小鼠配对免疫球蛋白样受体及其介导的T细胞阶联与树突状细胞免疫耐受作用关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移植物抗宿主病(GVHD)仍然是临床骨髓移植治愈血液系统恶性疾病的主要障碍之一。供者异基因淋巴细胞的异常活化是GVHD发生、发展的重要因素,诱导受者产生针对供者异基因主要组织相容性抗原(MHC)特异性耐受是预防GVHD、保存GVL的最佳途径。配对免疫球蛋白样受体(Paired immunoglobin-like receptor,PIR)是近年发现的主要表达在小鼠树突状细胞(DCs)上的免疫抑制性调节受体,包括免疫抑制性受体(PIR-B)及免疫活化性受体(PIR-A),其配体均是MHC-Ⅰ,二者与其配体的结合的水平是决定DCs免疫活化程度的重要分子标志之一。由于DC不仅是调控体内T细胞活化的关键,也是诱导免疫耐受的理想的靶细胞,可以直接或间接通过诱导供者抗原特异性调节性T细胞的生成、在体内形成T细胞阶联效应而抑制异基因T淋巴细胞的活化,因此研究PIR在树突状细胞的表达、T细胞阶联的关系及与免疫耐受的关系,可能为诱导供者MHC特异性耐受,实现GVHD及GVL的分离提供新的途径。
     第一部分免疫球蛋白样受体在小鼠树突状细胞上的表达及与免疫耐受关系的研究
     目的配对的免疫球蛋白样受体A、B(paired immunoglobulin-like receptor A、B, PIR-A、PIR-B)属于小鼠免疫球蛋白超家族成员。研究配对免疫球蛋白样受体PIR-A、B在小鼠DCs上的表达及与表面共刺激分子变化的关系,探讨PIR与免疫耐受的关系,探索诱导耐受性DCs的有效途径。
     方法以C57BL/6小鼠来源DC系DC2.4细胞为研究对象,分别以重组小鼠白介素-10(recombinant mouse interleukin-10,rmIL-10)、重组人转化生长因子β1 (recombinant human transforming growth factorβ1,rhTGF -β1)诱导DC2.4细胞为耐受性DC(tolerogenic DC,T-DC),脂多糖(LPS)刺激48h为成熟DC2.4细胞(LPS-DC),体外化学合成特异PIR-B小RNA干扰片段(small interfering RNA,siRNA),以Lip2000转染DC2.4细胞(Si-DC)。分别应用半定量RT-PCR、流式细胞仪(Flow cytometry, FCM)及Western blot检测IL-10、TGF-β1、LPS及小干扰RNA对DC2.4细胞上PIR-A/B表达的影响;检测LPS刺激Si-DCs后表面共刺激分子CD80、CD86、MHC-Ⅱ及PIR-A的变化;以2-△△Ct表示各目的基因cDNA转录的相对表达量。分别以上述各组DCs细胞为刺激细胞,以异基因BALB/c小鼠脾淋巴细胞为反应细胞,应用3H-TdR标记法检测同种异体淋巴细胞的增殖能力(MLR),ELISA方法测MLR上清中IFN-γ的分泌水平变化。
     结果FCM检测DC2.4细胞上PIR-A、PIR-B的共同的胞外区PIR表达的阳性率为(28.65±8.12)%,IL-10、TGF-β1及LPS诱导后PIR表达均上调(P<0.05),分别为(54.21±6.34)%,(58.78±4.70)%,(48.24±6.75)%,但IL-10、TGF-β1及LPS各组间无显著性差别(P>0.05)。半定量RT-PCR及Western blot显示,IL-10、TGF-β1诱导DC2.4细胞后PIR-B的mRNA及蛋白表达升高,而PIR-A表达则降低,而LPS刺激时则相反,PIR-A的mRNA及蛋白表达升高、PIR-B的表达则降低。流式细胞仪检测SiRNA阳性对照组的转染率为93.12%,SYBR greenⅠRealtime-PCR检测,LPS刺激后Si-DCs CD80、CD86、MHC-Ⅱ及PIR-A的表达高于正常DCs组。LPS-DCs组CD80、CD86、MHC-Ⅱ及PIR-A的2-△△Ct分别为5.02±1.09、4.69±1.75、5.46±1.79、6.02±2.13;LPS刺激后Si-DC组TAI分别为8.79±2.2、11.03±1.96、10.26±2.55、12.10±2.83,同LPS刺激的正常组相比,Si-DC组分别增加了3.72、6.34、4.8、6.08倍(P<0.05)。混合淋巴细胞反应显示:正常DC2.4细胞可刺激异基因淋巴细胞反应,IL-10、TGFβ1诱导的T-DC组MLR明显受抑(P<0.05),MLR上清中IFN-γ水平也相应降低(P<0.05)。LPS-DC及Si-DCs组MLR明显增强(P<0.05),MLR上清中IFN-γ水平明显增高(P<0.05);
     结论上调免疫抑制性受体PIR-B、下调活化性受体PIR-A是小鼠DCs获得耐受的普遍表型特征及分子生物学机制,沉默PIR-B的表达可使PIR-A及CD80、CD86、MHC--Ⅱ及PIR-A过表达,使DCs活化的机制,PIR-A和PIR-B构成了小鼠树突状细胞耐受的新靶点。
     第二部分高度表达免疫球蛋白样受体B耐受性树突状细胞可诱导CD4+CD25+调节性T细胞生成
     目的研究配对免疫球蛋白样受体B在树突状细胞上表达与调节性T细胞的生成的关系,探讨耐受性DCs诱导耐受的详细机制,为体内诱导耐受性DCs及调节性T细胞(Treg)生成提供实验依据。
     方法免疫磁珠分选BALB/c小鼠CD4+T脾淋巴细胞。以rmIL-10(50ng/ml)、rhTGF-β1(50ng/ml)联合诱导C57BL/6小鼠来源的DC2.4细胞3天生成耐受性DCs(T-DC),同时设正常DC2.4细胞(DC)及LPS刺激48h后成熟的DC2.4细胞(mDC)干扰PIR-B组(Si-DCs)为对照组,各组DCs分别与BALB/c小鼠CD4+T脾淋巴细胞混合培养48h,检测Treg生成。RT-PCR检测转录因子Foxp3mRNA的表达变化,流式细胞仪检测CD4+CD25+Treg细胞的比例,PI检测CD4+T细胞的凋亡。磁珠分选的CD4+CD25+Treg与CD4+T细胞按照不同的比例加入MLR体系中,3H检测Treg对异基因DCs刺激的同基因淋巴细胞的增殖能力影响。
     结果磁珠分选BALB/c小鼠脾CD4+T及CD4+CD25+T淋巴细胞纯度>95%,正常DCs、T-DCs、Si-DC及mDCs各组细胞同BALB/c小鼠脾细胞CD4+T细胞混合培养3天,RT-PCR检测表明,T-DCs组诱导后CD4+T细胞Foxp3mRNA表达明显高于正常DCs、LPS-DC及Si-DC组。而Si-DC及LPS-DC刺激的CD4+T细胞Foxp3mRNA的表达明显降低(P>0.05)。流式细胞仪检测表明,正常DCs、T-DCs、Si-DC及mDCs诱导的CD4+CD25+Treg细胞比例分别为(5.19±1.2)%、(28.29±2.36)%、(1.06±0.55) %,(2.01±0.66) %,以T-DC组诱导的Treg细胞比例明显增高(P>0.01)。PI检测正常DCs、T-DCs、mDCs及Si-DC组诱导48h后CD4+T细胞的的凋亡率分别为(8.3±0.7)%、(21.56±2.32)%、(2.5±0.8)%、(1.9±0.7)%。3H检测异基因混合淋巴细胞增殖反应细胞刺激的增殖效应,且呈剂量依赖性。
     结论诱导Treg细胞生成、促进异基因淋巴细胞凋亡是PIR-B介导性DCs耐受的分子机制,为临床应用耐受性DCs诱导免疫耐受提供理论依据,也为Treg的诱导提供新的途径。
     第三部分CD8+CD28-T细胞对小鼠树突状细胞上配对免疫球蛋白样受体A和B表达的影响及与耐受的关系
     目的诱导宿主产生供者主要组织相容性抗原的特异性耐受是临床骨髓移植的最终目标,CD8 + CD28-T(Ts)细胞是具有免疫抑制作用的调节性T细胞亚群之一,体外诱导异基因抗原特异性Ts生成,以研究Ts细胞与小鼠树突状细胞(DCs)上配对免疫球蛋白样受体A和B表达的关系,探讨其诱导免疫耐受的分子机制及特点,为临床抗原特异性免疫治疗的诱导提供理论基础。
     方法体外诱导Ⅰ类主要组织相容性抗原(H-2b)抗原特异性Ts细胞群,以C57BL/6小鼠(H-2b)骨髓来源的树突状细胞系DC2.4细胞为刺激细胞,同BALB/c小鼠(H-2d)脾淋巴细胞混合培养,连续两次,每次培养7天,第10天于培养体系中加入IL-2(10u/ml),第14天结束培养。以生物素标记的CD28、CD8标记上述细胞群,以链亲和素标记的免疫磁珠分两步分选Ts细胞,首先负选CD8+T细胞,再正选CD28+T细胞,阴选细胞悬液为Ts细胞群。Ts同C57BL/6小鼠DC2.4(H-2b)细胞混合培养48h,RT-PCR检测DCs细胞PIR-A、PIR-BmRNA的表达,Westernblot检测DCs细胞PIR-A、B的表达。3H标记检测混合淋巴细胞增殖反应(MLR),体外诱导培养KM鼠骨髓来源的树突状细胞,分别以DC2.4(H-2b)及第三者主要组织相容性抗原无关的KM供鼠DCs细胞为刺激细胞,以BALB/c小鼠来源的脾CD4+T淋巴细胞为反应细胞,加入Ts细胞,以CPM检测异基因淋巴细胞增殖反应能力。
     结果体外以C57BL/6小鼠DCs诱导并在体外应用免疫磁珠分选的CD8+、CD8+CD28-Ts >90%,以BALB/c小鼠Ts细胞(H-2d)与异基因C57BL/6小鼠DCs细胞(H-2b)混合培养48h后,RT-PCR及Western blot检测PIR-BmRNA及蛋白表达上调、PIR-A的mRNA及蛋白表达则下调。3H掺入标记检测显示,DC2.4细胞及KM鼠DCs细胞均可刺激BALB/c小鼠(H-2d)脾CD4+T淋巴细胞增殖,加入Ts细胞后,可以明显抑制DC2.4细胞刺激的BALB/c小鼠脾CD4+T淋巴细胞(H-2d)的增殖,而并不抑制KM鼠DCs细胞刺激的CD4+T脾淋巴细胞(H-2k)的增殖反应。
     结论体外诱导的Ts呈现Ⅰ类主要组织相容性抗原特异性抑制异基因反应性淋巴细胞的增殖。其机制与Ts细胞上调PIR-B mRNA、下调PIR-A mRNA的表达有关。升高供体移植物中抗原特异性Ts细胞比例或受体树突状细胞表面免疫抑制性受体的表达可能成为诱导受者产生针对供体抗原特异性免疫耐受的有效途径。
Graft-versus-host diseases(GVHD) still are one of the obstacles for clinical bone marrow transplantation in treating malignant hematologic diseases. The activation of allogenetic lymphocytes promote the occurrence and development of GVHD. So induction immune tolerance specific for host major histocompatibility antigens is the optimization for prevention GVHD and preservation the graft-versus-leukemia(GVL). Recently, Paired immunoglobin-like receptor (PIR) , including PIR-A and PIR-B, are found to be inhibiting receptor expressed on dendritic cells with typeⅠmajor histocompatibility antigens as its ligand. PIR-A and B and its ligand constituted the system for deciding the dendritic cells active. For the dendritic cells can not only induct the immunue cells active but also induct the immune tolerant by inducing the regulatory T cells by T cells link, the study of PIR-B on dendritic cells may provide new way for inducing specific immune tolence for host antigen with the molecular PIR-B.
     PartⅠStudy of the relationship between paired immunoglobin-like receptors expression and immune tolerant on dendritic cells in mouse
     Objective Paired immunoglobulin-like receptor A,B are numbers of immunoglobin superfamily. The study of the relationship of paired immunoglobin-like receptor expression and co-stimlation molecules on tolerant dendritic cells may provide utility way for inducting immune tolerant.
     Methods The DC2.4 cells derived from the C57BL/6 mouse were inducted by re recombinant mouse interleukin-10(rmIL-10) and recombinant human transforming growth factorβ1(rhTGF -β1) and serve as tolerant DC(T-DC). Lipopolysaccharide(LPS) stimulated the dendritic cells mature for 48 hours as mature DC(LPS-DC). The small interfering RNA (siRNA) was chemical synthesis in vitro and transduced into the DC2.4 cells by Lip 2000(Si-DC). RT-PCR, Flow cytometry and Western blot were used to examine the PIR-A/B expression on T-DCs, LPS-DCs and Si-DCs. Syb green 1 realtime-PCR were used to examined transcription expression of co-stimulation molecule such as CD80,CD86, MHC-Ⅱand PIR-A. 2-△△Ct was used for evaluating the relative quantity of gene cDNA transcrition. Mixing lymphocytes reaction(MLR) was used to examined the allogenetic reactive lymphocytes proliferation for the DC2.4 cells as stimulating cells and the BALB/c spleen lymphocytes as the reactive cells. Enzyme linked immunosorbent assay(ELISA) was used detect the interference-γlevels in the supernatant in the MLR.
     Results FCM examination demonstrated that positive reate of PIR, which is the common extramembrane district of PIR-A and B, were (28.65±8.12)% on DC2.4 cells, and the rate added up to (54.21±6.34)%,(58.78±4.70)%,(48.24±6.75)% respectively for IL-10, TGF-β1 and LPS. But there was no significant between the IL-10, TGF-β1 or LPS-DC(P>0.05). RT-PCR and Western blot demonstrated that the mRNA and protein level of PIR-B increased and the level of PIR-A were decreased by IL-10 and TGF-β1 inducton. On the contrary, the mRNA and its protein level for PIR- A mRNA and pritein expression increased and that for PIR- B were decreased by the LPS stimulation. The positive rate of RNAi transfection was 93.12% by FCM detection. SYBR greenⅠRealtime-PCR results showed that the CD80, CD86, MHC-Ⅱa nd PIR-A were over-expressed on Si-DCs other than the mormal DCs by the same stimulation of LPS. The 2-△△Ct CD80, CD86, MHC-Ⅱand PIR-A in LPS-DCs were respectively 5.02±1.09, 4.69±1.75, 5.46±1.79, 6.02±2.13 and the 2-△△Ct were 8.79±2.2, 11.03±1.96, 10.26±2.55, 12.10±2.83 in Si-DC with the same LPS stimulation. CD80, CD86, MHC-Ⅱa nd PIR-A transcription were increased by 3.72、6.34、4.8、6.08 times in Si-DCs than the normal DCs(P<0.05). MLR were suppressed in T-DCs for IL-10 and TGF-β1 and IFN-γlevel were decreased in MLR supernatant(P<0.05). MLR were intensive in LPS-DCs and Si-DCs groups and the IFN-γlevel were increased(P<0.05).
     Conclusions Up-regulating PIR-B or down-regualuting PIR-A expression are the common characteristics and molecules mechanism. Silencing the PIR-B expression promote the PIR-A, CD80, CD86 and MHC-Ⅱoverexpression and that makes the DCs immune active. PIR-A and B constitute molecule targets for inducting dendritic cells immune tolerance in mouse.
     PartⅡDendritic cells with higher expressed paied immunoglobin- like receptors induce the CD4+CD25+T cells development
     Objective To investigate the relationship between the paired immunoglobin receptor B(PIR-B) and the CD4+CD25+ regulatory T cells(Treg) development, suggest the tolerant dendritic cells detail mechanisms and provide the base for induction Treg development by the tolerant DCs.
     Methods CD4+T and CD4+CD25+T cells were sorted by immune magcellect from the BALB/c spllen cells. rmIL-10(50ng/ml) and rhTGF-β1(50ng/ml) were combinated to induced the DC2.4 cells tolerant(T-DCs) for three days. The small interfering RNA (siRNA) transfected into the DC2.4 cells by Lip2000 to made the silencing PIR-B DCs(Si-DC). Mature DCs( mDC) were stimulated by the LPS for 48h. The nomal DC2.4 cells(DCs), T-DCs, siRNA and mDC were mixed and culcured with the CD4+T cells for five days for inducing the Treg cells. RT-PCR were used for detecting the the transcript factor Foxp3 mRNA expression. FCM examined the CD4+CD25+T cells percentage in mixed culture system. PI were detect the apoptosis of CD4+T cells after cultured with the different group DCs. Different percentage of CD4+CD25+T cells were co-cultured with the syngennetic cells proliferation with the allogenetic dendritic cells as stimulating cells. 3H test were used to detect the proliferation ability in MLR.
     Results CD4+T and CD4+CD25+T cells of BALB/c mouse were sorted by immune magnetic beads and the purity of CD4+T and CD4+CD25+T cells were aboved 95%. Different groups of DCs such as normal DCs, T-DCs, Si-DCs and mDCs derived from C57BL/6(H-2b) were co-cultured with the CD4+T BALB/c cells for three days to developing the Treg cells. RT-PCR detection showed that the the Foxp3 mRNA expression were higher in T-DCs than the othe groups(P>0.01). Si-DCs and the LPS-DC with lower PIR-B expression induced the lower Foxp3 mRNA level(P>0.01). FCM demonstrated that CD4+CD25+T cells percentage were (5.19±1.2)%, (28.29±2.36)%, (1.06±0.55)%, (2.01±0.66) % respectively for DCs, T-DCs, Si-DC and mDCs groups. It was demonstrated that T-DC also induced a higher rate CD4+CD25+T cells from the CD4+T cells than the other groups(P<0.05). PI detection demonostrated that apoptosis rate of CD4+T cells were (8.3±0.7)%, (21.56±2.32)%, (2.5±0.8)% and (1.9±0.7)%, respectively for DCs, T-DCs, mDCs and Si-DC. 3H incoupration test showed that CD4+CD25+T cells mixed with CD4+T cells at different percentage and inhibited CD4+T cells proliferation after stimulated by the allogenetic cells.the inhibition was paralleveling to the quantity of CD4+CD25+T cells.
     Conclusion Induction CD4+CD25+T cells development and apoptosis of allogenegtic lymphocyte cells may be associated with the tolerant DCs with higher expression inhibited receptor PIR-B. This may provide base for transplamtation immune tolerenat and new pathway for Treg induction.
     PartⅢCD8+CD28-T cells changes PIR-A/B expression and promotes the allogentic immune tolerance
     Objective Specific suppression of the host’s immune response to donor human leucocyte antigen(HLA) antigens remains the ultimate goal for clinical transplantation. CD8 + CD28-T(T suppression cell, Ts)is a subset of regulatory T cells which play regulatory role in immune reaction. Allogenetic antigen specific Ts were induced and to study the influnce for the expression of paired immunoglubin-like receptor A and B on the dendritic cells in mouse. The study aim to explore the molecular mechanism, immune tolerance characteristic of Ts and to provide a basis for the development of specific immunosuppressive therapy.
     Methods Ts was induced in vitro for specific MHC-Ⅰ(H-2b) antigen in vitro. DC2.4 cells derived from the C57BL/6 mouse(H-2b) was used to prime allogenetic lymphocyte spleen cells of the BALB/c mouse in mixed lymphocyte cultures repetedly for twice. Every culture prolonged for seven days. IL-2(10u/ml) was added to the culture at day 10 and finished the culture at day 14. Biotin-CD28 and Biotin-CD8 antigen and streptavidin magnetic bead were used to sorting the CD8+CD28-T cells. CD8+T cells were positive sorted firstly and then CD28-T cells were negatively sorting. CD8+CD28-T cells co-cultured wth the DC2.4 cells for 48h. RT-PCR were used to determin the PIR-A/B mRNA level and Westernblot was use to detect the PIR-A/B protein leve. 3H-incorporation test was used to detect the allogenetic cells proliferation. The myeloid DCs from KM mouse were cultured in vitro for a MHC-Ⅰnon-asscociated antigen doner. Both DC2.4 cells and the DCs of KM mouse served as stimulating cells. The CD4+T cells of BALB/c spleen cells served as reacting cells. Ts cells were added into the mixing lymphocyte reaction. CPM was used for determing the proliferation.
     Results CD8+CD28-Ts were inducted with the allogenetic DC2.4 cells derived from C57BL/6 mouse and sorted by magnetic bead in vitro. Purity of CD8+ and CD8+CD28-Ts cells was above >90%. After cultured mixingly Ts cells and DC2.4 cells for 48h, PIR-B mRNA and protein level increased and the PIR-A mRNA and protein level decreased examined by RT-PCR and Westernblot. 3H-incorporation test demonstrated that the DC2.4 cells and DCs from KM mouse stimulated the allogenetic CD4+T cells of BALB/c proliferation. Ts inhibited CD4+T cells(H-2d) proliferation stimulated by the DC2.4 cells but did not inhibited CD4+T cells(H-2d) proliferation stimulated by DCs from KM mouse.
     Conclusion Ts induced in vitro specifically inhibited the allogenetic areactive cells proliferation with MHC-Ⅰconstraction. This may be associated with up-regulation of the PIR-B expression and down-regulating of PIR-A expression. Increasing the Ts cells ratio in donator's grafts or the immune inhibiting receptor on receptor’s DCs may provide utility pathway for a specific antigen tolerance for donator in transplantation.
引文
1. Sato k, Nagayama H, Takahashi A. Aberrant CD3 and CD28-medidiated signaling events in cord blood T cells are associated with dysfunction regulation of Fas ligant-mediated cytotoxicity. J Immunol, 1999, 162, 4464-4471.
    2. Tsukada N, Kobata T, Aizawa Y, et al. Graft-versus-host diseases can be differentiated by cytotoxic mechanisams in a murine model of allogenetic bone marrow transplantation. Blood, 1999, 93 (8); 2738-2747.
    3. Lu Y, Sakamaki S, Kuroda H, et al. Prevention of lethal acute graft-versus-host diseases in mice by oral administration of T helper 1 inhibitor,TAK-603. Blood, 2001, 97(4); 1123-1130.
    4. Sato K, Yamashita N, Baba M, et al. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood, 2003, 101(9): 3581-3589.
    5. Kuwana M, Kaburaki J, Wright TM, et al. Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur J Immunol. 2001, 31(9): 2547- 2557.
    6. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001, 2(8): 725-731.
    7. Kurts C, Kosaka H, Carbone FR, et al. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med. 1997, 186(2): 239-245.
    8. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood. 2000, 95(8): 2484-2490.
    9. Jonuleit H, Schmitt E, Schuler G,et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000, 192(9): 1213-1222.
    10. Xiao BG, Huang YM, Yang JS, et al. Bone marrow-derived dendritic cells from experimental allergic encephalomyelitis induce immune tolerance to EAE in Lewis rats. Clin Exp Immunol. 2001, 125(2): 300-309.
    11. Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci U S A, 1997, 94(10): 5261-5266.
    12. Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells Transpl Immunol. 2003, 11(3-4): 245-258.
    13. Suciu-Foca N, Manavalan JS, Cortesini R. Generation and function of antigen-specific suppressor and regulatory T cells. Transpl Immunol. 2003, 11(3-4):235-244.
    1 Gad M, Claesson M H, Persen A E. Dendritic cells in peripheral tolerance and immunity. APMIS, 2003,111(7–8): 766-775.
    2 Sato K, Yamashita N, Baba M, et al. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood, 2003, 101(9): 3581- 3589.
    3 Sato K, Yamashita N, Yamashita N, et al. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity. 2003,18(3): 367-379.
    4 Hirano A, Luke PP, Specht SM, et al. Graft hyporeactivity induced by immature donor-derived dendritic cells. Transpl Immunol, 2000, 8(3): 161-168.
    5. Bellinghausen I, Brand U, Steinbrink K, et al. Inhibition of human allergic T-cell responses by IL-10-treated dendritic cells: differences from hydrocortisone-treated dendritic cells. J Allergy Clin Immuno, 2001, 108: 242-249.
    6 Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci U S A, 1997, 94(10): 5261-5266.
    7 Livak KJ, Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, 2001, 25(4): 402-408.
    8 Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol, 2003, 11(3-4): 245-258.
    9 Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol, 2000; 18: 767-811.
    10 Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: Cytokine modulation comes of age. Blood, 2006, 108(5): 1435-1440.
    11 Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol, 2002, 3(3): 237-243
    12 Suciu-Foca Cortesini N, Piazza F, Ho E, et al. Distinct mRNA microarray profiles of tolerogenic dendritic cells. Hum Immunol, 2001, 62(10): 1065-1072.
    13 Maeda A, Kurosaki M, Kurosaki T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor gamma chain. J Exp Med, 1998, 188(5): 991-995.
    14 Yamashita Y, Ono M, Takai T. Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J Immunol, 1998, 161(8): 4042- 4047.
    15 Takai T. A Novel recognition system for MHC class I molecules constituted by PIR. Adv Immunol, 2005,88: 161-192.
    16 Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versus-host disease in Pirb-/-mice. Nat Immunol, 2004,5(6): 623-629.
    16 Pereira S, Zhang H, Takai T, et al. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J Immunol, 2004,173(9): 5757–5765.
    17 Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology, 2005,115(4): 433-440.
    18 Okada N, Saito T, Masunaga Y, et al. Efficient antigen gene transduction using Arg2Gly2Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res, 2001,61(21):7913-7919.
    19 Ni HT, Spellman SR, Jean WC, et al. Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol, 2001,51(1): 1-9.
    20 Ujike A, Takeda K, Nakamura A, et al. Impaired dendritic cell mature and increased TH2 responses in PIR-B-/- mice. Nature Immunol, 2002, 3(6): 542-548.
    21 Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV, et al. FcRγchain deletion results in pleiotrophic effector cell defects. Cell, 1994, 76: 519-529.
    22 Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology, 2006, 117(4): 433-442.
    23 Riley JK, Takeda K, Akira S, et al. Interleukin-10 receptor signaling through the JAK-STAT pathway. J Biol Chem, 1999, 274(23): 16513-16521.
    24 Massague J, Blain SW, Lo RS. TGF-βsignaling in Growth Control. Cancer and Heritable Disorders. Cell, 2000, 103 (2): 295-309.
    1. Baunchereau J, Briece F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev.immunol. 2000, 18, 767-811.
    2. Hawger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cells unresponsiveness under steady state conditions in vivo. J Exp Med. 2001, 194(6): 769-779.
    3. Min WP, Zhou D, Ichim TE, et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol, 2003, 170(3): 1304-1312.
    4. Gad M, Kristensen NN, Kury E, et al. Characterization of T-regulatory cells, induced by immature dendritic cells, which inhibit enteroantigen-reactive colitis-inducing T-cell responses in vitro and in vivo. Immunology, 2004, 113(4): 499-508.
    5. Zheng XX, Sanchez-Fueyo A, Domenig C, et al. The balance of delecton and regulation in allograft tolerance. Immunol Rev, 2003; 196: 75-84.
    6. Hoffmann P, Ermann J, Edinger M, et al. Donor-type CD4CD25 Regulatory T Cells Suppress Lethal Acute Graft-Versus-Host Disease after Allogeneic Bone Marrow Transplantation. J Exp Med, 2002, l196(3): 389–399
    7. Lan YY, Wang Z, Raimondi G, et al. Alternatively activated" dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol, 2006; 177(9): 5868-5877.
    8. Yamazaki S, Patel M, Harper A, et al. Effective expansion of alloantigen-specific Foxp3+CD25+ CD4+ T regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci U S A, 2006, 103(8): 2758-2763.
    9. Ureta G, Osorio F, Morales J, et al. Generation of dendritic cells with regulatory properties. Transplant Proc, 2007; 39(3): 633-637.
    10. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
    11. Zeng D, Lan F, Hoffmann P, et al. Supression of graft-verse-host disease by naturally occurring regulatory T cells. Transplantation, 2004; 77: S9-S11.
    12. Zorn E, Kim HT, Lee SJ, et al. Reduced frequency of Foxp3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood, 2005, 106(8): 2903-2911.
    13. Yamazaki S, Patel M, Harper A, et al. Effective expansion of alloantigen-specific Foxp3+CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci U S A. 2006, 103(8): 2758-2763.
    14. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-verse-host disease after bone marrow transplantation. Nat.Med, 2003; 9(9): 1144-1150.
    15. Sakaguchi S, Setoguchi R, Yagi H, et al. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Curr Top Microbiol Immunol, 2006; 305: 51-66.
    16. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol, 2002, 2(6): 389-400.
    17. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med, 2001, 193(11): 1303-1310.
    18. Levings M K, R Sangregorio, MG Roncarolo. Human CD25+CD4+ regulatory T cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med, 2001, 193(11):1295–1302.
    19. Stephens LA, Mottet C, Mason D, et al. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity. Eur J Immunol 2001; 31(4): 1247–1254.
    20. Taams LS, Smith J, Rustine MH, et al. Human anergic suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol, 2001, 31(4): 1122–1131.
    21. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med, 2001; 193(11): 1303–1310.
    22. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med, 2001; 193(11): 1285–1294.
    23. Ng WF, Duggan PJ, Ponchel F, et al. Human CD4+CD25+ T cells: a naturally occurring population of regulatory T cells. Blood, 2001; 98 (9): 2736–2744.
    24. Thornton AM, Shevach EM. CD4+CD25+ T immunoregulatory T cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin-2 production. J Exp Med 1998, 188(2): 287–296.
    25. Cao M, Cabrera R, Xu Y, et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Lab Invest. 2007 Mar 19;[Epub ahead of print]
    26. Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor Foxp3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood, 2006, 108(4): 1291-1297.
    27. Sato K, Yamashita N, Baba M, et al. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells, Blood, 2003, 101(9): 3581- 3589.
    1. Lu Y, Sakamaki S, Kuroda H, et al. Prevention of lethal acute graft-versus-host disease in mice by oral administration of T helper 1 inhibitor, TAK-603. Blood, 2001, 97(4): 1123-1130.
    2. Tsukada N, Tsukada N, Kobata T, et al. Graft-versus-leukemia effect and graft-versus that host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone marrow transplantation. Blood, 1999, 93(8): 2738-2747.
    3. Jiang S, Lechler RI, He XS, et al. Regulatory T cells and transplantation tolerance. Hum Immunol, 2006, 67(10): 765-776.
    4. Hong Jiang, Leonard Chess. An interview of suppresson T cell subsets in immunoregulation. J Clinic Inv, 2004, 114(9): 1198-1205.
    5. Sato K, Yamashita N, Baba M, et al. Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood, 2003, 101(9): 3581-3589.
    6. Zhuoru Liu, Sorina Tugulea, Raffaello Cortesini1, et al. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+28–T cells. International Immunology, 10( 6): 775–783.
    7. Ciubotariu R, Colovai AI, Pennesi G, et al. Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+CD28- T regulatory T cells. J Immunol, 1998, 161(10): 5193-5202
    8. Liu Z, Tugulea S, Cortesini R, et al. Inhibition of CD40 signaling pathway in antigen presenting cells by suppresor cells. Hum Immunol, 1999, 60(7): 568-574.
    9. Li J, Liu Z, Jiang S, et al. Suppresor lymphocytes inhibit NF-κb-mediated transcription of CD86 gene in APC. J Immunol, 1999, 163(12): 6386-6392
    10. Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science, 1999, 285(5426): 412–415.
    11. Takai T. A Novel Recognition System for MHC Class I Molecules Constituted by PIR. Adv Immunol, 2005, 88: 161-192.
    12. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol, 2002, 3(3): 237-243.
    13. Matthias Edinger, Petta Hoffmann, Joerg Ermann, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhiting graft-versus-host disease after bone marow transplantion. Nature Medicine, 2003, 9(9): 1144-1150.
    14. Jiang S, Lechler RI, He XS, et al. Regulatory T cells and transplantation tolerance. Hum Immunol, 2006, 67(10): 765-776.
    15. Effros RB. Telomerase induction in T cells: A cure for aging and disease? Exp Gerontol. 2006 Dec 18; [Epub ahead of print]
    16. Lourenco O, Fonseca AM, Paiva A, et al. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus. Allergol Immunopathol (Madr). 2006, 34(6): 234-241.
    17. Menager-Marcq I, Pomie C, Romagnoli P, et al. CD8+CD28- T regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology. 2006, 131(6): 1775-1785.
    18. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, et al. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun, 2006, 27(2): 110-118.
    19. Kumar A, Angel JB, Dftarian MP, et al. Differential production of IL-10 by T cells and monocytes of HIV-infected individuals: assciated of IL-10 production with CD28-mediated immune responsiveness. Clin Exp Immunol, 1998, 114(1): 78-86
    20. CD4(+) T-cell immunodeficiency is more dependent on immune activation than viral load in HIV-infected children on highly active antiretroviral therapy. J Acquir Immune Defic Syndr, 2006, 42(3): 269-276.
    21. Resino S, Seoane E, Gutierrez MD, et al. Immunological changes after highly active antiretroviral therapy with lopinavir-ritonavir in heavily pretreated HIV-infected children. AIDS Res Hum Retroviruses, 2005, 21(5): 398-406
    22. Effros RB. Telomerase induction in T cells: A cure for aging and disease? Exp Gerontol. 2006 Dec 18; [Epub ahead of print]
    23. Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood, 2005, 105(1): 13-21.
    24. Bjorgo E, Tasken K. Role of cAMP phosphodiesterase 4 in regulation of T-cell function.Crit Rev Immunol, 2006, 26(5): 443-452.
    25. Koehler H, Kofler D, Hombach A, et al. CD28 Costimulation Overcomes Transforming Growth Factor-{beta}-Mediated Repression of Proliferation of Redirected Human CD4+ and CD8+ T Cells in an Antitumor Cell Attack.Cancer Res. 2007, 67(5): 2265-2273.
    26. Suciu-Foca N, Manavalan JS, Cortesini R.Generation and function of antigen-specific suppressor and regulatory T cells. Transpl Immunol, 2003, 11(3-4): 235-244.
    27. Manavalan JS, Rossi PC, Vlad GS. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol. 2003, 11(3-4): 245-258.
    28. Nishimura H, Nose M, Hiai Minato N, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM modif-carrying immunoreceptor. Immunity, 1999, 11(2): 141-151.
    29. Shultz LD, Schweitzer PA, Rajan TV, et al. Mutation at murine mutheaten locus are within the hematopioetic cellproteintyorosine phosphatase(Hcph) gene. Cell, 1993, 73(7):1445-1454.
    30. Sprent J, Schaefer M Lo D, Korngold R. Properties of purified T cell subsets.Ⅱin vivo responsesto classⅠvs classⅡH-2 differences. J Exp Med. 1986, 163(4): 998-1011
    31. Ferrara J L, Levy R, Chao N J. Pathophysiologic mechanisams of acute graft-vs-host disease. Biol.Blood Marrow Transplant, 1999(4): 347-356.
    32. [No authors listed]Recombinant soluble ILT3 protein induces the differentiation of allospecific T suppressor cells.Transplantation, 2006, 82(1 Suppl 2):137.
    1 Hayami K, Fukuta D, Nishikawa Y,et al. Molecular cloning of a novel murine cell surface glycoprotein homologous to killer cell inhibitory receptors. J Biol Chem, 1997; 272: 7320–7327.
    2 Kubagawa H, Burrows PD, Cooper MD,et al. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA, 1997; 94: 5261–5266.
    3 Wende H, Colonna M, Ziegler A, et al. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.5. Mamm Genome 1999, 10: 154–160.
    4 Yamashita Y, Fukuta D, Tsuji A, et al. Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family. J Bio chem. 1998, 123: 358–368.
    5 Takai T, Ono M. Activating and inhibitory nature of the murine paired Ig-like receptor (PIR) family. Immunol Rev, 2001, 181, 215–222.
    6 Lebbink RJ, de Ruiter T, Verbrugge A, et al. The mouse homologue of the luekocyte-associated Ig-like receptor-1 is an inhibitory receptor that recruits Src homology region 2-containing protein tyrosine phosphatase (SHP)-2 but not SHP-1. J Immunol, 2004; 172: 5535–5543.
    7 Kubagawa H, Chen CC, Ho LH, et al. Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med, 1999; 189: 309–318.
    8 Wagtmann N, Biassoni R, Cantoni C, et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity, 1995; 2: 439–449.
    9 Colonna M, Samaridis J. Cloning of immunoglobulin-super family members associated with HLA-C and HLA-B recognition by human natural killer cells. Science, 1995, 268: 405–408.
    10 Litwin V, Gumperz J, Parham P, et al. LLNKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med, 1994, 180: 537–543.
    11 Phillips JH, Gumperz JE, Parham P, et al. Super antigen dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science, 1995, 268: 403–405.
    12 Lebbink RJ, de Ruiter T, Verbrugge A, et al. The mouse homologue of the luekocyte-associated Ig-like receptor-1 is an inhibitory receptor that recruits Src homology region 2-containing protein tyrosine phosphatase (SHP)-2 but not SHP-1. J Immunol, 2004, 172: 5535–5543.
    13 Dennis G, Jr Stephan RP, Kubagawa H, et al. Characterization of paired Ig-like receptors in rats. J Immunol, 1999, 163: 6371–6377.
    14 Dennis G Jr, Kubagawa H, Cooper MD. Paired Ig-like receptor homology in birds and mammals share a common ancestor with mammalian Fc receptors. Proc Natl Acad Sci USA, 2000, 21:13245–13250.
    15 Dennis G Jr, Chen C-C, Kubagawa H, et al. Activating and Inhibitory Immunoglobulin- Like Receptors. Tokyo: Springer-Verlag, 2001:7–15.
    16 Ono M, Yuasa T, Ra C, et al. Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors. J BiolChem, 1999, 274 (30):288–296.
    17 Maeda A, Kurosaki M, Kurosaki T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor c chain. J Exp Med, 1998; 188: 991–995.
    18 Ujike A, Takeda K, Nakamura A, et al. Impaired dendritic cell maturation and increased TH2 responses in PIR-B–/– mice. Nat Immunol, 2002, 3: 542–548.
    19 Takai T, Li M, Sylvestre D, et al. FcRc chain deletion results in pleiotrophic effector cell defects. Cell, 1994, 76: 519–529.
    20 Sinclair NR. Why So Many Coinhibitory Receptors? , 1999, 50(1):10-13
    21 Foell J, Hewes B, Mittler RS. T cell costimulatory and inhibitory receptors as therapeutic targets forinducing anti-tumor immunity. Curr Cancer Drug Targets, 2007, 7(1): 55-70
    22 Inman BA, Frigola X, Dong H, et al. Costimulation, coinhibition and cancer. Curr Cancer Drug Targets. 2007, 7(1): 15-30.
    23 Ho LH, Uehara T, Chen C C, et al. Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptorPIR-B. Proc Natl Acad Sci USA, 1999, 96(26): 96086–96090.
    24 Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versushost disease in Pirb–/– mice. Nat Immunol 2004; 5:623–629.
    25 Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology, 2005, 115(4): 433-440.
    26 Takai T. A Novel Recognition System for MHC Class I Molecules Constituted by PIR. Adv Immunol, 2005, 88: 161-192.
    27 Yamashita Y, Ono M, Takai T. Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J Immunol, 1998, 161:4042–4047.
    28 Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol, 2002, 8: 580–592.
    29 Ravetch JV, Lanier LL. Immune inhibitory receptors. Science, 2000, 290: 84–89.
    30 Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol, 1999, 17: 875–904.
    31 Olcese L, Lang P, Vely F, et al. Human and mouse killer inhibitory receptor recuit PTPIC and PTPID protein tyrosine phosphatases. J Immunol, 1996, 156(12): 4531- 4534.
    32 Maeda A, Kurosaki M, Ono M, et al. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med, 1998; 187:1355–1360.
    33 Ble′ry M, Kubagawa H, Chen C, et al. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA, 1998, 95: 2446–2451.
    34 Maeda A, Scharenberg AM, Tsukada S, et al. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1 Oncogene, 1999, 18(14): 2291-2297.
    35 Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T. Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(-/-)mice. Nat Immunol. 2002, 3(6):542-528.
    36 Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol, 2001; 19: 595-621.
    37 Murakami M, Tsubata T, Okamoto M, et al. Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice. Nature, 1992, 357(6373): 77-80.
    38 Daeron M, Latour S, Malbec O, et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fcgamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity, 1995, 3(5): 635-646.
    39 Takal T, Ono M, Hikida M, et al. Augumented humoral and anaphylactic responses in FcγⅡR–deficient mice. Nature, 1996, 379: 346-506,
    40 Otipoby KL, Andersson KB, Draves KE, et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature, 1996, 384(6610): 634-637.
    41 O'Keefe TL, Williams GT, Davies SL, et al. Hyperresponsive B cells in CD22-deficient mice. Science, 1996, 274(5288): 798-801.
    42 Pan C, Baumgarth N, Parnes JR. CD72-deficient mice reveal nonredundant roles of CD72 in B cell development and activation. Immunity, 1999, 11(4): 495-506.
    43 Pereira S, Lowell C. The Lyn trosine kinase negatively regulates neutrophil integrin signal. J Immunol, 200, 171(3), 1319-1327.
    44 Pereira S, Zhang H, Takai T, et al. The inhibitory receptor PIR-B negatively regulatory neutrolphil and macrophage integrin signaling. J Immunol, 2004, 173(9) 5757-5765
    45 Ujike A, Takeda K, Nakamura A, et al. Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(-/-) mice. Nat Immunol, 2002, 3(6): 542-548.
    46 Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versus-host disease in Pirb-/- mice. Nat Immunol, 2004, 5(6): 623-629.
    47 Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritc cells. Transpl Immunol, 2003, 11(3-4): 245- 258.
    48 Bauer M,Redecke V.Ellwart JW,et a1.Bacterial CpG-DNA triggers activation and maturation of human CD11c-,CD123 dendritic cells.J Immunol,2001,166(8):5000-5007,
    49 Ju XS, Hacker C,Scherer B,et a1.Immunoglobulin-like transcripts ILT'2,ILT3 and ILT7 expressed by human dendritic ceils and down-regulated following activation. Gene, 2004, 331:159-164.
    50 Suciu Foca N,Manavalan JS, Cortesini R, et al.Generation and function of antigen-specific suppressor and regulatory T cells.Transpl Immunol, 2003, 11(3-4): 235-244.
    51 Liu J, Liu Z, Witkowski P, et al. Rat CD8+ Foxp3+ T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graftinvulnerable to rejection. Transpl Immunol. 2004, 13(4): 239-247.
    52 Cortesini R, Suciu-Foca N. IILT3+ ILT4+ tolerogenic endothelial cells in transplantation. Transplantation. 2006, 82(1 Suppl):S30-32.
    53 Cortesini NS, Colovai AI, Manavalan JS, et al. Role of regulatory and suppressor T-cells in the induction of ILT3+ ILT4+ tolerogenic endothelial cells in organ allografts.Transpl Immunol, 2004, 13(2): 73-82.
    54 Manavalan JS, Kim-Schulze S, Scotto L, et al Alloantigen specific CD8+CD28- Foxp3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol, 2004, 16(8): 1055-1068.
    55 Suciu-Foca Cortesini N, Piazza F, Ho E, et al. Distinct mRNA microarray profiles of tolerogenic dendritic cells. Hum Immunol, 2001, 62(10): 1065-1072.
    56 LeMaoult J, Zafaranloo K, Le Danff C, et al. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005, 19(6): 662-664.
    57 Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol. 2002, 32(9): 2418-2426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700