太平洋富钴结壳稀有气体地球化学特征及其成矿指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中西太平洋富钴结壳稀有气体核素含量和同位素组成具有明显的区域性特征。依其He同位素比值与大洋中脊玄武岩(MORB)He同位素比值的相对大小,可将富钴结壳分为低~3He/~4He型和高~3He/~4He型两类,麦哲伦海山、马尔库斯-威克海岭、马绍尔群岛海山链和中太平洋海山产出低~3He/~4He型结壳,莱恩群岛海山链产出高~3He/~4He型结壳。
     富钴结壳稀有气体以下地幔来源为主,低~3He/~4He型与高~3He/~4He型结壳稀有气体特征的差异是二者产出海山链下地幔源区类型不同的表现。低~3He/~4He型结壳中的稀有气体主要来自受俯冲再循环大洋地壳影响的HIMU型地幔源区,高~3He/~4He型结壳中的稀有气体主要来自受捕获大气组分沉积物再循环作用影响的EM型地幔源区。地幔源区类型的差异是引起两类结壳稀有气体组成差异的根本原因。
     富钴结壳铂族元素(PGE)特征随海山链而变化,PGE各元素之间也有明显的分异,暗示了结壳PGE来源的多样性和富集机制的差异性。地外物质对富钴结壳PGE的贡献有限,富钴结壳PGE主要来自海底幔源岩石的蚀变作用和陆源物质输入。PGE来源印证了富钴结壳稀有气体的地幔来源说。
     大洋岛屿玄武岩(OIB)低温蚀变作用研究和质量平衡理论计算表明,OIB低温蚀变作用为海水提供了大量金属,OIB是富钴结壳重要的矿源场。地幔在富钴结壳成矿中起着重要的作用。
The nuclide contents and isotopic ratios of ferromanganese crusts from the western and central Pacific Ocean vary significantly with regional characteristics. Based on the relationship between the He isotope ratios of samples and that of MORB, the samples can be classified into two types: a low ~3He/~4He type and a high ~3He/~4He type. The sample from the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts are low ~3He/~4He type crusts, while the samples from the Line Island Chain are high ~3He/~4He type crusts.
     The noble gases in ferromanganese crusts originate predominantly from the lower mantle of the Earth. The differences in noble gas characteristics between the low ~3He/~4He type and the high ~3He/~4He type crusts indicate the differences of lower mantle end-member of the correspondent seamount chains. Noble gases of the low ~3He/~4He type crusts originate mainly from a HIMU-type lower mantle source contaminated by recycled oceanic crust, whereas noble gases in the high ~3He/~4He type samples originate mainly from an EM-type lower mantle source contaminated by recycled sediments which captured the air component. The difference in the lower mantle end-member is the fundamental reason results in the differences in the noble gas composition between the two type crusts.
     The platinum group elements (PGE) contents of crust samples vary from one seamount chain to another and there are significant differentiation between different elements of PGE, indicating the diversity of PGE source of crusts and the variation of the enrichment mechanism in seamount chains. The PGE in crusts origin mainly from alteration of mantle-deirived submarine basalts and river and eolian input, while the contributin of extraterrestrial material is limited. This proves the mantle origin hypotheses of noble gases in ferromanganese crusts.
     The study of low-temperature alteration and the mass balance theoretical calculation of oceanic island basalts (OIB) indicate that low-temperature alteration of OIB can supply abundant amount of metals to seawater and OIB play as an important source of transition metals for the formation of ferromanganese crusts.
引文
1. Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits. In: Horn D R. (Ed). Ferromanganese Deposits on the sea floor. Arden House, Harriman, New York, 1972, 149.
    2. Hein J R, Koschinsky A, Bau M, Manheim F T, et al. Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan D S. (Ed). Handbook of marine mineral deposits. Boca Raton: CRC Press, 2000, 239~279.
    3. Manheim F T. Marine Cobalt resources. Science, 1986, 232: 600~608.
    4. Christiansen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science, 1997, 277: 913~918.
    5. Abouchami W, Goldstein S L, Galer S J G, et al. Secular change of lead and neodymium in central Pacific seawater recorded by a Fe-Mn crust. Geochim Cosmochim Acta, 1997, 61(18): 3957~3974.
    6. Yang Yaomin, Rouxel O, Shi Xuefa, liu Jihua. Fe isotope composition of Fe-Mn crusts in Pacific and its significance for Paleoceanography. Geophysical Research Abstracts, 2006, 8.
    7. Hein J R, Morgan C L. Influence of substrate rocks on Fe-Mn crust composition. Deep-sea Research I, 1999, 46, 855~875.
    8. 卜文瑞, 石学法, 彭建堂. 中太平洋海山铁锰结核形成环境的地球化学制约. 科学通报, 2001, 46(增刊): 89~95.
    9. Iyer S D, Sharma R. Correlation between occurrence of manganese nodules and rocks in a part of the central Indian Ocean Basin. Mar Geol, 1990, 92: 127 ~138.
    10. Yamazaki T, Sharma R. Distribution characteristic of Co-rich manganese deposits on a seamount in the central Pacific Ocean. Marine Georesources Geotechnolgy, 1998, 16: 283~305.
    11. Hein J R, Schwab W C,Davis A S. Cobalt- and Platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Mar Geol, 1988, 78: 255~283.
    12. Usui A, Terashima S. Deposition of hydrogenetic and hydrothermal manganese minerals in the Ogasawara (Bonin) Arc area, northwest Pacific. Marine Georesources Geotech, 1997, 15: 127~154.
    13. Halbach P, Segl M, Puteanus D, Mangini A. Co-fluxes and growth rates in ferromanganese deposits from central Pacific Seamounts areas. Nature, 1983, 304: 716~719.
    14. Lienemann C-P, Taillefert M, Perret D, et al. Association of cobalt and manganese in aquatic systems: Chemical and microscopic evidence. Geochim Cosmochim Acta, 1997, 61(7): 1437~1446.
    15. Derry L A, France-Lanord C. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet Sci Lett, 1996, 142: 59~74.
    16. Godfrey L V, Lee D –C, Sangrey W F, et al. The Hf isotopic composition of ferromanganese nodules and crusts and hydrothermal manganese deposits: Implications for seawater Hf. Earth Planet Sci Lett, 1997, 151: 91~105.
    17. Usui A, Nashimura A Iizasa K. Submersible observation of manganese nodules and crust deposits on the Tenpo seamount, northwestern Pacific. Marine Georesources and Geotechnology, 1992, 11: 262~291.
    18. O’Nions R K, Carter S R, Cohen R S, et al. Pb, Nd and Sr isotope in oceanic ferromanganese deposits and ocean floor basalts. Nature, 1978, 273: 435~438.
    19. Esser B K, Turekian K K. Accretion rate of extraterrestrial particles determined from osmium isotope systematic of Pacific pelagic clay and manganese nodules. Geochim Cosmochim Acta, 1988, 52: 1383~ 1388.
    20. 何高文, 孙晓明, 杨胜雄, 等. 东太平洋 CC 区多金属结核铂族元素(PGE)地球化学及其意义. 矿床地质, 2006, 25(2): 164~174.
    21. 卜文瑞, 石学法, 彭建堂, 刘季花, 张铭杰, 漆 亮. 大洋岛屿玄武岩低温交代作用:兼论大洋富钴结壳成矿物质来源. 海洋学报, 2007, 29(5): 55~68.
    22. Segl M, Mangini A, Bonani G, Hofmann J, et al. 10Be-dating of a manganese crust from central North Pacific and implications for ocean paleocirculation. Nature, 1984, 309: 540~543.
    23. Eisenhauer A, Gogen K, Pernicka E, et al. Climatic influence on the growth rates of Mn crusts during the Late Quaternary. Earth Planet Sci Lett, 1992, 109: 25~36.
    24. 夏明, 张承惠. 我国南海海盆一块锰壳层的生长速率及某些地球化学特征. 沉积学报, 1983, 1(2): 131~142.
    25. 蔡毅华, 黄奕普. 东太平洋多金属结核 U、Th 同位素深度分布特征与生长速率. 厦门大学学报(自科版). 2000, 39(5): 657~663.
    26. Cowen J P, DeCarlo E H, McGee D L. Calcareous nannofossil Biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Mar Geol, 1993, 115: 289~ 306.
    27. 韩昌甫. 多金属结核内部生长层组年代研究. 海洋地质与第四纪地质, 1999, 19(2): 65~74.
    28. 程振波, 石学法, 苏新, 吴永华, 李小艳, 王昆山, 杨永亮, 鞠小华, 石丰登, Matsuzaki H. 西、中太平洋铁锰结壳生长年龄: 超微化石与 10Be 测年的对比. 科学通报, 2006, 51(22): 2685~2689.
    29. Joshima M, Usui A. Magnetostratigraphy of hydrogenetic manganese crusta from Northwestern Pacific seamounts. Mar Geol, 1998, 146: 53~62.
    30. Futa K, Peterman Z E, Hein J R. Sr and Nd isotopic variation in ferromanganese crusts from Central Pacific implication for age and source provenance. Geochim Cosmochim Acta, 1988, 52: 2229~2233.
    31. 符亚洲, 彭建堂, 屈文俊, 胡瑞忠, 石学法, 杜安道. 中太平洋富钴结壳剖面的锇同位素组成. 科学通报, 2005, 50(15): 1654~1659.
    32. Barnes S S, Dymond J R. Rates of accumulation of ferromanganese nodules. Nature, 1967, 213: 1218~ 1219.
    33. Lyle M. Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes. Geochim Cosmochim Atca, 1982, 46: 2301~2306.
    34. Puteanus D. Halbach P. Correlation of Co concentration and growth rate method for age determination of ferromanganese crusts. Chem Geol, 1988, 69: 73~85.
    35. Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 1988, 335: 59~ 62.
    36. 卜文瑞, 石学法. 大洋铁锰矿床生长速率测定研究进展. 地球科学进展, 2002, 17(4): 551~ 556.
    37. 蔡毅华, 黄奕普. 富钴结壳定年简介. 海洋科学, 2003, 27(11): 32~37
    38. 符亚洲, 彭建堂, 胡瑞忠, 石学法. 大洋富钴结壳的年代学研究方法评述. 地球与环境, 2006, 34(3): 1~8.
    39. Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim Cosmochim Acta, 1995, 59: 5113-5132.
    40. Bau M. Koschinsky A, Dulski P, et al. Composition of the partitioning behaviours of yttrium, rare-earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochem Cosmochem Acta, 1996, 60: 1709~1725.
    41. Hem J D. Redox processed at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol, 1978, 21: 199.
    42. Aplin A C. Rare earth element geochemistry of central Pacific ferromanganese encrustation. Earth Planet Sci Lett, 1984, 71: 13~22.
    43. Aplin A C, Cronan D S. Ferromanganese oxide deposits from the central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochim Cosmochim Atca, 1985, 49(2): 427~436.
    44. Stüben D, Glasby G P, Eckhardt J –D, Berner Z, Mountain B W, Usui A. Enrichment of Platinum-group elements in hydrogenous, diagenetic and hydrothermal marine manganese and iron deposits. Exploration and Mining Geology, 1999, 8.
    45. 刘从强, 黄智龙, 李和平, 等. 地幔流体及其成矿作用. 地学前缘, 2001, 8(4): 231~243.
    46. 丁振举, 姚书振, 方金云. 地幔流体及其成矿作用. 地质科技情报, 1997, 16(1): 72~76.
    47. 涂光炽. 关于CO2若干问题的讨论. 地学前缘, 1996, 3(3): 53~62.
    48. Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim Cosmochim Acta, 1997, 61: 4079~4094.
    49. Hodkinson R A, Cronan D S. Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacent parts of the central equatorial Pacific. Mar Geol, 1991, 98: 437~447.
    50. 王先彬. 气体地球化学. 见: 欧阳自远 主编. 地球化学: 历史、现状和发展趋势. 北京: 原子能出版社, 1996, 67~74.
    51. 方中. 开拓我国同位素地质研究新方向——评矿物岩石惰性气体同位素地球化学进展. 地质论评, 1996,42(4):329~333.
    52. Alexeev V A. Parent bodies of L and H chondrites: Times of catastrophic events. Meteoritics Planet Sci, 1998, 33(1): 145~152.
    53. Weiler R. Cosmic-ray-produced noble gases in meteorites. In: Porcelli D, Ballentine C J, Weiler R. (Eds). Noble Gases in Geochemistry and Cosmochemistry. The Mineralogical Society of America, Washington DC, 2002, 125~170.
    54. Benkert J P, Baur H, Signer P, Wieler R. He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. Geophys Res, 1993, 13147~13162.
    55. Podosek F A, Ozima M. The xenon age of the Earth. In Canup RM, Righter K. (Eds). Origin of the Earth and Moon. The University of Arizona Press, Tucson, 2000, 63~72.
    56. Farley K A. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature, 1995, 376: 153~156.
    57. White W M. Geochemistry (On-line Textbook). John-Hopkines University Press, 2005, 313~511.
    58. Sano Y, Toyoda K, Wakita H, et al. 3He/4He ratios of marine ferromanganese nodules. Nature, 1985, 317:
    518~522.
    59. 李延河, 李金城, 宋鹤彬. 海底多金属结核和富钴结壳的He同位素对比研究. 地球学报, 1999, 20(4): 378~384.
    60. Basu S, Stuart F M, Klemm V, Korschinek G, Knie K, Hein J R. Helium isotopes in ferromanganese crusts from the central Pacific Ocean. Geochim Cosmochim Acta, 2006, 70: 3996~4006.
    61. 孙晓明, 薛婷, 何高文, 叶先仁, 张美, 陆红锋, 王生伟. 西太平洋海底海山富钴结壳惰性气体同位素组成及其来源. 岩石学报, 2006, 22(9): 2331~2340.
    62. 卜文瑞, 石学法, 张铭杰, 刘季花. 太平洋 Fe-Mn 结壳 He, Ne, Ar 同位素特征与来源. 中国科学(D辑: 地球科学), 2007, 37(2): 244~253.
    63. Jambon A. Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll M R and Holloway J R (Eds). Volatiles in Magmas. Reviews in Mineralogy, 30, 1994, 479~517.
    64. Porcelli D, Wasserburg G J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim Cosmochim Acta, 1995, 59: 4921~4937.
    65. Dixon E T, Honda M, McDougall I, Campbell I H, Sigurdsson I. Preservation of Near-solar neon isotopic ratios in Icelandic basalts. Earth Planet Sci Lett, 2000, 180: 309~324.
    66. Burnard P, Graham D Rurner G. Vesicle-specific noble gas analyses of "popping rock": Implications forprimordial noble gases in earth. Science, 1997, 276: 568~571.
    67. Farley K A, Neroda E. Noble gases in the Earth’s mantle. Annu Rev Earth Planet Sci Lett, 1998, 26: 189~218.
    68. Ozima M, Podosek F A. Noble Gas Geochemistry (Second Edition). New York: Cambridge University Press, 2002, 1~286.
    69. Porcelli D, Ballentine C J, Wieler R. An overview of noble gas geochemistry and cosmochemistry. In: Porcelli D, Ballentine CJ, Wieler R, (Eds). Noble gases in geochemistry and cosmochemistry, Rev Mineral Geochem, 2002, 47: 1~19.
    70. Shibata T, Takahashi E, Matsuda J. Noble gas solubility in binary CaO-SiO2 system. Geophys Res Lett, 1996, 23: 3139~3142.
    71. Lux G. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim Cosmochim Acta, 1987, 51: 1549~1560.
    72. Carroll M R, Stolper E M. Noble gas solubilities in silicate melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochim Cosmochim Acta, 1993, 57: 5039~5051.
    73. Jambon A, Weber H, Braun O. Solubility of He, Ne, Ar, Kr, Xe in a basalt melt in the range 1250~1600 °C, Geochemical implications. Geochim Cosmochim Acta, 1986, 50: 401~408.
    74. Draper D S, Carroll M R. Argon diffusion and solubility in silicic glasses exposed to an Ar-He gas mixture. Earth Planet Sci Lett, 1995, 132: 15~24.
    75. Chamorro-Pérez E, Gillet P, Jambon A. Argon solubility in silicate melts at very high pressures: experimental set-up and preliminary results for silica and anorthite melts. Earth Planet Sci Lett, 1996, 145: 97~107.
    76. Chamorro-Pérez E, Gillet P, Jambon A, Badro J, McMillan P. Low argon solubility in silicate melts at high pressure. Nature, 1998, 393: 352~355.
    77. Chamorro E M, Brooker R A, Wartho J A, Wood B K, Kelley S P, Blundy S P. Ar and K partitioning between clinopyroxene and silicate melt to 8 GPa. Geochim Cosmochim Acta, 2002, 66: 507~519.
    78. Schmidt B C, Keppler H. Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet Sci Lett, 2002, 195: 277~290.
    79. Paonita A, Gigli G, Gozzi D, Nuccio P M, Trigila R. Investigation of the He solubility in H2O-CO2 bearing silicate liquids at moderate pressure: a new experimental method. Earth Planet Sci Lett, 2000, 181:
    595~604.
    80. Nuccio P M, Paonita A. Investigation of the noble gas solubility in H2O-CO2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EIP) model. Earth Planet Sci Lett, 2000, 183: 499~512.
    81. Carroll M R, Stolper E M. Argon solubility and diffusion in silica glass: Implications for the solution behavior of molecular gases. Geochim Cosmochem Acta, 1991, 55: 211~225.
    82. Broadhurst C L, Drake M J, Hagee B E, Bernatowicz T J. Solubility and partitioning of Ne, Ar, Kr and Xe in minerals and synthetic basaltic liquids. Geochim Cosmochim Acta, 1992, 56: 709~723.
    83. Hiyagon H, Ozima M. Partition of noble gases between olivine and basalt melt. Geochim Cosmochim Acta, 1986, 50: 2045~2057.
    84. Marty B, Lussiez P. Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt. Chem Geol, 1993, 106: 1~7.
    85. Kurz M D. Mantle heterogeneity beneath oceanic islands: some inferences from isotopes. Phil Trans R Soc Lond A, 1993, 342: 91~103.
    86. Hiyagon H, Ozima M. Noble gas distribution between basalt melt and crystals. Earth Planet Sci Lett, 1982,58: 255~264.
    87. Hiyagon H. Experimental studies on noble gas diffusion in basalt glass and partition between basalt melt and olivine. PhD Thesis, University of Tokyo, 1984, 1~138.
    88. Broadhurst C L, Drake M J, Hagee B E, Bernatowicz T J. Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim Cosmochim Acta, 1990, 54: 299~309.
    89. Futagami T, Ozima M, Nagai S, Aoki Y. Experiments on thermal release of implanted noble gases from minerals and their implantations for noble gases in lunar soil grains. Geochim Cosmochim Acta, 1993, 57: 3177~3194.
    90. Ozima M, Takigami Y. Activation energy for thermal release of Ar from some DSDP submarine rocks. Geochim Cosmochim Acta, 1980, 44: 141~144.
    91. Breddam K, Kurz M D. Helium isotope signatures of Icelandic alkaline lavas. EOS Trans Am Geophys Union, 2001, 82: F1315.
    92. Anderson D L. A statistical test of the two reservoir model for helium isotopes. Earth Planet Sci Lett, 2001, 193: 77~82.
    93. Graham D W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R, (Eds). Noble gases in geochemistry and cosmochemistry, Rev Mineral Geochem 47, 2002, 47: 247~318.
    94. Valbracht P J, Staudacher T, Malahoff A, Allègre C J. Nobel gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet Sci Lett, 1997, 150: 399~411.
    95. Moreira M, Gautheron C, Breddam K, Curtice J, Kurz M D. Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet Sci Lett, 2001, 185: 15~23.
    96. Stuart F M, Ellam R M, Harrop P J, Fitton J G, Bell B R. Constraints on mantle plumes from the helium isotope composition of basalts from the British Tertiary Igneous Province. Earth Planet Sci Lett, 2000,
    177: 273~285.
    97. Kirstein L A, Timmerman M J. Evidence of the proto-Iceland plume in northwestern Ireland at 42 Ma from helium isotopes. J Geol Soc Lond, 2000, 157: 923~927.
    98. Condomines M, Gronvold K, Hooker P J, Muehlenbachs K, O’Nions R K, Oskarsson N, Oxburgh E R. Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett, 1983, 66: 125~136.
    99. Hanan B B, Graham D W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 1996, 272: 991~995.
    100. Hilton D R, Gronvold K, Macpherson C G, Castillo P R. Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet Sci Lett. 1999, 173: 53~60.
    101. Niedermann S, Bach W, Erzinger J. Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: decoupling of helium and neon isotope systematics. Geochim Cosmochim Acta, 1997, 61: 2697~2715.
    102. Yatsevich I, Honda M. Production of nucleogenic neon in the Earth from natural radioactive decay. J Geophys Res, 1997, 102: 10291~10298.
    103. Farley K A, Poreda R J. Mantle neon and atmospheric contamination. Earth Planet Sci Lett, 1993, 114: 325~339.
    104. Sarda P, Moreira M, Staudacher T, Schilling J-G, Allègre C J. Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J Geophys Res, 2000, 105: 5973~5996.
    105. Ballentine C J, Barfod D N. The origin of air-like noble gases in MORB and OIB. Earth Planet Sci Lett,2000, 180: 39~48.
    106. Sarda P, Staudacher T, Allègre C J. Neon isotopes in submarine basalts. Earth Planet Sci Lett, 1988, 91: 73~88.
    107. Moreira M, Kunz J, Allègre C. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science, 1998, 279: 1178~1181.
    108. Farley K A, Poreda R J, Onstott T C. Noble gases in deformed xenoliths from an ocean island: charcterization of a metasomatic fluid. In: Matsuda J. (Ed). Noble Gas Geochemistry and Cosmochemistry. Terra Scientific, Tokyo, 1994, 159~178.
    109. Trieloff M, Kunz J, Clague D A, Harrison D, Allègre C J. The nature of pristine noble gases in mantle plumes. Science, 2000, 288: 1036~1038.
    110. Patterson D B, Honda M, Mcdougall I. Atmospheric contamination: a possible source for heavy noble gases in basalts from Loihi seamount, Hawaii. Geophys Res Lett, 1990, 17: 705~708.
    111. Farley K A, Craig H. Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochim Cosmochim Acta, 1994, 58: 2509~2517.
    112. Poreda R J, Farley K A. Rare gases in Samoan xenoliths. Earth Planet Sci. Lett, 1992, 113: 129~144.
    113. Porcelli D, Wasserburg G J. Mass transfer of xenon through a steady-state upper mantle. Geochim Cosmochim Acta, 1995, 59: 1991~2007.
    114. Smoot N C. Orthogonal intersections of megatrends in the Western Pacific ocean basin: a case study of the Mid-Pacific mountains. Geomorphology, 1999, 30: 323~356.
    115. Pringle M S. Radiometric ages of basaltic basement recovered at Sites 800, 801, and 802, Leg 129, Western Pacific Ocean. In: Larson R L, Lancelot Y, et al. Proc ODP 129. College Station, TX (Ocean Drilling Program), 1992, 389~404.
    116. Cottrell R D, Tarduno J A. A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots. Tectonophysics, 2003, 362: 321~333.
    117. Morgan W J. Convection plumes in the lower mantle. Nature, 1971, 230: 42~43.
    118. Davis A S, Gray L B, Clague D A, Hein J R. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem Geophys Geosyst, 2002, 3:
    1~28.
    119. Clouard V, Bonneville A. Ages of seamounts, islands and plateaus on the Pacific Plate. In: Foulger G R, Natland J H, Presnall D C, Anderson D L. (Eds). Plates, Plumes, and Paradigms. Geological Society of America Special Volume 388, 2005, 71~90.
    120. 赵俐红, 高金耀, 金翔龙, 章家保. 中太平洋海山群漂移史及其来源. 海洋地质与第四纪地质, 2005, 25(3): 35~42.
    121. Bograd S J, Rabinovich A B, LeBlond P H, Shore J A. Observations of seamount-attached eddies in the North Pacific. Journal of Geophysical Research, 1997, 102: 12441~12456.
    122. Wishner K, Levin L, Gowing M, Mullineaux L. Involvement of the oxygen minimum in benthic zonation on a deep seamount. Nature, 1990, 346: 57~59.
    123. Kawabe M, Fujio S, Yanagimoto D. Deep-water circulation at low latitudes in the western North Pacific. Deep-Sea Research I, 2003, 50: 631~656.
    124. 张德玉, 陈穗田. 东太平洋海盆中、西部多金属结核主要锰矿物区域变化规律的研究. 北京: 海洋出版社, 1998, 1~124.
    125. Takematsu N, Sato Y, Okabe S. Factors controlling the chemical composition of marine manganese nodules and crusts: a review and synthesis. Mar Chem, 1989, 26: 41~56.
    126. Bolton B R, Exon N E, Ostwald J, et al. Geochemistary of ferromanganese crusts and nodules from theSouth Tasman rise, southeast of Australia. Mar Grol, 1988, 84: 53~80.
    127. Varentsov I M et al. Mn-Fe oxyhydroxide crusts from Krylov Seamount (eastern Atlantic): mineralogy, geochemistry and genesis. Mar Geol, 1991, 96: 53~70.
    128. 张海生, 赵鹏大, 陈守余, 胡光道. 中太平洋海山多金属结壳的成矿特征. 地球科学(中国地质大学学报), 2001, 26(2): 205~209.
    129. De Carlo E H, McMurtry G M ,Kim K H. Geochemistry of ferromanganese crusts from the Hawaiian Archipelago. I. Northern survey areas. Deep Sea Research, 1987, 34(3): 441~467.
    130. McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth Planet Sci Lett, 1994, 125: 105~118.
    131. Alvarez R, De Carlo E H, Cowen J, et al. Micromorphological characteristics of a marine ferromanganese crust. Mar Geol, 1990, 94: 239~ 249.
    132. De Carlo E H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean. Mar Geol, 1991, 98: 449~467.
    133. Roy S, Dadgupta S, Mukhopadhyay S, et al. A typical ferromanganese nodules from pelagic areas of the Central Indian Basin, Equatorial Indian Ocean. Mar Geol, 1990, 92: 269~283.
    134. Halbach P, Hebisch U, Scherhag C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chem Geol, 1981, 34: 3~17.
    135. Usui A, Nishimura A, Tanahashi M, et al. Local variability of manganese nodule facies on small abyssal hills of the Central Pacific Basin. Mar Geol, 1987, 74: 237~275.
    136. Halbach P,Giovanoli R,Borstel D. Geochemical processes controlling the relationship between Co, Mn and Fe in early diagenetic deep sea nodules. Earth Planet Sci Lett, 1982, 60: 226~236.
    137. Yoshikawa K. The relationship between manganese minerals and metallic elements in deep-sea manganese nodules. Mar Geol, 1991, 101: 267~286.
    138. 潘家华, 刘淑琴, DeCarlo E. 大洋磷酸盐化作用对富钴结壳元素富集的影响. 地球学报, 2002, 23(5):
    403~408.
    139. Goldberg E D, Koide M, Schmitt R A, et al. Rare earth distribution in the marine environment. Geophys Res, 1963, 68: 4209~4217.
    140. Glasby G P, Gwozdz R, Kunzendorf H, et al. Distribution of rare earth and minor elements in manganese nodules and seidments from the equatorial and SW Pacific. Lithos, 1987, 20: 97~113.
    141. Nozaki Y. A Fresh Look at Element Distribution in the North Pacific. EOS Transactions of the American Geophysical Union, 1997, 78: 221.
    142. Debaar H J W, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater: Gd and Tb. Geochim Cosmochim Acta, 1985, 49: 1961~1969.
    143. Hein J R, Bohrson W A, Schulz M S, et al. Variation in the fine-scale composition of a central Pacific ferromanganese crust: paleoceanographic implications, Paleoceanography, 1992, 7: 63~77.
    144. 白志民, 王英滨, 姜波, 刘旭, 常有军, 文智慧, 庞宁. 太平洋富钴结壳中稀土元素的赋存状态. 2004, 11(2): 387~392.
    145. Murray J W, Dillard J G.The oxidation of cobalt (II) absorbed on manganese dioxide. Geochim Cosmochim Acta, 1979, 43: 781~787.
    146. Murray J W. The interaction of cobalt with hydrous manganese dioxide. Geochim Cosmochim Acta, 1975, 39: 635~647.
    147. Glasby G P. Mechanism of enrichment of the rare earth elements in marine manganese nodules. Mar Chem, 1973, 1:105~125.
    148. Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases. GeochemCosmochem Acta, 1974, 38: 1007~1022.
    149. Rajani R P, Banakar V K, Parthiban G, Mudholkar A V, Chodankar A R. Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J Earth Syst Sci, 2005, 114(1): 51~61.
    150. 叶先仁, 吴茂炳, 孙明良. 岩矿样品中稀有气体同位素组成的质谱分析. 岩矿测试, 2001, 20(3): 174~178.
    151. Basford J R, Dragon J C, Pepin R O, Coscio Jr M R, Murthy V R. Krypton and Xenon in lunar fines. Proc 4th Lunar Sci Conf 2, 1973, 1915~1955.
    152. Kennedy B M, Hiyagon H, Reynold J H. Crustal neon: a striking uniformity. Earth Planet Sci Lett, 1990, 98: 277~286.
    153. Dodson A, DePaolo D J, Kennedy B M. Helium isotopes in lithospheric mantle: Evidence from Tertiary basalts of the western USA. Geochim Cosmochim Acta, 1998, 62(23/24): 3775~3787.
    154. Wieler R, Baur H. Krypton and xenon from the solar wind and solar energetic particles in two lunar ilmenites of different antiquity. Meteorites, 1994, 29: 570~580.
    155. Ling H F, Burton K W, O’Nions R K, Kamber B S, von Blanckenburg F, Gibb A. J, Hein J R. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet Sci Lett, 1997,
    146: 1~12.
    156. Segl M, Mangini A, Bonani G, Hofmann H, Nessi M, Suter M, Wolfli W, Friedrich G, Pliger W, Wiechowski A, Beer J. Be dating of mangmanese crusts from Central North Pacific and implications for oceanic palaeocirculation. Nautre, 1984, 309: 540~543.
    157. Kerr R A. Manganese nodules grow by rain from above. Science, 1984, 223(4636): 576~577.
    158. Stuart F M, Burnard P G, Talor R P. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim Cosmochim Acta, 1995, 59: 4663~4673.
    159. Merrihue C. Rare gas evidence for cosmic dust in modem Pacific red clay. Ann NY Acad Sci, 1964, 119: 351~367.
    160. Sasaki S. Presence of a primary solar-type atmosphere around the earth: evidence of dissolved noble gas. Planetary Space Science. 1999, 47: 1423~1431.
    161. Graham D W, Humphris S E, Jenkins W J, Kurz M D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet Sci Lett, 1992, 110: 121~131.
    162. Barfod D N, Ballentine C J, Halliday A N, Fitton J G. Noble gases in the Cameroon line and the He, Ne and Ar isotopic compositions of high μ (HIMU) mantle. J Geophys Res, 1999, 104: 29509~29527.
    163. Farley K A, Neroda E. Noble gases in the Earth's mantle. Ann Rev Earth Planet Sci, 1998, 26: 189~218.
    164. Moreira M, Allègre C J. Helium-neon systematics and the structure of the mantle. Chem Geol, 1998, 147:
    53~59.
    165. Moreira M, Blusztajn J, Curtice J, Hart S, Dick H, Kurz M. He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth Planet Sci Lett, 2003, 216: 635~643.
    166. Sarda P. Surface noble gas recycling to the terrestrial mantle. Earth Planet Sci lett, 2004, 228: 49~63.
    167. Weiss R F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res, 1970, 17: 721~735.
    168. Weiss R F. Solubility of helium and neon in water and seawater. Chem Eng Data, 1971, 16: 235~241.
    169. Benson B B, Kraus D J. Empirical laws for dilute aqueous solutions of non-polar gases. Chem Phys, 1976, 64: 689~709.
    170. Wilhelm F, Battino R, Wilcock R J. Low-pressure solubility of gases in liquid water. Chem Rev, 1977, 77:219~262.
    171. Staudacher T, Allègre C J. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett, 1988, 89: 173~183.
    172. Honda M, McDougall I, Patterson D B, Doulgaris A, Clague D A. Possible solar noble-gas component in Hawaiian basalts. Nature, 1991, 349: 149~151.
    173. Hiyagon H, Ozima M, Marty B, Zashu S, Sakai H. Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraints on the early history of the Earth. Geochim Cosmochim Acta, 1992, 56: 1301~1316.
    174. Yokochi R, Marty B. A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett, 2004, 225: 77~88.
    175. Gast P W, Tilton G R, Hedge C. Isotopic composition of lead and strontium from ascension and Gough Islands. Science, 1964, 145(3637): 1181~1185.
    176. De Paolo D J, Wasserburg G J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett, 1976, 3: 743~746.
    177. White W M, Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 1982, 296: 821~825.
    178. Schilling J G, Thompson G, Kingsley R, et al. Hotspot-migrating ridge interaction in the South Atlantic. Nature, 1985, 313: 187~191.
    179. Hanyu T, Kaneoka I, Nagao K. Noble gas study of HIMU and EM ocean island basalts in the Polynesian region. Geochim Cosmochim Acta, 1999, 63(7/8): 1181~1201.
    180. Zindler A, Hart S. Chemical geodynamics. Ann Rev Earth Planet Sci, 1986, 14: 493~571.
    181. Hart S R, Hauri E H, Oschmann L A, Whitehead J A. Mantle Plumes and entrainment: isotopic evidence. Science, 1992, 256: 517~520.
    182. Hart S R. Heterogeneous mantle domains: signatures, genesis and Mixing chronologies. Earth Planet Sci Lett, 1988, 90(3): 273~296.
    183. Hanyu T, Kaneoka I. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature, 1997, 390: 273~276.
    184. Hanyu T, Kaneoka I. Open system behavior of helium in case of the HIMU source area. Geophys Res Lett, 1998, 25(5): 687~690.
    185. Ellam R M, Stuart F M. Coherent He-Nd-Sr isotope trends in high 3He/4He basalts: implications for a common reservoir, mantle heterogeneity and convection. Earth Planet Sci Lett, 2004, 228(3/4): 511~523.
    186. Harrison D, Burnard P, Turner G. Noble gas behavior and composition in the mantle: constraints from the Iceland Plume. Earth Planet Sci Lett, 1999, 171(2): 199~207.
    187. Hayashi C, Nakazawa K, Mizuno H. Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet Sci Lett, 1979, 43(1): 22~28.
    188. Porcelli D, Woolum D, Cassen P. Deep Earth rare gases: Initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet Sci Lett, 2001, 193(1/2): 237~251.
    189. Trieloff M, Kunz J, Allègre C J. Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth’s mantle. Earth Planet Sci Lett, 2002, 200(3/4): 297~313.
    190. Clarke W B, Beg M A, Craig H. Excess 3He in the sea: Evidence for terrestrial primordial helium. Earth Planet Sci Lett, 1975, 6(3): 213~220.
    191. Craig H, Lupton J E. Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett, 1976, 31(3): 369~385.
    192. Marty B, Tolstikin I, Kamensky I L, et al. Plume-derived rare gases in 380 Ma carbonatites from the Kolaregion (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett, 1998, 164(1/2): 179~192.
    193. Hanyu T, Dunai T J, Davis G R, et al. Noble gas study of the reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet Sci Lett, 2001, 193(1/2): 83~98.
    194. Dunai T J, Porcelli D. Storage and transport of noble gases in the subcontinental lithosphere. In: Porcelli D, Ballentine C J, Wieler R. (Eds). Noble Gases in Geochemistry and Cosmochemistry. Rev Mineral Geochem, Vol 47. Mineral Soc Amer, Washington D C, 2002. 371~409.
    195. Pepin R O, Becker R H, Rider P E. Xenon and krypton isotopes in extraterrestrial regolith soils and in the solar wind. Geochim Cosmochim Acta, 1995, 59: 4997~5022.
    196. Thompson L. 129Xe on the outgassing of the atmosphere. Geophys Res, 1980, 85: 4374~4378.
    197. Staudacher T, Allègre C J. Terrestrial xenology. Earth Planet Sci Lett, 1982, 60: 389~406.
    198. Allègre C J, Staudacher T, Sarda P. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett, 1986/1987, 81: 127~150.
    199. Phinney D, Tennyson J, Frick U. Xenon in CO2 well gas revisited. Geophys Res, 1978, 83B: 2313~2319.
    200. Fisher D E. Radiogenic rare gases and the evolutionary history of the depleted mantle. Geophys Res, 1985, 90: 1801~1807.
    201. Ozima M, Azuma S, Zashu S, Hiyagon H. 244Pu fissiogenic Xe in the mantle. Proc 21st Lunar Planet Sci Conf, 1990, 922~923.
    202. Sasada T, Hiyagon H, Bell K, Ebihara. Mantle-derived noble gases in carbonatites. Geochim Cosmochim Acta, 1997, 61(19): 4219~4228.
    203. 徐义刚. 地幔地球化物研究进展. 见: 张本仁, 傅家谟 主编. 地球化学进展. 化学工业出版社, 2005,
    79~107.
    204. Hofmann A W, White W M. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 1982, 57: 421~436.
    205. Chauvel C, Hofmann A W, Vidal P. HIMU-EM: the French Polynesian connection. Earth Planet Sci Lett, 1992, 110: 99~119.
    206. Kogiso T, Tatsumi Y, Shimoda G, Barsczus H G. High μ (HIMU) ocean island basalts in southern Polynesia: new evidence for whole mantle scale recycling of subducted oceanic crust. Geophys Res, 1997, 102B: 8085~8103.
    207. Chase C G. Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet Sci Lett, 1981, 52: 277~284.
    208. Hauri E H, Hart S R. Re-Os isotope systematics of HIMU and EM II oceanic island basalts from the south Pacific ocean. Earth Planet Sci Lett, 1993, 114: 353~371.
    209. Hofmann A W, Jochum K P, Seufert M, White W M. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett, 1986, 79: 33~45.
    210. Weaver B L. Trace element evidence for the origin of ocean-island basalts. Geology, 1991, 19: 123~126.
    211. Class C, Goldstein S L, Galar S J G, et al. Young formation age of a mantle plume source. Nature, 1993, 362: 715~721.
    212. Michard A, Albarede F. Hydrothermal uranium uptake at ridge crest. Nature, 1985, 317: 244~246.
    213. Dostal J, Cousens B, Dupuy C. The incompatible element characteristics of an ancient subducted sedimentary component in ocean island basalts from French Polynesia. Petrol, 1998, 39: 937~952.
    214. Hoernle K, Tilton G, Schmincke H -U. Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett, 1991, 106: 44~63.
    215. Milner S C, le Roex A P. Isotope characteristics of the Okenyenya igneous complex, northwesternNamibia: constraints on the composition of the early Tristan plume and the origin of the EM1 mantle component. Earth Planet Sci Lett, 1996, 141: 277~291.
    216. Chauvel C, McDonough W, Guille G, Maury R, Duncan R. Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem Geol, 1997, 139: 125~143.
    217. Palacz Z A, Saunders D. Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth Planet Sci Lett, 1986, 79: 270~280.
    218. Nakamura Y, Tatsumoto M. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes. Geochim Cosmochim Acta, 1988, 52: 2909~2924.
    219. Lassiter J C, Blichert-Toft J, Hauri E H, Barsczus H G. Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chem Geol, 2003, 202: 115~138.
    220. Koppers A A P, Staudigel H, Christie D M, Dieu J J, Pringle M S. Sr-Nd-Pb isotope geochemistry of Leg
    144 west Pacific guyots: implications for the geochemical evolution of the 'SOPITA' mantle anomaly. In: Haggerty J A, Premoli S I, Rack F, McNutt M K, Eds. Proc Ocean Drill Prog Sci Results, Ocean Drilling Program, Vol 144. College Station, Texas, USA, 1995, 535~545.
    221. Staudigel H, Park K H, Pringle M, Rubenstone J L, Smith W H F, Zindler A. The longevity of the south Pacific isotopic and thermal anomaly. Earth Planet Sci Lett, 1991, 102: 24~44.
    222. Janney P E, Castillo P R. Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. Geophys Res, 1999, 104B: 10571~10590.
    223. Allègre C J, Staudacher T, Sarda P, Kurz M. Constraints on evolution of Earth’s mantle from rare gas systematics. Nature, 1983, 303: 762~766.
    224. Ozima M, Zashu S. Noble gases in submarine pillow volcanic glasses. Earth Planet Sci Lett. 1983, 62:
    24~40.
    225. Marty B. Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution. Earth Planet Sci Lett, 1989, 94: 45~56.
    226. Trieloff M, Kunz J. Isotope systematics of noble gases in the Earth’s mantle: possible sources of primordial isotopes and implications for mantle structure. Physics of the Earth and Planetary Interiors, 2005, 148: 13~38.
    227. Fanale F. A case for the catastrophic early degassing of the earth. Chem Geol, 1971, 8(2): 79~105.
    228. Honda M, Medougall I, Patterson D B, Doulgeris A, Clague D A. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: A solar component in the earth. Geochim Cosmochim Acta, 1993, 57(4): 859~ 874.
    229. Class C, Goldstein S L. Evolution of helium isotopes in the earth’s mantle. Nature, 2005, 436(25): 1107~ 1112.
    230. Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo- chronology. Earth Planet Sci Lett, 1977, 36(3): 359~362.
    231. Faure G. Principles of Isotope Geology. Second Edition. New York: John Wiley & Sons, 1986. 66~92.
    232. Harris R C, Crocket J H, Stainton M. Palladium, iridium and gold in deep-sea manganese nodules. Geochim Cosmochim Acta, 1968, 32: 1049~1056.
    233. Halbach P, Kriete C, Prause B, Puteanus D. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. Chem Geol, 1989, 76: 95~106.
    234. Halbach P, Prause B, Koch K, Westerholt M. Platium and palladium in Co-rich ferromanganese crust deposits. Mar Min, 1990, 9: 117~126.
    235. 石学法, 彭建堂, 卜文瑞, 等. 太平洋铁锰结壳铂族元素的初步研究. 矿物岩石地球化学通报, 2000, 19(4): 339~340.
    236. 姚德, 张丽洁, John C Wiltshire, 初凤友, 杜安道, 刘心中, 杨富贵. 富 Co 铁锰结壳铂族元素与铼-锇同位素组成及其意义. 海洋地质与第四季地质, 2002, 22(3): 53~58.
    237. Konopleva E V, Baturin G N, Goleva R V, Dubinchuk V T, Mel’nikov M E, Ozhogina E G, Yubko V M. Occurrence modes of gold and platinum in ferromanganese crusts of the Magellan Seamounts (Pacific Ocean). Doklady Earth Sciences, 2004, 397(5): 732~735.
    238. Evans N J, Chai C F. The distribution and geochemistry of platinum-group elements as event markers in the Phanerozoic. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 127: 373~390.
    239. Wedepohl K H. The composition of the continental crust. Geochim Cosmochim Acta, 1995, 59(7): 1217~1232.
    240. McDonough W F and Sun S-s. The composition of the Earth. Chem Geol, 1995, 120: 223~253.
    241. Campbell A J, Humayun M. Compositions of group IVB iron meteorites and their parent melt. Geochim Cosmochim Acta, 2005, 69(19): 4733~4744.
    242. Finkelman R B. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites. Science, 1970, 167: 982~984.
    243. Kramar U, Stuben D, Berner Z, Stinnesbeck W, Philipp H, Keller G. Are Ir anomalies sufficient and unique indicators for cosmic events? Planetary Space Science, 2001, 49: 831~837.
    244. Koide M, Goldberg E D, Niemeyes S, Gerlach D, Hodge V, Bertine K K, Padova A. Osmium in marine sediments. Geochim Cosmochim Acta, 1991, 55: 1641~1648.
    245. Sawlowicz Z. Iridium and other platinum group elements as geochemical markers in sedimentary environments. Palaeogeography Palaeoclimatology Palaeoecology, 1993, 104: 253~270.
    246. 马配学, 高洪林, 侯泉林. K/T 界线铂族元素丰度异常与地外撞击事件. 地球科学进展, 1999, 14(1): 24~30.
    247. Evans N J, Gregoire D C, Grieve R A F, et al. Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary. Geochim Cosmochim Acta, 1993, 57: 3337~ 3748.
    248. Lee C-T A, Wasserburg G J, Kyte F T. Platinum-group elements (PGE) and rhenium in marine sediments across the Cretaceous–Tertiary boundary: Constraints on Re-PGE transport in the marine environment. Geochim Cosmochim Acta, 2003, 67(4): 655~670.
    249. Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol, 1985, 53: 303~323.
    250. Hein J R, Koschinsky A, McIntyre B. The global enrichment of platinum group elements in marine ferromanganese crusts. In: T?rm?nen T O, Alapieti T T. (Eds). Extended Abstracts, 10th International Platinum Symposium, 7~11 August, 2005, Oulu, Finland, 2005, 98~101.
    251. Hodge V F, Stalllard M, Koide M, et al. Platinum and the platinum anomaly in the marine environment. Earth Planet Sci Lett, 1985, 72: 158~162.
    252. Terashima S, Mita Na, Nakao S, Ishihara S. Platinum and palladium abundances in marine sediments and their geochemical behavior in marine environments. Bulletin of the Geological Survey of Japan, 2002, 53(11/12): 725~747.
    253. Taufen P M, Marchetto C M L. Tropical weathering control of Ni, Cu, Co, and platinum group elements distribution at the O’Toole Ni-Cu sulphide deposit, Minas Gerais, Brazil. Geochem Explor, 1989, 32: 185~197.
    254. Wood S A, Vlassopoulos D. The dispersion of Pt, Pd and Au in surficial media about two PGE Cu-Niprospects in Quebec. Can Mineral, 1990, 28: 649~663.
    255. Emsley J. The elements (3rd edition). Oxford: Clarendon Press, 1998.
    256. Borisov A, Palme H, Spettel B. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochim Cosmochim Acta, 1994, 58: 705~716.
    257. Borisov A Palme H. Solubility of Ir in silicate melts: New data from experiments with Ir10Pt90 alloy. Geochim Cosmochim Acta, 1995, 59: 481~485.
    258. Rehk?mper M, Halliday A N, Fitton J G, Lee D C, Wieneke M, Arndt N T. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochim Cosmochim Acta, 1999, 63(22): 3915~3934.
    259. Naldrett A J, Duke J M. Platinum metals in magmatic sulfide ores. Science, 1980, 208: 1417~1424.
    260. Maier W D, Barnes S -J. Platinum-group elements in silicate rocks of the Lower, Critical and Main Zones at Union Section, Western Bushveld Complex. Petrol, 1999, 40: 1647~1671.
    261. Pearsona D G, Irvinea G J, Ionovb D A, Boydc F R, Dreibus G E. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol, 2004, 208: 29~59.
    262. Puchtel I S, Humayen M. Platinum group element fractionation in a komatiitic basalt lava lake, Geochim Cosmochim Acta, 2001, 65: 2979~2994.
    263. Capobianco C H, Drake M. Partitioning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum-group element fractionation trends. Geochim Cosmochim Acta, 1990, 54: 869~874.
    264. Capobianco C H, Hervig R L, Drake M. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallised from silicate melt. Chem Geol, 1994, 113: 23~43.
    265. Righter K, Campbell A J, Humayun M, Hervig R L. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta, 2004, 68(4): 867~880.
    266. Mitchell R H, Keays R R. Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: Implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta, 1981, 45: 2425~2442.
    267. Crocket J H. Platinum-group elements in basalts from Maui, Hawaii: low abundances in alkali basalts. The Canadian Mineralogist, 2002, 40: 595~609.
    268. Mommea P, óskarssona N, Keays R R. Platinum-group elements in the Icelandic rift system: melting processes and mantle sources beneath Iceland. Chem Geol, 2003, 196: 209~234.
    269. Barnes S -J, Picard C P. The behaviour of platinum group elements during partial melting, crystal fractionation, and sulphide segregation: An example from the Cape Smith Fold Belt, northern Quebec, Geochim Cosmochim Acta, 1993, 57: 79~87.
    270. Puchtel I S, Humayen M. Platinum group elements in Kostomuksha komatiites and basalts: Implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta, 2000, 64: 4227~4242.
    271. Chazey III W J, Neal C. Platinum-group element constraints on source composition and magma evolution of the Kerguelen Plateau using basalts from ODP Leg 183. Geochim Cosmochim Acta, 2005, 69(19): 4685~4701.
    272. 迟清华, 鄢明才. 铂族元素在地壳、岩石和沉积物中的分布. 地球化学, 2006, 35(5): 461~471.
    273. Greenough J D, Fryer B J. Distribution of Au, Pd, Pt, Rh, Ru and Ir in ODP Leg 115 (Indian Ocean) hot spot basalts: Implications for magmatic processes. In: Duncan R A, Blackman J, Peterson L C, et al. (Eds). Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, TX, 115, 1991, 71~84.
    274. Mukhopadhyay R, Iyer S D, Ghosh A K. The Indian Ocean nodule field: petrotectonic evolution and ferromanganese deposits. Earth Science Reviews, 2002, 60: 67~130.
    275. Crocket J H. Platinum-group elements in basalts from Maui, Hawai’i: low abundances in alkali basalts. The Canadian Mineralogist, 2002, 40: 595~609.
    276. Burton K W, Bourdon B, Birck J L, Allegre C J, Hein J R. Osmium isotope variations in the oceans recorded by Fe-Mn crusts. Earth Planet Sci Lett, 1999, 171: 185~197.
    277. Klemm V, Levasseur S, Frank M, Hein J R, Halliday A N. Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet Sci Lett, 2005, 238: 42~48.
    278. Sharma M, Papanastassiou D A , Wasserburg G J . The concentration and isotopic composition of Osmium in the Oceans. Geochimt Cosmochim Acta, 1997, 61: 3287~3299.
    279. Levasseur S, Birck J L, Allegre C J. Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater. Science, 1998, 282: 272~274.
    280. Woodhouse O B, Ravizza G, Kenison-Falkner K, Statham PJ, Peucker-Ehrenbrink B, Osmium in seawater: vertical profiles of concentration and isotopic composition in the eastern Pacific Ocean. Earth Planet Sci Lett, 1999, 173: 223~233.
    281. Palmer M R, Turekian K K. 187Os/186Os in marine manganese nodules and the constraints on the crustal geochemistries of Rhenium and Osmium. Nature, 1986, 319: 216~220.
    282. Levasseur S, Birck J L, Allegre C J. The Osmium riverine flux and the oceanic mass balance of Osmium. Earth Planet Sci Lett, 1999, 174: 7~23.
    283. Meisel T, Walker R J, Morgan J W. The Osmium isotopic composition of the Earth’s primitive upper mantle. Nature, 1996, 383: 517~520.
    284. Walker R J, Morgan J W. Rhenium-Osmium isotope systematics of carbonaceous chondrites. Science, 1989, 243: 519~522.
    285. Snow J E, Reisberg L. Os isotopic systematics of the MORB mantle-Results from altered abyssal peridotites. Earth Planet Sci Lett, 1995, 133: 411~421.
    286. Peucker-Ehrenbrink B, Ravizza G. The effects of sampling artifacts on cosmic dust flux estimates: A reevaluation of nonvolatile tracers (Os, Ir). Geochim Cosmochim Acta, 2000, 64: 1965~1970.
    287. Le Suave R, Pichocki C, Pautot G, Hoffert M, Morel Y, Viosset M, Monti S, Amossé J, Kosakevitch A. Geological and mineralogical study of Co-rich ferromanganese crusts from a submerged atoll in the Tuamotu Archipelago (French Ploynesia). Mar Geol, 1989, 87: 227~247.
    288. 卜文瑞, 石学法, 刘季花, 杨耀民. Pt/Pd 比值:指示大洋 Fe-Mn 结壳铂族元素富集机制的重要指标. 矿物学报, 2007, 27(增刊): 331~333.
    289. Kasten S, Glasby G P. Schulz H D, et al. Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow. Mar Geol, 1998, 146: 33~52.
    290. Qi Liang and Grégoire D C. Determination of trace elements in twenty-six Chinese geochemistry reference materials by Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newletters, 2000, 24(1): 51~63.
    291. Clague D A, Jackson E D, Wright T L. Petrology of Hualalai volcano, Hawaii: implication for mantle composition. BULL. Volcano, 1980, 43: 641~656.
    292. Schilling J G, Zajac M, Evans R, et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27 °N to 73 °N. Am Sci, 1983, 510~586.
    293. Taylor S R, Mclennan S M. The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publication, 1985, 209~230.
    294. Hart R. Chemical exchange between sea water and deep-ocean basalts. Earth Planet Sci Lett, 1970, 9(3):269~279.
    295. Hekinian R. Chemical and mineralogical differences between abyssal hill basalts and ridge tholeiites in the Eastern Pacific Ocean. Mar Geol, 1971, 11: 77~91.
    296. Miyashiro A, Shido F, Ewing M. Diversity and origin of abyssal tholeiite from the Mid-Atlantic Ridge near 24° and 30° north latitude. Contrib Mineral Petrol, 1969, 23: 38~52.
    297. 邱家骧. 岩浆岩岩石学. 地质出版社, 1985, 190~206.
    298. Le Maitre R W. A Classification of Igneous Rocks and Glossary of Terms. Blackwell Scientific Publications, 1989, 193.
    299. 康显桂, 康长生, 杨荣勇. 东太平洋海盆多金属结核玄武岩核心研究. 高校地质学报, 1998, 4(2): 147~154.
    300. 王中刚, 于学元, 赵振华. 稀土元素地球化学. 北京: 科学出版社, 1989, 1~535.
    301. 陈德潜. 实用稀土元素地球化学. 北京: 冶金工业出版社, 1990, 59~114.
    302. Hofmann A W, Jochum K P. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Geophys Res, 1996, B101: 11831~11839.
    303. Sun S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Trans R Soc Lond, 1980, A297: 409~445.
    304. Saunders A D, Tarney J. Geochemical characteritics of basaltic volcanism within back-arc basins. In: Kokelaar B P, Howells M F. (eds), Marginal basin geology, Spec Publ Geol Soc, London 16, 1984, 59~76.
    305. Wilson M. Igneous petrogenesis. London: Unwin Hyman, 1989, 245~285.
    306. Seewaid J S, Seyfried W E Jr. The effect of temperature on metal mobility in subseafloor hydrothermal system: constraints from basalt alteration experiments. Earth Planet Sci Lett, 1990, 101: 388~403.
    307. McDonough W F, Sun S-s, Ringwood A E, Jagoutz E and Hofmann A W. K, Rb and Cs in the Earth and Moon and the evolution of the Earth's mantle. Geochim Cosmochim Acta, 1992, 56: 1001~1012.
    308. Langmuir C H, Bender J F, Bence A E, et al. Petrogenesis of basalts from the FAMOUS area: mid-Atlantic ridge. Earth Planet Sci Lett, 1977, 36: 133~156.
    309. Sun S S. Chemical composition and origin of the earth’s primitive mantle. Geochim Cosmochim Acta, 1982, 46: 179~192.
    310. Pearce J A. Role of the sub-continental lithosphere in magmas genesis at active continental margins. In: Hawkesworth C J, Norry M J. (eds). Continental basalts and mantle xenoliths. Nantwich: Shiva, 1983, 230~249.
    311. 张旗. 如何正确使用玄武岩判别图. 岩石学报, 1990, 2: 87~94.
    312. Pearce J A, Cann J R. Tectonic setting of basalt volcanic rocks determined using trace element analysis. Earth Planet Sci Lett, 1973, 19: 290~300.
    313. Condie K C. Plate teconic and crustal evolution. New York: Pergamon Press, 1982, 1~258.
    314. 陈德潜. 实用稀土元素地球化学. 北京: 冶金工业出版社, 1990, 59~114.
    315. Moore J G. Rate of palagonitization of submarine basalt adjacent to Hawaii. U S Geol Surv Prof Pap, 550-D, 1966, 163~171.
    316. Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions, in: P. A. Floyd (Ed), Oceanic Basalts. Blackie and Sons, Glasgow, 1991, 148~173.
    317. Staudigel H, Hart S R. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget. Geochim Cosmochim Acta, 1983, 47: 33~350.
    318. Furnes H, Staudigel H. Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett, 1999, 166: 97~103.
    319. Pichler T, Ridley W I, Nelson E. Low-temperature alteration of dredged volcanics from the Southern Chile Ridge: additional information about early stages of seafloor weathering. Marine Geology. 1999, 159: 155~177.
    320. Chamley H. Clay sedimentology. Berlin: Springer. 1989. 291~329.
    321. Honnorez J. The aging of the oceanic crust at low temperature. In: Emiliani C. (Ed). The Sea (Vol. 7): The Oceanic Lithosphere. New York: Wiley & Sons, 1981, 525~587.
    322. Chester R. Marine Geochemistry. Oxford: Blackwell Science (Second Edition), 2000, 88~97.
    323. Seyfried W E Jr, Mottl M J. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Goechim Cosmochim Atca, 1982, 46: 985~1002.
    324. 李学伦. 海洋地质学. 青岛海洋大学出版社, 1997, 179.
    325. MacGeehan P J, Maclean W H, An Archaean sub-seafloor geothermal system, “calc-alkali” trends, and massive sulphide genesis. Nature, 1980, 286, 767~ 771.
    326. Seyfried W E Jr, Bischoff J L. Low temperature basalt alteration by seawater: an experimental study at 70 °C and 150 °C. Goechim Cosmochim Atca, 1979, 43: 1937~1947.
    327. Humphries S E. The mobility of the rare earth elements in the crust. In: Henderson P. (ed), Rare earth element geochemistry. Amsterdam: Elsevier, 1984, 315~341.
    328. McBirney A R. Igneous petrology. San Francisco: Freeman, Cooper, 1984, 504.
    329. Williams D L, Von Herzen R P. Heat loss from the earth: new estimate. Geology, 1974, 2: 327~328.
    330. Glasby G P. Manganese: Predominant role of nodules and crusts. In H. D. Schulz, M. Zabel (Eds), Marine Geochemistry (Second Edition). Heidelberg: Springer, 2006.
    331. Von Blankenburg F, O’Nions R K, Belshaw A, et al. Global distribution of beryllium isotopic in deep ocean water as derived from Fe-Mn crusts. Earth Planet Sci Lett, 1996, 141: 213~226.
    332. 刘英俊. 元素地球化学. 北京: 科学出版社, 1984. 80~85.
    333. Thompson G. Hydrothermal fluxes in the ocean. In: Riley J P, Chester R. Eds. Chemical oceanography. Academic Press, New York, London, 1983, 271~337.
    334. Banakar V K, Pattan J N, Mudholkar A V. Palaeoceanographic conditions during the formation of a ferromanganese crust from the Afanasiy-Nikitin seamount, North Central Indian Ocean: geochemical evidence. Mar Geol, 1997, 299~315.
    335. 邱家骧. 应用岩浆岩岩石学. 中国地质大学出版社, 1991, 155~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700