重症肌无力患者外周血调节性T细胞及相关可溶性因子在其发病机制中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重症肌无力(myasthenia gravis,MG)是乙酰胆碱受体抗体(acetylcholinereceptor antibodies,AChR-ab)介导的、细胞免疫依赖及补体参与的神经肌肉突触传递障碍的自身免疫性疾病。目前认为,致病性自身抗体的产生主要依赖于T辅助(Th)细胞产生的细胞因子,并且疾病进程中同时会伴有补体水平下降,存在大量的补体消耗。总之,MG是一种多种免疫相关因素参与的自身免疫性疾病,免疫平衡的破坏在其发病机制起到重要作用。近来外周免疫机制重要组成成分,调节性T细胞尤其是CD4~+CD25~+Treg细胞在各类自身免疫性疾病中的作用越来越受到重视。很多研究证实MG患者外周血中存在异常比例的CD4~+CD25~+Treg细胞并RMG患者胸腺CD4~+CD25~+Treg细胞功能异常,这些都可能参与疾病的发生与发展。我们着眼于外周血CD4~+CD25~+Treg细胞,特别是高表达CD25的Treg细胞,采用四色流式细胞仪分析这群细胞在MG患者外周血中的水平及其重要标志,特别是与Treg细胞生成和功能密切相关的重要的分子(如Foxp3)的表达情况;此外,我们还分析了MG患者其他各类调节性T细胞的表达以及B细胞的激活情况,及其与CD4~+CD25~(high)Treg细胞之间的关系;采用磁珠分选及氚标胸腺嘧啶脱氧核苷(~3H-TdR)掺入法检测MG患者外周血CD4~+CD25~+Treg细胞的功能情况。鉴于体液免疫MG在其发病机制中所起的重要作用,而调节性T细胞的生成与功能的发挥也离不开细胞因子的作用,我们还采用了酶联免疫吸附(ELISA)法检测了MG患者及正常对照体内的各类细胞因子及粘附分子的分泌,分析其与调节性T细胞之间的联系。
     A:重症肌无力患者外周血CD_4~+CD_(25)~(high)调节性T细胞及其动态观察
     目的研究重症肌无力(myasthenia gravis,MG)患者外周血CD4~+CD25~(high)T细胞的水平,以及各种治疗方法对其的影响。方法应用四色流式细胞仪检测55例MG患者与33名健康对照外周血CD4~+CD25~(high)T细胞百分率,对其中26例MG患者进行了治疗前后的动态检测。结果MG患者与健康对照外周血CD4~+CD25~(high)T细胞百分率分别为6.2%±3.4与5.2%±1.9,差异无统计学意义(p=0.061),而21例非手术治疗患者其外周血CD4~+CD25~(high)T细胞百分率的变化与病情评分的变化呈负相关(r=-0.563,p=0.008)。结论这种短期非手术治疗前后的CD4~+CD25~(high)T细胞的变化情况可能与病情相关,但胸腺切除后早期观察的情况有所不同。
     B:重症肌无力患者外周血调节性T细胞及B细胞激活因子受体的分析
     目的基于外周血CD4~+CD25~(high)T细胞在重症肌无力(MG)患者中没有区别,本文进一步研究MG患者外周血CD4~+CD25~(high)T细胞Fxop3的表达及CD8~+调节性T细胞的水平及B细胞激活因子受体(B cell-activating factor receptor,BAFF-R)在B细胞上的表达情况。方法应用四色流式细胞仪检测61例MG患者与23名健康对照外周血调节性T细胞(CD4~+CD25~(high)Foxp3~+、CD8~+CD28~-、CD8~+CD122~+)以及CD19~+BAFF-R~+细胞的百分率。结果MG组与健康对照组外周血CD4~+CD25~(high)Foxp3~+T细胞的百分率分别为32.1%±16.1与65.2%±14.7,MG组该群调节性T细胞的水平明显低于健康对照(p<0.01);两组CD8~+CD28~-及CD8~+CD122~+T细胞的水平差异无统计学意义(p>0.05)。此外,MG组外周血CD19~+BAFF-R~+细胞的水平(10.6%±5.6)显著高于健康对照组(5.4%±3.9,p<0.01)。大剂量激素或大剂量激素加丙种球蛋白治疗短期内可使MG组外周血CD4~+CD25~(high)Foxp3~+调节性T细胞的百分率增加(p<0.05)。结论MG患者Foxp3~+的CD4~+CD25~(high)调节性T细胞的减少提示MG患者存在免疫和耐受的失衡,显示了T细胞的自身免疫性。在B细胞方面,MG患者外周血CD19~+B细胞上BAFF-R表达增高,提示其体内B细胞已处于易激活状态。
     C:重症肌无力患者外周血调节性CD4~+CD25~+T细胞的功能研究
     目的:研究MG患者CD4~+CD25~+T细胞的功能。方法:流式细胞仪分析CD4~+CD25~(high)T细胞表面可能与功能相关的分子,GITR、Neuropilin-1、CTLA-4(CD152)及CD103,与凋亡相关的分子(CD95);我们还分离出MG患者及正常对照的CD4~+CD25-~T细胞与CD4~+CD25~+T细胞,分组如下:A:CD4~+CD25~-T;B:CD4~+CD25~-T与CD4~+CD25~+T细胞;C:CD4~+CD25~+T细胞。各组单独培养或共培养后,氚标胸腺嘧啶脱氧核苷(~3H-TdR)掺入法检测各组增殖情况,ELISA检测细胞因子的分泌。结果:1)MG患者外周血CD4~+CD25~(high)Neuropilin-1~+T及CD4~+CD25~(high)CD103~+T细胞百分率明显低于正常对照;2)细胞增殖情况:MG患者B组CPM计数高于A组(p=0.0158)与C组(p=0.0676),而正常对照各组之间未见差异。3)培养后细胞因子TGF-β、IL-10及sICAM-1的分泌结果:sICAM-1:A、B组:MG患者高于正常对照;C组两者未见显著差异。IL-10:A组、B组未见差异;而C组正常对照水平高于MG患者。TGF-β各组均未见显著差异。结论:与正常对照相比,MG患者外周血CD4~+CD25~+T细胞表面部分功能相关分子的表达降低,其抑制功能及IL-10的分泌也低于正常;此外,MG患者外周血CD4~+CD25~-T细胞可能分泌更多的sICAM-1。
     A:重症肌无力患者血清及外周单个核细胞培养上清液各类细胞因子、sCTLA-4及sICAM-1的研究
     目的:重症肌无力(MG)是一种T细胞介导的抗体依赖的神经肌肉接头障碍的自身免疫性疾病。许多研究表明T辅助细胞及细胞因子可能参与了MG的发生发展。为此,我们研究了MG患者及正常对照血清及外周单个核细胞(PBMC)培养上清液Th1、Th2、Th3、炎症性细胞因子、sCTLA-4及sICAM-1的分泌情况,分析其在MG中的作用。方法:主要采用应用酶联免疫吸附实验(ELISA)方法检测75例MG患者与50例正常对照血清及其中40例MG患者与20例正常对照PBMC培养48小时后上清液各类可溶性因子的分泌水平。结果:血清及细胞培养上清液中MG患者IL-2,IL-4,IL-10,IL-13,IFN-γ,TNF-β,TGF-β及sCTLA-4的水平与正常对照相比未见显著差异(P>0.05),MG患者血清中IL-12的水平有所下降(P<0.05),而sICAM-1水平在血清(p=0.054)及上清液(P<0.01)中均高于正常对照。结论:MG患者血清及培养上清液中各类细胞因子水平与正常对照相比
     B:检测重症肌无力患者体内sICAM-1水平的有效方法
     目的细胞间粘附分子(ICAM-1),尤其是可溶性ICAM-1(sICAM-1)是很多疾病的重要相关指标。本实验旨在研究sICAM-1与重症肌无力(MG)的关系。方法应用酶联免疫吸附技术(ELISA)定量检测MG患者及正常对照血清及外周血单个核细胞(PBMC)培养上清液中sICAM-1的水平。结果血清中MG患者与正常对照之间sICAM-1的水平无差异,而PBMC培养上清液中MG患者显著高于正常对照;10例正常对照PBMC培养液中加自身血清的sICAM-1水平显著高于加胎牛血清(FBS)的培养上清液,而IL-10、IL-12、TNF-α的水平均为加FBS高于加自身血清,IL-4则未见变化;加入激素共培养48小时后,7例MG患者sICAM-1水平显著下降,而大剂量激素治疗一月后患者血清水平却未见变化。结论MG患者的PBMC分泌更多的sICAM-1;与血清相比,检测PBMC培养上清液中sICAM-1的水平是一种较好的研究方法;激素可以减少PBMC中sICAM-1的分泌,但是这种改变未见于高剂量激素治疗后MG患者的血清水平。
     结论:
     1.MG患者存在CD4~+CD25~+Treg细胞的缺陷,并且B细胞处于更易激活的状态。这种T细胞的失衡和B细胞的活化可能有助于MG的发生和发展。
     2.MG患者体内血清IL-2、IL-4、IL-10、IL-13、IFN-γ、TNF-α、TGF-β以及sCTLA-4未见显著差异,但其sICAM-1的水平高于正常,并且升高的sICAM-1可能主要由MG患者外周血反应性CD4~+CD25~-T细胞分泌。
     3.动态观测MG患者外周血CD4~+CD25~(high)T细胞的表达及其外周血单个核细胞sICAM-1的分泌有助于进一步了解疾病的变化情况。
Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction of skeletal muscles. Acetylcholine receptor (AChR) antibodies are present in sera from 80% to 90% of patients with generalized MG. Both AChR-specific Th1, Th2 cells and cyokines are documented in MG patients, and the involvement of the complement system should cause an increased consumption of complement components such as C3 and C4. But it is not yet clear what are essential for driving the pathogenesis of MG patients. The pathogenesis of MG is involved by many of the relative immune factors. The imbalance of immune system plays an important role in it. As impaired regulatory T cell activity can result in autoimmune diseases, regulatory T cells play a central role in the maintenance of peripheral tolerance. Current evidence proves the disfunction of regulatory T cells (Tregs), especially CD4~+CD25~+Tregs in both circulation and thymus maybe contribute to the development of MG. We used flowcytometry to detect the percentage of circulating CD4~+CD25~(high) Treg and the expression of some molecules which are important for the development and function of the cell, such as Foxp3 and so on; We also detected the level of other regulatory T cells and the activation of B cell in peripheral circulation of MG patients; And we used MACS and ~3H-TdR to isolate the circulating CD4~+CD25~+Treg and CD4~+CD25~-T cell for co-culture and to analyse the function of CD4~+CD25~+Treg in MG patients. Because of the important role of humoral immunity in MG, we used ELISA to detecte the soluble molecules in sera and PBMC cutured supernatants of MG patients and the healthy controls. We also aimed to find the relationship between the CD4~+CD25~(high) Treg and the other regulatory T cells, BAFFR~+ B cells, the soluble molecules in MG.
     A: Dynamic study of circulating CD4~+CD25~(high) regulatory T cells inmyasthenia gravis
     Objective The aim of this study is to observe the difference of blood CD_4~+CD_(25)~(high) T cells between the MG patients and healthy controls and to investigate the dynamic changes of the population in MG patients with various treatments. Methods The peripheral blood CD_4~+CD_(25)~(high) T cells of 55 MG patients and 33 healthy controls were detected by four-color flow cytometry. And 26 MG patients were detected before and after various treatments. Results There was no significant difference in the percentages of CD_4~+CD_(25)~(high) T cells between MG patients (6.2%±3.4) and the healthy control (5.2%±1.9, p=0.061). After short-term non-operated treatment, the percentages of CD_4~+CD_(25)~(high) T cells were elevated, and had a negative correlation with the decrease of MGFA in 21 MG patients (r=-0.563, P=0.008). Conclusions Our results indicated that changes of the percentage of CD_4~+CD_(25)~(high) T cells in MG patients after short-term treatment might be related to the disease. Except thymectomy, other treatments contributed to the increase of peripheral CD_4~+CD_(25)~(high) regulatory T cells in MG patients after short term treatment.
     B: Circulating regulatory T cells and BAFF receptor on B cells in patients withmyasthenia gravis
     Objectives To investigate the levels of circulating regulatory T cells and B cell-activating factor receptor (BAFF-R) on B cells from patients with myasthenia gravis (MG). Methods Using flow cytometry, we tested the levels of circulating regulatory T cells ( CD4~+CD25~(high)Foxp3~+, CD8~+CD28~-, CD8~+CD122~+ ) and CD19~+BAFF-R~+ B cells in 61 MG patients and 23 healthy controls. Results The percentages of the circulating CD4~+CD25~(high)Foxp3~+ T cells in MG patients ( 32.1%±16.1 ) were significantly declined compared with healthy controls (65.2%±14.7, p<0.01). The expression of BAFF-R on CD19~+ B cells in MG patients (10.6%±5.6) was higher than that in healthy controls (5.4%±3.9, p<0.01). There were no significant differences in the subpopulations of CD8~+CD28~- and CD8~+CD122~+T cells between MG patients and healthy controls (p>0.05) . Treatment of high-dose corticosteroid with or without additional intravenous IgG elevated the percentages of CD4~+CD25~(high)Foxp3~+ T cells in 20 MG patients (p<0.05). Conclusions These results revealed that decrease of circulating CD4~+CD25~(high)Foxp3~+ regulatory T cells in MG patients might be related to the pathogenesis of MG. An elevated BAFF-R on CD19~+ B cells demonstrated that B cells were more active in MG patients.
     C: The function of circulating CD4~+CD25~+ regulatory T cells in myasthenia gravis
     Objectives To investigate the function of circulating CD4~+CD25~+ Treg cells in patients with Myasthenia Gravis (MG). Methods By using flow cytometry, we detected the fluorescence intensity of function-relative molecules on circulating CD4~+CD25~(high)T cells (GITR/Neuropilin-l/CTLA-4/CD103) and appotosis-relative molecule (CD95) in 20 MG patients and 16 healthy controls. And we sorted the CD4~+CD25~+T and CD4~+CD25~-T cells from 10 MG patients and 8 healthy controls and cultured in differents experimental groups: Group A: CD4~+CD25~+ T cell alone; Group B: CD4~+CD25~+T plus CD4~+CD25~-T cell; Group C: CD4~+CD25~-T cell alone). The proliferation was detected by ~3H-TdR incorperation and the cytokines were detected by ELISA. Results The pecentages of CD4~+CD25~(high)Neuropilin-1~+ and CD4~+CD25~(high)CD103~+T cells were lower in MG patients than in the healthy controls. The proliferation of the group B was higher than group A and C in MG patients, while there was no difference in healthy controls. The secretion of sICAM-1 in group A and B were higher in MG patients, and the secretion of IL-10 in group C was lower in MG patients. Conclusions Some function-relative molecules in circulating CD4~+CD25~+ T cells in MG patients were decreased. The immunosuppression and the secretion of IL-10 of CD4~+CD25~+ T cells in MG patients were abnormal as well.
     A: The level of different kinds of cytokines, sCTLA-4 and sICAM-1from serum and cultured-cell supernatant in myasthenia gravis
     Objectives Myasthenia gravis (MG) is caused by T-cell dependent autoantibodies against muscle acetylcholine receptors (AChR) at the neuromuscular junction. Methods Here, we adopted ELISA and flow cytometry techniques to measure the levels of Th1, Th2, Th3 cytokines, inflammatory cytokines, sCTLA-4 and sICAM-1 from 75 MG patients and 50 healthy controls. Results There were no differences in the levels of IL-2, IL-4, IL-10, IL-13, IFN-γ, TNF-α, TGF-βand sCTLA-4 between MG patients and healthy controls in both sera and culture supernatants. The level of IL-12 was decreased in culture supernatants from MG patients, and the level of sICAM-1 was increased in both sera and culture supernatants from MG patients. Conclusions It revealed that there were no significant differences in the levels of different soluble factors between MG patients and healthy controls. While the function of sICAM-1 should be studied further.
     B: An effective method of detection sICAM-1 for patients withmyasthenia gravis
     Objectives ICAM-1 is a member of the immunoglobulin supergene family and a reliable marker of disease, especially soluble ICAM-1. Methods In this study, we used ELISA to detect the level of sICAM-1 in the serum and PBMC culture supernatant from MG patients and healthy controls. Results There was no significant (p=0.20) differences of the level of sICAM-1 in serum between MG patients and healthy controls. The level of the sICAM-1 in culture supernatant was increased in MG patients (10.4±1.4) compared with healthy controls (4.5±0.1) (after cultured with FBS (p=0.0048) or with serum of themselves (p=0.024) for 48 hours). The level of IL-10, IL-12 and TNF-αwere all elevated cultured with FBS compared with the serum of themselves, except for IL-4 (no difference). The supernatant level of sICAM-1 from seven MG patients co-cultured with corticosteroid was decreased (p=0.0136) after 48 hours, while there was no significant difference of the level of sICAM-1 in serum before and after treated with high dosage of corticosteroid in fourteen MG patients (p=0.329). Conclusions So we drew the conclusion that PBMC secreted more sICAM-1 in MG patients than normal. It was a better method to analyze the supernatant level of sICAM-1 in PBMC cultured with FBS in MG patients. Corticosteroid can down-regulate the secretion of sICAM-1 but it was not seen in the level in serum after treated with high dosage of corticosteroid in MG.
     Conclusions:
     1. The disfunction of circulating CD4~+CD25~(high) regulatory T cells and more active B cell in MG patients reveal the imbalance of T cells and the activation of B cell might be related to the pathogenesis of MG.
     2. There was no difference in the levels of IL-2, IL-4, IL-10, IL-13, IFN-γ, TNF-α, TGF-βand sCTLA-4 in sera and culture supernatants between MG patients and healthy controls. But the level of sICAM-1 was increased in culture supernatants from MG patients and most of the increase of sICAM-1 was likely caused by effctive CD4~+CD25~-T cells in MG patients.
     3. Dynamic observation of the circulating CD4~+CD25~(high) T cells and the secretion of sICAM-1 in cultured supernatant of PBMC in MG patients would be helpful for understanding the change of the disease.
引文
1. Sakaguchi, S. et al. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunol, 1995;155:1151-1164.
    
    2. Clare Baecher-Allan, Julia A. Brown,Gordon J. Freeman .et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. Journal of Immunol, 2001;167:1245-1253
    
    3. Itoh M, Takahashi T, Sakaguchi N .et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. Journal of Immunology, 1999; 162(9):5317-5326
    
    4. McHugh RS, Whitters MJ, Piccirillo CA. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. J. Immunity, 2002; 16(2):311-323.
    
    5. Shimizu J, Yamazaki S, Takashi T. et al. Stimulation of CD4+CD25+ regulatory T cells through GITR breaks immunological self-tolerance. J. Nat. Immunol, 2002;3(2): 135-142
    
    6. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol. 2003;4:330-336.
    
    7. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FOXP3. Science. 2003;299:1057-1061.
    
    8. Ciriaco A. Piccirillo, Angela M. Thornton. Cornerstone of peripheral tolerance: naturally occurring CD4+ CD25+ regulatory T cells. Trends in immunology, 2004; 25(7):374-380
    
    9. Ciriaco A. Piccirillo , Ethan M. Shevach. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Seminars in Immunology 2004; 16:81-88
    
    10. Masato Higuchi, Akihiro Ishizu, Hitoshi Ikeda .et al. Functional alteration of peripheral CD25+CD4+ immunoregulatory T cells in a transgenic rat model of autoimmune disease. Journal of autoimmunity, 2003;20:43-49
    
    11. Harini Bagavant, Claire Thompson, Katsuhiro Ohno .et al. Differential effect of neonatal thymectomy on systemic and organ-specific autoimmune disease. International Immunology, 2002;14(12):1397-1406
    12. Karen L Laurie, Ian R Van Driel, Paul A Gleeson .et al. The role of CD25+CD4+ immunoregulatory T cells in the induction of autoimmune gastritis. Immunology and cell Biology, 2002; 80:567-573
    
    13. Sun ,Yi; Qiao,Jian; Lu, Chuan-Zhen .et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clinical Immunology, 2004;112(3):284-289
    
    14. ME Morganl, R Fliermanl, HJ Witteveenl. et al. CD25+ regulatory T cells can be used therapeutically in collagen-induced arthritis. Arthritis Res Ther 2004;6(1):40
    
    
    1 Berrih-Aknin S. Myasthenia gravis, a model of organ-specific autoimmune disease. J Autoimmun, 1995, 8: 139-143.
    
    2 Link H, Olsson O, Sun J, et al. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest, 1991, 87: 2191-2196.
    
    3 Ahlberg R, Yi Q, Pirskanen R.Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity. Neurology, 1994,44:1732-1737.
    
    4 Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J Immunol, 1995, 155: 1151-1164.
    
    5 Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+CD25high regulatory cells in human peripheral blood. J Immunol, 2001,167:1245-1253.
    
    6 Ng WF, Duggan PJ, Ponchel F,et al. Human CD4+CD25+cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98: 2736-2744.
    
    7 Xiao BG, Lu CZ, Hojeberg B, et al. Immunological specificity and cross-reactivity of anti-acetylcholine receptor and anti-presynaptic membrane receptor antibodies in myasthenia gravis. J Neurol Sci, 1991,105: 118-123.
    
    8 Mestre M, Gonzalez C, Grino JM, et al. Sequential monitoring of immunoregulatory T cell subsets in renal transplantation. Transplant Proc, 1992, 24: 73-75.
    
    9 Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology, 2000, 55: 16-23.
    
    10 Robert W, Arthur M, Hans L. Altered tumor growth factor β mRNA expression is associated with thymectomy-related clinical remission in myasthenia gravis. Neurol Sci, 1997, 151:49-55.
    
    11 Lan RY, Ansari AA, Lian ZX, et al. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev, 2005, 4: 351- 363.
    12 Wakata N, Saito T, Tanaka S, et al. Tacrolimus hydrate (FK506): therapeutic effects and selection of responders in the treatment of myasthenia gravis. Clin Neurol Neurosurg, 2003, 106: 5-8.
    
    13 Ponseti JM, Azem J, Fort JM, et al. Benefits of FK506 (tacrolimus) for residual, cyclosporin- and prednisone-resistant myasthenia gravis: one-year follow-up of an open-label study. Clin Neurol Neurosurg, 2005, 107: 187-190.
    
    14 Sakuma S, Higashi Y, Sato N, et al. Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int Immunopharmacol, 2001,1: 1219-1226.
    
    15 Benny WB, Sutton DM, Oger J, et al. Clinical evaluation of a staphylococcal protein A immunoadsorption system in the treatment of myasthenia gravis patients. Transfusion, 1999, 39: 682-687.
    
    16 Kostera-Pruszczyka A, Emeryk-Szajewska B, Switalska J, et al. Clinical, electrophysiological and immunological remissions after thymectomy in myasthenia gravis. Clin Neurophysiol, 2002, 113:615-619.
    
    17 Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol, 2005, 164: 124-128.
    
    18 Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25(+) T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005: 735-741.
    
    19 Fattorossi A, Battaglia A, Buzzonetti A, et al. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology, 2005, 116: 134-141.
    
    
    1. Link H, Olsson O, Sun J, et al. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest, 1991, 87: 2191-2196.
    
    2. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol, 2003, 4: 330-336.
    
    3. Walker MR, Kasprowicz DJ, Gersuk VH, et al . Induction of Foxp3 and??acquisition of T regulatory activity by stimulated human CD4 + CD25 - T cells . Clin Invest, 2003, 112: 1437-1443.
    
    4. Muhaimin R, Yoshiyuki K, Izumi N, et al. Essential roles of CD8~+CD122~+ regulatory T cells in the matintenance of T cell homeostasis. J Exp.Med, 2004,200:1123-1134
    
    5. Rodig SJ, Shahsafaei A, Li B, et al, BAFF-R, the major B cell-activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Hum Pathol, 2005, 36:1113-1119.
    
    6. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum, 2003, 48: 3475-3486.
    
    7. Mestre M, Gonzalez C, Grino JM, et al. Sequential monitoring of immunoregulatory T cell subsets in renal transplantation. Transplant Proc, 1992, 24: 73-75.
    
    8. Xiao BG, Lu CZ, Hojeberg B, et al. Immunological specificity and cross-reactivity of anti-acetylcholine receptor and anti-presynaptic membrane receptor antibodies in myasthenia gravis. J Neurol Sci, 1991,105: 118-123.
    
    9. Jaretzki A 3rd, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology, 2000, 55: 16-23.
    
    10. Khattri R, Cox T, Yasayko SA, et al. An essential role for scurfin in CD4 +CD25 + T regulatory cells . Nat Immunol, 2003, 4: 337-342 .
    
    11. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 .Science, 2003, 299: 1057-1061.
    
    12.李翔, 卢家红,乔健等,重症肌无力患者外周血CD4~+CD25~(high)T细胞及其动 态观察.中华神经科杂志.2006,39:766-770
    
    13. Balandina A, Lecart S, Dartevelle, P, et al. Functional defect of regulatory CD4 +CD25 + T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005, 105:735-741.
    
    14. Fattorossi A, Battaglia A, Buzzonetti A, et al. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology, 2005, 116: 134-141.
    
    15. Robert W, Arthur M, Hans L. Altered tumor growth factor β mRNA expression is associated with thymectomy-related clinical remission in myasthenia gravis. Neurol Sci, 1997, 151:49-55.
    
    16. Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4 + CD25 + regulatory T cells. J Exp Med, 2005, 201: 1061-1067.
    
    17. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF recep tor that specifically interacts with BAFF.Science, 2001,293: 210822111.
    
    18. Sun ,Yi; Qiao,Jian; Lu, Chuan-Zhen .et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clinical Immunology, 2004;112(3):284-289
    
    
    1. Sakaguchi, S. et al. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunol, 1995;155:1151-1164.
    
    2. McHugh RS, Whitters MJ, Piccirillo CA. et al. CD4~+CD25~+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. J. Immunity, 2002; 16(2):311-323.
    
    3. Shimizu J, Yamazaki S, Takashi T. et al. Stimulation of CD4~+CD25~+ regulatory T cells through GITR breaks immunological self-tolerance. J. Nat. Immunol, 2002;3(2):135-142
    
    4. Boden E, Tang Q, Bour-Jordan H, et al. The role of CD28 and CTLA-4 in the f unction and homeostasis of CD4+CD25+ regulatory T cells. Novartis Found D ymp, 2003, 252: 55-66.
    
    5. Gregg RK, Jain R, Schoenleber SJ, et al. A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol. 2004, 173(12):7308-16.
    
    6. Bruder D, Probst-Kepper M, Westendorf AM,et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol, 2004, 34(3):623-30.
    
    7. Suffia I, Reckling SK, Salay G,et alA role for CD 103 in the retention ofCD4+CD25+ Treg and control of Leishmania major infection. J Immunol. 2005, 174(9):5444-55.
    
    8. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol, 2003, 4: 330-336.
    
    9. Walker MR, Kasprowicz DJ, Gersuk VH, et al . Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4 + CD25 - T cells .??Clin Invest, 2003, 112: 1437-1443.
    
    10. Pyzik M, Piccirillo CA.TGF-betal modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol. 2007 Aug;82(2):335-46.
    
    11. Joetham A, Takeda K, Taube C, et al.Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol. 2007,178(3): 1433-42.
    
    12. Nakamura K, Kitani A, Strober W.Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med. 2001,194(5):629-44.
    
    13. Kim J, Kim HJ, Choi WS, et al.Maintenance of CD8+ T-cell anergy by CD4+CD25+ regulatory T cells in chronic graft-versus-host disease. Exp Mol Med.200,38(5):494-501.
    
    14. Mahnke K, Ring S, Johnson TS,et al.Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur J Immunol. 2007, 37(8):2117-26.
    
    15. Link H, Olsson O, Sun J, et al. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest, 1991, 87: 2191-2196.
    
    16.李翔,卢家红,奚剑英等,重症肌无力患者外周血调节性T细胞及B细胞激 活因子受体的分析.中华神经科杂志,2007,40:512-516.
    
    17. Eleanor ML, Trevor S, X DN, et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Mechanisms of disease. 2004, 363: 608-615.
    
    18. Raimondi G, Turner MS, Thomson AW, et al. Naturally occurring regulatory T cells: recent insights in health and disease. Crit Rev Immunol. 2007;27(1):61-95.
    
    19. Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol. 2002, 169(11):6210-7.
    
    20. Gangi E, Vasu C, Cheatem D, et al.IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol. 2005,174(11):7006-13.
    
    21. Zheng SG, Wang JH, Gray JD, et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004, 172(9):5213-21.
    
    1. Conti-Fine BM, Milani M, Kaminski HJ, et al. Myasthenia gravis: past, present, and future. J Clin Invest 2006; 116(11):2843-4.
    
    2. Milani M, Ostlie N, Wang W, Conti-Fine BM, et al. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci 2003; 998:284-7.
    
    3. Xu L, Villain M, Galin FS, et al.. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells. Cell Immunol 2001; 208(2): 107-4.
    
    4. Zhang GX, Xiao BG, Bakhiet M, et al. Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis. J Exp Med 1996; 184(2):349-6.
    
    5. Tackenberg B, Kruth J, Bartholomaeus JE, et al. Clonal expansions of CD4+ B helper T cells in autoimmune myasthenia gravis. Eur J Immunol 2007; 37(3):849-3.
    
    6. Rosenberg JS, Oshima M, Atassi MZ, et al. B-cell activation in vitro by helper T cells specific to region alpha 146-162 of Torpedo californica nicotinic acetylcholine receptor. J Immunol 1996; 157(7):3192-9.
    
    7. Poussin MA, Goluszko E, Franco JU, et al. Role of IL-5 during primary and secondary immune response to acetylcholine receptor. J Neuroimmunol 2002; 125(1-2):51-8.
    8. Zhang GX, Xiao BG, Yu LY, et al. Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR. JNeuroimmunol 2001; 113(1): 10-8.
    
    9. Ostlie NS, Karachunski PI, Wang W, et al. Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis. J Immunol 2001; 166(8):4853-2.
    
    10. Deng C, Goluszko E, Tuzun E, et al. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J Immunol 2002; 169(2): 1077-3.
    
    11. Van SA, Van SP. Intercellular adhesion molecule-1. J Mol Med 1996; 74(1):13-3.
    
    12. Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol 2005; 17(3):251-8.
    
    13. Carrasco YR, Fleire SJ, Cameron T, et al. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 2004; 20(5):589-9.
    
    14. Holland J, Owens T. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line. The activation of Lyn tyrosine kinase and the mitogen-activated protein kinase pathway. J Biol Chem 1997; 272(14):9108-2.
    
    15. Sari RA, Taysi S, Erdem F, et al. Correlation of serum levels of soluble intercellular adhesion molecule-1 with disease activity in systemic lupus erythematosus. Rheumatol Int 2002; 21(4): 149-2.
    
    16. Potocnik AJ, Kinne R, Menninger H, et al. Expression of activation antigens on T cells in rheumatoid arthritis patients. Scand J Immunol 1990; 31(2):213-4.
    
    17. Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S. Serum autoantibodies profile and increased levels of circulating intercellular adhesion molecule-1: a reflection of the immunologically mediated systemic vasculopathy in rheumatic diseases? Arch Immunol Ther Exp (Warsz) 2001; 49(6):423-30.
    
    18. Sonnet E, Massart C, Gibassier J, et al. Longitudinal study of soluble intercellular adhesion molecule-1 (ICAM-1) in sera of patients with Graves' disease. J Endocrinol Invest 1999; 22(6):430-5.
    
    19. El-Gohary AM, Fawaz NA, Hassoba HM, et al. Soluble ICAM-1 in patients with chronic hepatitis C infection: a prognostic marker of disease activity. Egypt J Immunol 2004; 11 (2): 109-9.
    
    20. Kakoulidou M, Wang X, Zhao X, et al. Soluble costimulatory factors sCD28, sCD80, sCD86 and sCD152 in relation to other markers of immune activation in patients with myasthenia gravis. J Neuroimmunol 2007; 185(1-2): 150-1.
    
    21. Lesko LJ, Atkinson AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41:347-6.
    
    22. Cannon JG, Nerad JL, Poutsiaka DD, et al. Measuring circulating cytokines. J Appl Physiol 1993; 75(4): 1897-2.
    
    23. Thorpe R, Wadhwa M, Bird CR, et al. Detection and measurement of cytokines. Blood Rev 1992; 6(3): 133-8.
    
    24. Whicher J, Ingham E. Cytokine measurements in body fluids. Eur Cytokine Netw 1990; 1(4):239-3.
    
    25. Aziz N, Nishanian P, Fahey JL. Levels of cytokines and immune activation markers in plasma in human immunodeficiency virus infection: quality control procedures. Clin Diagn Lab Immunol 1998; 5(6):755-1.
    
    26. Dinarello CA. ELISA kits based on monoclonal antibodies do not measure total IL-1 beta synthesis. J Immunol Methods 1992; 148(1-2):255-9.
    
    27. Roncarolo MG, Gregori S, Levings M. Type 1 T regulatory cells and their relationship with CD4+CD25+ T regulatory cells. Novartis Found Symp 2003; 252:115-2.
    
    28. Grindebacke H, Wing K, Andersson AC, et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy 2004; 34(9): 1364-2.
    
    29. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531-2.
    
    30. Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol 2004; 16(2):89-8.
    
    31. Suciu-Foca N, Manavalan JS, Cortesini R. Generation and function of antigen-specific suppressor and regulatory T cells. Transpl Immunol 2003; 11(3-4):235-4.
    
    32. Najafian N, Chitnis T, Salama AD, et al. Regulatory functions of CD8+CD28- T cells in an autoimmune disease model. J Clin Invest 2003; 112(7):1037-8.
    
    
    33. Suzuki H, Zhou YW, Kato M, et al. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999; 190(11):1561-2.
    
    34. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001; 293(5537):2108-1.
    
    35. Ng LG, Sutherland AP, Newton R, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 2004; 173(2):807-7.
    
    36. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004; 20(6):785-8.
    
    37. Most J, Zangerle R, Herold M, et al. Elevated concentrations of circulating intercellular adhesion molecule 1 (ICAM-1) in HIV-1 infection. J Acquir Immune Defic Syndr 1993; 6(3):221-6.
    
    38. El-Gohary AM, Fawaz NA, Hassoba HM, et al. Soluble ICAM-1 in patients with chronic hepatitis C infection: a prognostic marker of disease activity. Egypt J Immunol 2004; 11 (2): 109-9.
    
    39. Egerer K, Feist E, Rohr U, et al. Increased serum soluble CD14, ICAM-1 and E-selectin correlate with disease activity and prognosis in systemic lupus erythematosus. Lupus 2000; 9(8):614-1.
    
    40. Giorelli M, De BA, Defazio G, et al. Differential regulation of membrane bound and soluble ICAM 1 in human endothelium and blood mononuclear cells: effects of interferon beta-1a. Cell Commun Adhes 2002; 9(5-6):259-2.
    
    41. Kraus J, Bauer R, Chatzimanolis N, et al. Interferon-beta 1b leads to a short-term increase of soluble but long-term stabilisation of cell surface bound adhesion molecules in multiple sclerosis. J Neurol 2004; 251(4):464-2.
    
    42. Papaccio G, Latronico MV, Graziano A, et al. Tacrolimus, but not cyclosporine A, significantly increases expression of ICAM-1 and IFN-gamma in the NOD mouse. J Cell Biochem Suppl 2001; Suppl 36:107-6.
    
    43. Tesar V, Jelinkova E, Jirsa MJ, et al. Soluble adhesion molecules and cytokines in patients with myasthenia gravis treated by plasma exchange. Blood Purif 2000; 18(2): 115-20.
    
    44.李翔,卢家红,奚剑英等,重症肌无力患者外周血调节性T细胞及B细胞 激活因子受体的分析.中华神经科杂志,2007,40:512-516.
    1. Van de Stolpe, A., Van der Saag, P.T. Intercellular adhesion molecule-1. J. Mol. Med. 1996, 74: 13-33.
    
    2. Kuhlman P, Moy VT, Lollo BA, Brian AA. The accessory function of murine ICAM-1 in T lymphocyte activation. Contributions of adhesion and co-activation. J Immunol 1991; 146: 1773-1782.
    
    3. Rothlein, R., Mainolfi, E.A., Czajkowski, M., Marlin, S.D. A form of circulatingICAM-1 inhuman serum. J. Immunol. 1991.147, 3788-3793.
    
    4. Shijubo, N., Imai, K., Shigehara, K., et al. Soluble intercellular adhesion molecule-1 (ICAM-1) in sera and bronchioalveolar lavage fluid of patients with idiopathic pulmonary fibrosis and pulmonary sarcoidosis. Clin. Exp. Immunol. 1994,95:156-161.
    
    5. Sonia Berrih-Aknin. Myasthenia gravis, a model of organ-specific autoimmune disease. Journal of autoimmunity. 1995; 8,139-143
    
    6. H Link, O Olsson, J Sun, etal. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest. 1991; 87(6):2191-2196
    
    7. Yoshikawa H, Satoh K, Yasukawa Y, Cytokine secretion by peripheral blood mononuclear cells in myasthenia gravis. J Clin Neurosci. 2002;(9): 133-136.
    
    8. Diaz, M.F., Kumar, A., Karimi, S., Kryworuchko, M., Daftarian, M.P., Creery, W.D., Filion, L.G., Cameron, W.. Expression of IL-10, IL-4 and interferon-gamma in unstimulated and mitogen-stimulated peripheral blood lymphocytes from HIVseropositive patients. Clin. Exp. Immunol. 1995, 102: 31.
    
    9. R. Mantegazza, C. Antozzi, D. Peluchetti, etal., Azathioprine as a single drug or in combination with steroid in the treatment of myasthenia gravis, J. Neurol. 1988; 235: 449-453.
    
    10. Rothlein, R., M. Czajkowski, M.M. O'Neill, S.D. Marlin, E. Mainolfi, and V.J. Merluzzi. Induction of intercellular adhesion molecule-1 on primary and continuous cell lines by proinflammatory cytokines. J. Immunol. 1988, 141, 1665-1669.
    
    11. Potocnik, A.J., R. Kinne, H. Menninger, J. Zacher, F. Emmrich, and R.A. Kroczek. Expression of activation antigens on T cells in rheumatoid arthritis patients. Scand. J. Immunol. 1990:31,213-224.
    
    12. Lal R.B., E. Mainolfi, R. Rothlein. Elevated levels of sICAM-1 in patients with human T-cell leukemia virus type I associated myelopathy and adult T-cell leukemia. Blood. 1992, 8: 2434-2435.
    
    13. Most J., R. Zangerle, M. Herold, D. Fuchs, H. Wachter, P. Fritsch, and M.P. Dierich. Elevated concentrations of circulating intercellular adhesion molecule-1 (ICAM-1) in HIV-1 infection. J. AIDS. 1993.
    
    14. Voraberger G, Schafer R, Stratowa C. Cloning of the human gene for intercellular adhesion molecule-1 and analysis of its 5'-regulatory region. Induction by cytokines and phorbol ester. J Immunol 1991; 147: 2777-2786.
    
    15. Diego Franciotta, Elisabetta Zardini, Sabrina Ravaglia, etal. Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. J. Neurosci; 2006(247): 202-207
    
    16. Cornelia W Hoedemaekers, Peter Pickkers, Mihai G Netea, etal, Intensive insulin therapy does not alter the inflammatory response in patients undergoing coronary artery bypass grafting: a randomized controlled trial. Available Online; 2005:790-797
    
    17. Pitzalis C, Pipitone N, Bajocchi G, etal. Corticosteroids inhibit lymphocyte binding to endothelium and intercellular adhesion: an additional mechanism for their anti-inflammatory and immunosuppressive effect. J Immunol, 1997(158):5007-5016.
    
    18. Terol MJ, Lopez-Guillermo A, Bosch F et al. Expression of the adhesion molecule ICAM-1 in non-Hodgkin's lymphoma: relationship with tumor dissemination and prognostic importance. J Clin Oncol 1998; 16: 35-40.
    1. Sakaguchi S, Sakaguchi N, Shimizu J,Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001;182:18-32.
    
    2. O'neill EJ, Sundstedt A, Mazza G, et al. Natural and induced regulatory T cells. Ann N Y Acad Sci. 2004; 1029:180-92.
    
    3. Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect. 2001;3(11):947-54.
    
    4. Battaglia M, Gianfrani C, Gregori S, Roncarolo MG. IL-10-producing T regulatory type 1 cells and oral tolerance. Ann N Y Acad Sci. 2004;1029:142-53.
    
    5. Levings MK, Sangregorio R, Galbiati F, et al. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol. 2001;166(9):5530-9.
    
    6. Toda A, Piccirillo CA.Development and function of naturally occurring CD4+CD25+ regulatory T cells. J Leukoc Biol. 2006; 80(3):458-70.
    
    7. Sakaguchi S, Powrie F.Emerging challenges in regulatory T cell function and biology. Science. 2007;317(5838):627-9.
    
    8. Bruder D, Probst-Kepper M, Westendorf AM, et al.Neuropilin-1: a surface marker of regulatory T cells.Eur J Immunol. 2004; 34(3):623-30.
    
    9. Allakhverdi Z, Fitzpatrick D, Boisvert A, et al. Expression of CD103 identifies human regulatory T-cell subsets. J Allergy Clin Immunol. 2006; 118(6): 1342-9.
    
    10. Yagi H, Nomura T, Nakamura K, Yamazaki S, et al. Int Immunol. 2004 (11):1643-56. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells.
    
    11. Nomura T, Sakaguchi S. Foxp3 and Aire in thymus-generated Treg cells: a link in self-tolerance. Nat Immunol. 2007;8(4):333-4.
    
    12. Khattri R, Cox T, Yasayko SA, et al. Nat Immunol. 2003 Apr;4(4):337-42. Epub 2003 Mar 3. An essential role for Scurfm in CD4+CD25+ T regulatory cells.
    
    13. Fontenot JD, Gavin MA, Rudensky AY. Epub 2003 Mar 3. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4(4):330-6.
    
    14. Rouse BT, Suvas S. Expert Opin Biol Ther. 2007;7(9):1301-9. Regulatory T cells and immunity to pathogens.
    15. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001; 193(11):1285-94.
    
    16. Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev, Immunol 2004;4(11):841- 55.
    
    17. McHugh RS, Whitters MJ, Piccirillo CA. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. J. Immunity, 2002;16(2):311-323.
    
    18. Shimizu J, Yamazaki S, Takashi T. et al. Stimulation of CD4+CD25+ regulatory T cells through GITR breaks immunological self-tolerance. J. Nat. Immunol, 2002;3(2):135-142
    
    19. Ciriaco A. Piccirillo, Angela M. Thornton. Cornerstone of peripheral tolerance: naturally occurring CD4+ CD25+ regulatory T cells. Trends in immunology, 2004; 25(7):374-380
    
    20. Ciriaco A. Piccirillo , Ethan M. Shevach. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Seminars in Immunology 2004;16:81-88
    
    21. Link H, Olsson O, Sun J, et al. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest, 1991, 87: 2191-2196.
    
    22. Kostera-Pruszczyka A, Emeryk-Szajewska B, Switalska J, et al. Clinical, electrophysiological and immunological remissions after thymectomy in myasthenia gravis. Clin Neurophysiol, 2002, 113: 615-619.
    
    23. Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol, 2005, 164: 124-128.
    
    24. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25(+) T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005: 735-741
    
    25. Robert W, Arthur M, Hans L. Altered tumor growth factor β mRNA expression is associated with thymectomy-related clinical remission in myasthenia gravis. Neurol Sci, 1997,151:49-55.
    
    26. Lan RY, Ansari AA, Lian ZX, et al. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev, 2005, 4: 351- 363.
    
    27. Sun ,Yi; Qiao,Jian; Lu, Chuan-Zhen .et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clinical??Immunology,2004;112(3):284-289
    
    28.李翔,卢家红,奚剑英等,重症肌无力患者外周血调节性T细胞及B细胞激活 因子受体的分析.中华神经科杂志,2007,40:512-516.
    
    29. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105(2):735-41.
    
    30. Ransohoff RM, Tuohy V, Lehmann P. The immunology of multiple sclerosis: new intricacies and new insights. Curr Opin Neurol. 1994; 7(3):242-9.
    
    31. Kohm AP, Carpentier PA, Miller SD. Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T cells. Novartis Found Symp. 2003;252:45-52.
    
    32. Kohm AP, Miller SD. Role of ICAM-1 and P-selectin expression in the development and effector function of CD4+CD25+regulatory T cells. J Autoimmun. 2003;21(3):261-71.
    
    33. Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med, 2004,199: 971-979.
    
    34. Huan J, Culbertson N, Spencer L, et al. Decresed FOXP3 levels in multiple sclerosis patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700