug-resistant human leukemia K562/ADM cells [J]. Chinese Journal of Cancer Prevention and Treatment,2006,13:577-581.
    [10]Ma YY, Chen J, Wei HL, et al. Arsenic trioxide induces endoplasmic reticulum stress-related apoptosis in drug-resistant K562/ADM cells [J]. Basic & Clinical Medicine, 2009,29:161-165.
    [11]Chen J, Ma YY, Wang B, et al. The mechanism of arsenic trioxide-induced endoplasmic reticulum stress-related apoptosis in drug-resistant K562/ADM cells[J]. Chinese Journal of Hematology,2009,30:477-479.
    [12]Calfon M, Zeng H, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J]. Nature,2002,415:92-96.
    [13]Ma Y, Hendershot L M. The role of the unfolded protein response in tumor development: friend or foe? Nat Rev Cancer,2004,4:966-977.
    [14]Sundar Rajan S, Srinivasan V. Balasubramanyam M. Endoplasmic reticulum (ER) stress & diabetes [J]. Indian J Med Res,2007,125:411-424.
    [15]Schroder M, Kaufman RJ. The mammalian unfolded protein response [J]. Annu Rev Biochem,2005,74:739-789.
    [16]Sundar Rajan S, Srinivasan V, Balasubramanyam M. Endoplasmic reticulum (ER) stress & diabetes [J]. Indian J Med Res,2007,125:411-424.
    [17]Kohno K. Stress-sensing mechanisms in the unfolded protein response:similarities and differences between yeast and mammals [J]. J Bio Chem,2010,147:27-33.
    [18]Ma K, Vattem KM, Wek RC. Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress [J]. J Biol Chem,2002,277:18728-18735.
    [19]Liu CY, Xu Z, Kaufman RJ. Structure and intermolecular interactions of the luminal dimerization domain of human IRElalpha [J]. J Biol Chem,2003,278:17680-17687.
    [20]李明,丁健,缪泽鸿.未折叠蛋白反应的信号转导[J].生命科学,2008,20:246-251.
    [21]Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of Bip/GRP78 binding and unmasking of Golgi localization signals [J]. Dev Cell,2002,3:99-111.
    [22]Li M, Ding J, Liao ZH. Signal transduction of unfolded protein response [J]. Chin Bull Life Sci,2008,20:246-251.
    [23]Chen J, Wei HL, Xie B, et al. Endoplasmic reticulum stress contributes to arsenic trioxide-induced apoptosis in drug-sensitive and -resistant leukemia cells [J]. Leukemia Res. 2012,36:1526-1535.
    [24]Rao RV, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway [J]. J Biol Chem,2002, 277:21836-21842.
    [25]Morand JPF, Macri J, Adeli K. Proteomic profiling of hepatic endoplasmic reticulum-associated Proteins in an animal model of insulin resistance and metabolic dyslipidemia[J]. J Biol Chem,2005,280:17626-17633.
    [26]Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12. an endoplastic reticulum (ER) resident caspase through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress [J]. J Biol Chem,2001.276:13935-13940.
    [27]Sokka AL, Putkonen N, Mudo G, et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain [J]. J Neurosci,2007,27:901-908.
    [28]Fischer H, Koenig U, Eckhart L, et al. Human caspase 12 has acquired deleterious mutations [J]. Biochem Biophys Res Commun,2002,293:722-726.
    [29]Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis [J]. J Biol Chem,2005,280:29578-29587.
    [30]Jones RG, Bui T, White C, et al. The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca2+ homeostasis [J]. Immunity, 2007,27:68-280.
    [31]Szegezdi E, Macdonald DC, Ni Chonghaile T, et al. Bcl-2 family on guard at the ER [J]. Am J Physiol Cell Physiol,2009,296:C 941-C 953.
    [34]Morand FJP, Macri J, Adeii K. Proteomic profiling of hepatic endoplasmic reticulum-associated proteins in an animal model of insulin resistance and metabolic dyslipidemia [J]. J Biol Chem,2005,280:17626-17633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700