考古学意义的北美自然铜地球化学示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然铜是人类使用最早的天然金属之一,它与人类早期文明存在重要联系。在全球范围内,北美地区不仅拥有最丰富的自然铜矿藏,而且拥有持续时间最长的自然铜文明。14C分析表明,北美印第安人约于6800年前开始利用自然铜,直至17世纪欧洲金属进入北美之后才逐渐停止使用。数千年来,北美土著人未能发展出冶铜技术,北美所有史前铜器皆自然铜直接打制而成。在哥伦布发现美洲大陆之前,北美还处于一种非常原始的社会状态,史前北美土著居民的生活图景,主要依赖考古研究去推断。探索这些早期铜器的矿料来源,对于了解北美史前矿业开发与利用、北美各部落间的商品交换和流通网络具有极其重要的意义。本文运用多种技术手段对北美自然铜进行了微量元素、铅同位素和铜同位素分析,目的是探索北美不同地区自然铜矿的上述3种地球化学特征,并由此探讨它们在北美铜器考古探源研究中的作用。在上述3种研究方法中,微量元素法是过去常用的一种探源分析法,本文着重了分析北美自然铜中的微量元素之一——铅元素在考古探源研究中的意义。铅同位素分析法是一种比较成熟的考古示踪研究方法,但在北美自然铜考古探源研究中的应用刚刚开始,本文对其开展了进一步的探索研究。铜同位素分析法是一种新兴的考古示踪法,本文首次将其应用于北美自然铜考古探源研究。本文运用这3种地球化学示踪法研究的具体内容及结论如下:
     首先,采用石墨炉原子吸收光谱法(GF-AAS)和电感耦合等离子体质谱分析法(ICP-MS)对北美多个矿区的66件自然铜样品进行了铅含量分析。分析结果表明,北美自然铜铅含量极低,且同一矿区甚至同一样品内部铅含量存在明显的不均匀性。自然铜的这种铅含量特征的发现为研究人员进行北美自然铜的铅同位素实验提供了重要参考信息。更重要的是,根据本实验及前人的分析结果,我们发现铅含量可作为判断北美自然铜与欧洲冶炼铜的一个有效标准。这对于区分北美遗址出土的北美自然铜铜器和欧洲冶炼铜铜器具有重要意义。此外,通过比较ICP-MS与GF-AAS所得到的实验结果发现,不同的分析方法所得到微量元素分析结果可能存在一定差异。因此,在进行微量元素分析时,分析方法的选择和实验室之间的比较十分重要。实验还通过扫描电镜能谱仪(SEM-EDS)对24个自然铜(包括5个冶炼自然铜)样品的成分进行了检测,结果表明,北美自然铜具有极高的纯度,通常高于99%。
     其次,采用热电离质谱法(TIMS)对北美4个自然铜矿区的13件自然铜样品进行了铅同位素分析。分析结果表明,所有自然铜样品中没有出现高放射性成因铅。Minong、Bisbee、Chititu三地的自然铜与北美史前人类利用最多的基维诺半岛自然铜铅同位素显示出了可区分的铅同位素特征,它们各自之间的铅同位素组成也存在一定差异。这一研究结果说明,铅同位素分析法在北美自然铜铜器的铜料来源研究中极可能是一种有效的示踪手段。
     最后,采用多接收电感耦合等离子体质谱分析法(MC-ICP-MS)对北美5个地区15个自然铜样品进行了铜同位素分析,分析结果显示它们的铜同位素(δ65Cu)变化范围相对较小。结合前人的分析数据发现,北美原生自然铜与次生自然铜具有明显不同的铜同位素组成,且较多数据表明密歇根地区的原生自然铜铜同位素组成较为均匀,与其它地区原生自然铜可能存在一定差别。此外,通过比较还发现北美原生自然铜与黄铜矿和辉铜矿的铜同位素组成具有显著差别,而后面两种矿物通常是生产冶炼铜的主要铜矿。综合上述分析结果认为,铜同位素分析技术在区分北美本土自然铜以及在区分欧洲冶炼铜和北美自然铜等考古研究中具有较大的应用潜力和广阔的发展前景。
     除了进行实验研究之外,本文对北美自然铜矿的利用史和北美铜文化进行了介绍与讨论;对过去北美自然铜的主要探源方法——微量元素示踪法的研究历史进行了梳理与评论;并对铅同位素和铜同位素考古探源研究进行比较详细的综述和讨论。
Native copper is one of earliest metals used by human, it is an important material related to early civilization. There are the richest native copper deposits in North America, 14C dating indicates that native cooper had been utilized by American indigenous people in North America since 6800BP. The use continued until 17th century when European smelted copper entered North America. Archaeological studies show that native copper is the only material made into copper artifacts. For thousands of years, Indians fabricated a large number of copper artifacts by hammering, which were discovered in different prehistoric sites in North America. Before Columbus landed the America, North America was still in a primitive social stage. The life of aboriginals in North America could be only inferred through archaeological researches. Exploring the provenance of raw materials of those copper artifacts is an important content of North America prehistory. Understanding where native copper originated can provide critical information regarding trading routes, the interaction of cultures, the exploitation and use of mines.
     To establish the geochemical signatures of native copper of North America, three techniques: trace element, lead isotope and copper isotope analyses have been employed in this study. These three geochemical techniques are all important approaches to determine the geologic sources of artifact copper. Trace element analysis is a common method and has a history over one and half hundred years used to provenance study in North America. In this study, Pb, one of trace elements of native copper has been analyzed and its application to provenance study has been discussed. For the first time, the copper isotope technique is applied to archaeological provenance study of native copper in North America in this study. The analysis of lead isotope for native copper is also a pilot study in North America archaeology. Prior to experimental analysis, the history of mining of native copper and the copper culture in North America have been introduced and discussed. In order to understand the provenance study of native copper in North America better, reviews and discussion for three geochemical techniques have been made before the analyses.
     The main results and conclusions of this study are as following:
     Firstly, the Pb concentration of 66 native copper samples from several regions in North America has been determined by graphite furnace atomic absorption spectrometry (GF-AAS) and inductively coupled plasma mass spectrometer(ICP-MS). The results show that the native copper in North America has very low Pb content and exists obvious heterogeneity of Pb even in a single ore sample. By comparing GF-AAS and ICP-MS, we found different analytical techniques can yield different results. This indicates that care should be taken when choosing analytical technique in trace element study. According to the results of this study and previous analyses, it is found that Pb concentration may be used to distinguish native copper in North America and historical European smelted copper. Meanwhile, the analysis results also remind researchers need to pay special attention to Pb concentration and its heterogeneity when they are applying Pb isotope and trace element analysis to archaeology. The composition of 24 native copper samples (including 5 smelted native copper samples) has been analyzed by scanning electron microscope energy dispersive spectrometer (SEM-EDS). The results show that native copper is an extremely pure metal, generally purer than 99%.
     Secondly, the Pb isotope composition of 13 native copper samples from 4 regions has been measured by thermal-ionization mass spectrometry (TIMS). The result indicates there is no high-radiogenic Pb found in all samples. The Pb isotope compositiom of samples from Minong of Michigan, Bisbee of Arizona and Chititu of Alaska are different each other. Significant difference of Pb isotope signature also exists between these three regions and Keweenaw peninsula, Michigan where most quantity of native copper were mined by prehistoric Indians. The result of study suggests that Pb isotope can be used as a fingerprint to trace the geological sources of artifact copper in North America.
     Finally, the copper isotope signature of 15 samples from 5 native copper regions has been determined by multiple-collector plasma-source mass spectrometry (MC-ICP-MS). Results reveal a relative small range of variation (δ65Cu) of copper isotope within these samples. Along with previous analyses, we found that copper isotope composition of primary native copper is significantly different from secondary native copper. A relatively abundant data show that the primary native copper from Michigan has a relatively homogenous copper isotope composition and seems distinct from the other regions. In addition, significant different copper isotope variation exists between primary native copper in North America and chalcopyrite and chalcocite. In general, the latter two copper minerals are major sources for smelted copper. Conclusion can be drawn that copper isotope can be used as tracer in archaeological provenance studies of native copper. It will be a helpful tool in distinguishing native copper from different regions in North America as well as native copper of North America and European smelted copper.
引文
白云翔.2002.中国的早期铜器与青铜器的起源[J].东南文化,(7):25-37.
    蔡俊军,朱祥坤,唐索寒等.2006.多接受电感耦合等离子体质谱Cu同位素测定中的干扰评估[J].高校地质学报,12(3):392-397.
    崔剑锋,吴小红.2008.铅同位素考古研究――以中国云南和越南出土青铜器为例[M].文物出版社.
    地质部宜昌地质矿床研究所同位素地质研究实验室.1979.铅同位素地质研究的基本问题[M].北京:地质出版社.
    董连慧,胡建卫,刘拓等.2003.新疆东天山地区首次发现自然铜矿化带[J].矿床地质,(2):封三.
    甘肃矿业公司甘肃矿产勘测总队.1943.甘肃地质矿产报告调查书[M].74-75.
    葛军,陈衍景,邵宏翔.2004.铜同位素地球化学研究及其在矿床学应用的评述和讨论[J].地质与勘探,(3):5-10.
    《国外金属矿选矿》.2000.湖南柏坊铜矿发现大块自然铜[J].国外金属矿选矿,(8):46.
    何德锋,钟宏,朱维光.2007.铜同位素的分馏机制及其在矿床学研究中的应用[J].岩石矿物学杂志,(4):345-350.
    会泽县志编纂委员会.1993.会泽县志[M].昆明:云南人民出版社.
    蒋少涌.2003.过渡族金属元素同位素分析方法及其地质应用[J].地学前缘,(2):269-278.
    蒋少涌,陆建军,顾连兴等.2001.多接收电感耦合等离子体质谱(MC-ICPMS)测量铜、锌、铁的同位素组成及其地质意义[J].矿物岩石地球化学通报,20(4):431-433.
    金正耀.1987.中国金属文化史上的“红铜时代”问题[J].中国社会科学院研究生院学报,(1):59-66.
    金正耀.2004.中国学者的第一篇铅同位素考古文章[J].文物保护与考古科学,(4):64.
    金正耀.1987.晚商中原青铜器矿料来源研究[A],科学史论集[M].合肥:中国科学技术大学出版社.
    金正耀,马渊久夫,Tom Chase等.1995.广汉三星堆遗物坑青铜器的铅同位素比值研究[J].文物,(2):80-85.
    金正耀.2008.中国铅同位素考古[M].合肥:中国科学技术大学出版社.
    [明]李时珍.1977.本草纲目(较点本第一册) [M].北京:人民卫生出版社.
    李朝阳.2000.中国铜矿主要类型特征及其成矿远景[M].北京:地质出版社,1-251.
    刘宝山.1996.试论甘青地区的早期铜器[J].青海师范大学学报(哲学社会科学版), (2):115-118.
    刘德汉,孙永革,徐世平等.2006.滇—黔地球化学边界似基韦诺(Keweenaw )型铜矿中有机质与成矿条件研究[J].地质评论,52(4):477-485.
    彭子成,邓衍尧,刘长福.1985.铅同位素比值法在考古研究中的应用[J].考古,(11):1032-1037.
    秦颖,罗武干,魏国锋等.2007.利用稀土等微量元素区分自然铜与早期冶炼红铜的初步研究[J].稀土,(4):75-78.
    秦颍,王昌燧,杨立新等.2004.皖南沿江地区部分出土青铜器的铜矿料来源初步研究[J]. 文物保护与考古科学,(1):9-12.
    尚飞鸿.2008.全球最大的湿法铜矿——Morenci铜矿[J].中国金属通报,(30):28.
    宋应星著,钟广言注释.1976.天工开物[M].广州:广东人民出版社.
    唐索寒,朱祥坤,蔡俊军等. 2006.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试,25(1):5-8.
    李津,朱祥坤,唐索寒.2008.酸及其浓度对多接收器等离子体质谱法测定Cu和Zn同位素的影响[J].分析化学,36(9):1196-1200.
    王大鹏,张乾,祝朝辉等.2007a.湖南麻阳铜矿自然铜形态特征及其成因意义[J].矿物学报,(3,4):384-387.
    王大鹏,张乾,朱笑青等.2007b.中国自然铜矿化类型、特点及形成机理浅析[J].矿物学报, 27(1):56-62.
    王利东.2002.会泽水槽子铜矿床及成因探讨[J].云南地质,(3):293-299.
    [清]吴其濬.滇南矿厂图略[M].
    杨立新.1991.皖南古代铜矿的发现及其历史价值[J].东南文化, (2):131-137.
    喻兰,关东杰.2001.人类早期对自然铜的利用[J].金属世界,(1):19.
    曾乔松,广浩,王核.2006.中国自然铜矿床类型、特征、分布及形成条件[J].地质科技情报, 25(6): 41-46.
    张乾,朱笑青,张正伟等.2007.贵州威宁地区峨眉山玄武岩型自然铜-辉铜矿矿床的成矿前景[J].矿物学报,(3,4):379-383.
    张子高.1964.中国化学史稿·古代之部[M].科学出版社,4-5,9.
    朱炳泉.1998.地球化学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].科学出版社.
    朱炳泉.2001.地球化学省与地球化学急变带[M].科学出版社.
    朱炳泉,常向阳.2002.评“商代高放射性成因铅”的发现[A].北京大学中国考古学研究中心、北京大学古代文明研究中心.古代文明(第1卷)[M].文物出版社,278-283.
    朱炳泉,胡耀国,张正伟等.2003.滇-黔地球化学边界似基韦诺( Keweenaw)型铜矿床的发现[J].中国科学:D辑, 32 (增刊2):49-59.
    Abbott C C. 1940. The Ancient Copper Mines of Northern Michigan[M]. Detroit: Aboriginal Research Club.
    Arden J W, Gale N H.1974. New electrochemical technique for the separation of lead at trace levels from natural silicates [J]. Analytical Chemistry, 46 (1): 2-9.
    Asael D, Matthews A, Bar-Matthews M, et al. 2007.Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel) [J]. Chemical Geology, 243(3-4):238-254.
    Baker J, Stos S, Waight T. 2006. Lead isotope analysis of archaeological metals by multiple-collector inductively Coupled plasma mass spectrometry[J]. Archaeometry, 48:45-56.
    Barnes L, Brill R H, Deal E C.1983. Lead isotope studies of early Chinese glasses[A].The international symposium on glass in Beijing[C]. Beijing, 1-25.
    Bastian T. 1961.Trace element and metallographic studies of prehistoric copper artifacts in North America: A review[A]. James B G.Lake superior copper and the indians: Miscellaneous studies of great lakes prehistory[M]. Ann Arbor: University of Michigan, 151-175.
    Baugh T G, Ericson J E. 1994.Prehistoric Exchange Systems in North America[M]. New York: Plenum Press, 3-13.
    Bermin J, Vance D, Archer C, et al. 2006.The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 226: 280-297.
    Beukens R P, Pavlish L A, Hancock R G V, et al. 1992. Radiocarbon dating of copper-preserved organics[J]. Radiocarbon, 34:890-897.
    Binford L. 1962. Archaeology and anthropology[J]. American Antiquity, 28:217-25.
    Brooks A H. 1911. Geologic features of Alaskan metalliferous lodes[A]. U.S. Geological Survey Bulletin 480[M]. Washington, D.C.:U.S. Government Printing Office.
    Sabina A P. 1973. Rocks and minerals for the collector: the Alaska Highway; Dawson Creek, British Columbia to Yukon/Alaska Border[M]. Information Canada, Ottawa.
    Budd P, Pollard A M, Scaife B, et al, 1995. The possible fractionation of lead isotopes in ancient metallurgical processes [J]. Archaeometry, 37:143-150.
    Butts A. 1954. Copper: the science and technology of the metal, its alloys and compounds[M]. New York: Reinhold Publishing Corporation.
    Cameron A E, Smith D H, Walker R L. 1969. Mass Spectrometry of Nanogram-Size Samples of Lead[J].Analytical Chemistry, 41:525-526.
    Catanzaro E J.1967.Absolute isotopic abundance ratios of three common lead reference samples[J]. Earth and Planetary Science Letters, 3:343-346.
    Childs S T. 1994. Native copper technology and society in eastern North America, in Archaeometry of Pre-Columbian sites and artifacts[A]. Scott D A, Meyers P. Proceedings of a symposium organized by the UCLA Institute of Archaeology and the Getty Conservation Institute[C] The Getty Conservation Institute, Los Angeles, 229-253.
    Clark D E, Purdy B A. 1982.Early metallurgy in north America[A]. Evolution of the First Fire-using Industries[M]. Washington, DC: Smithsonian Institution Press, 45-58.
    Coghlan H H. 1951.Native copper in relation to prehistory[J]. Man, 51:90-93.
    Coghlan H H, Willows R.1962.A Note upon native copper: its occurrence and properties[A], Proceedings of prehistoric society[C]. 28:58-67.
    Cooper H K. 2006. Copper and social complexity: Frederica de Laguna’s contribution to our understanding of the role of metals in Native Alaskan society[J]. Arctic Anthropology, 43: 148-163.
    Cooper H K. 2007. The Anthropology of Native Copper Technology and Social Complexity in Alaska and the Yukon Territory: An Analysis Using Archaeology,Archaeometry, and Ethnohistory[D]:[Ph.D.]. Canada: University of Alberta.
    Cooper H K, John M, Duke M, et al. 2008. Trace element and Pb isotope provenance analyses of native copper in northwestern North America:results of a recent pilot study using INAA, ICP-MS, and LA-MC-ICP-MS[J]. Journal of Archaeological Science, 35:1732-1747.
    Cornwall H R. 1956. A summary of ideas on the origin of native copper deposits[J]. Economic Geology, 51( 7):615-631.
    Dempster A J. 1918. A new method of positive ray analysis[J]. Physical Review, 11(4):316-325. Douglas J. 1894. Mineral industryⅢ,243-248.转引自Voce(1948).
    Durali-Müller S. 2005.Roman lead and copper mining in Germany their origin and development through time, deduced from lead and copper isotope provenance studies[D] :[Ph.D.]. Germany: Johann Wolfgang Goethe Universitat.
    Ehrlich S, Butler I, Halicz L, et al. 2004. Experimental study of the copper isotope fractionation between aqueous Cu(Ⅱ) and covellite,CuS[J]. Chemical Geology, 209: 259-269.
    Faure G.1986. Principle of isotope geology[M]. New York: John Wiley & Sons, 282-287.
    Fields P R, Milstead J, Henrickson E, et al. 1971.Trace impurity patterns in copper ores and artifacts[A]. Brill R H. Science and Archaeology[M]. Cambridge, 131-143.
    Fitzgerald W R, Ramsden P G. 1988.Copper-based metal testing as aid to understanding early European-American interaction: scratching and surface[J]. Canadian journal of archaeology, 12:153-61.
    Fleming S J, Swann C P. 2000. Distinguishing between native and smelted coppers using PIXE spectrometry: a case history from early colonial America[J]. Nuclear Instruments and Methods in Physics Research B, 161-163:709-713.
    Fox W, Wanikan A. 1995. Where east meets west: the new copper culture[J]. Wisconsin archaeologist, 76: 269-93.
    Franklin U M, Badone E, Gotthardt R, et al. 1981. An Examination of prehistoric copper technology and copper sources in Western Arctic and Subarctic North America[M]. Ottawa: National Museums of Canada.
    Friedman M. 1966. Conway M, Kastner M, et al. Copper artifacts: correlation with source types of copper ores[J]. Science, 152(3728):1504-1506.
    Gale N H, Stos-Gale Z A. Bronze age copper sources in the Mediterranean: a new approach[J]. Science, 1982, 216:11-19.
    Gale N H, Stos-Gale Z.2000. Lead isotope analyses applied to provenance studies[A]. Modern analytical methods in art and archaeology: chemical analysis series, Vol.155[M].New York:John Wiley&Sons, Inc., 503-584.
    Gale N H. 1991.Metals and metallurgy in the chalcolithic Period[A].Bulletin of the American schools of oriental research, Symposium:Chalcolithic Cyprus[C], (282/283): 37-61.
    Gale N H, Woodheada A P, Stos-Gale Z A, et al. 1999. Natural variations detected in the isotopic composition of copper,possible applications to archaeology and geochemistry [J].International Journal of Mass Spectrometry, 184:1-9.
    Glocks W S. 1935. native copper masses in glacial tills [J].Pan-American Geologist, 63:24-26.
    Goad S I. 1978. Exchange networks in the prehistoric southeastern United States[D]:[Ph.D.]. United States: University of Georgia.
    Goad S I. 1974. Opitical spectroscopy as a method of archaeological analysis[A]. Paper presented at the 73rd annual meeting of American, Mexico city.
    Goad S I. 1976.Copper in the southeastern united states[A]. Paper presented at the 75th annual meeting of American anthropological association, Washington D.C.
    Goad S I, J Noakes. 1977.Prehistoric Copper Artifacts in the Eastern United States[A]. Archaeological chemistry II[M], 335-346.
    Gopel C, Manhes G, Allegre C J. 1985. U-Pb systematics in iron meteorites-Uniformity of primordial lead[J]. Geochimica et Cosmochimica Acta, 49: 1681-1695.
    Grahama S, Pearsona N, Jacksona S, et al. 2004. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit[J]. Chemical Geology, 207:147-169.
    Griffin B. 1961.Lake Superior copper and the Indians: miscellaneous studies of Great Lakes prehistory[M]. Ann Arbor: University of Michigan.
    .Halsey J R. 1992. Miskwabik - Red Metal: The roles played by Michigan’s Copper in Prehistoric North America[M]. Eagle Harbor: Keweenaw County Historical Society.
    Hancock R G V, Pavlish L A, Farquhar R M, et al. 1991. Distinguishing European trade copperand North-Eastern North American Native Copper[J]. Archaeometry, 33(1):69-86.
    Haury E W. 1947. A Large pre-columbian copper bell from the Southwest[J]. American Antiquity, 13(1):80-82.
    Holmes W H. 1901. Aboriginal copper mines of Isle Royale, Lake Superior[J]. American Anthropologist, New Series, 3(4): 684-696.
    Hull S, Fayek M, Mathien F J, et al. 2008. A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes[J].Journal of Archaeol Science, 35:1355-1369.
    Hurst V J, Larson Jr L H. 1958. On the Source of Copper at the Etowah Site, Georgia [J]. American Antiquity, 24(2):177-181.
    Jing, Z. 2007. Integration Comes of Age: A Conversation With Rip Rapp[J]. Geoarchaeology: An International Journal, Vol. 22, No. 1:1–14.
    Kroll W J. 1957. Report on the composition of Indian copper beads found at the Mcnary Dam, Oregon[J]. Bereau of American ethnology Bull. (66):227-31.
    Larson P B, Maher K, Ramos F C, et al. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 201:337-350.
    Leader J M. 1988. Technological continuities and specialization in prehistoric metalwork in the Eastern United States[D]:[Ph.D.]. United States: University of Florida.
    Levine M A. 1996. Native Copper, Hunter-Gatherers, and Northeastern Prehistory[D]:[Ph.D.]. United States: University of Massachusetts-Amherst.
    Levine M A.1999.Native Copper in the Northeast: An Overview of Potential Sources Available to Indigenous Peoples[A]. Levine M A, Sassaman K E, Nassaney M S.The Archaeological Northeast [M]. Conneticut: Bergin & Gavey, Westport.
    Levine M A. 2007. Overcoming disciplinary solitude: the archaeology and geology of native copper in eastern North America [J]. Geoarchaeology: An international Journal, 22(1):51.
    Levine M A. 2002. Determining geologic sources of artifact copper: source characterization using trace element patterns (book review) [J]. Geoarchaeology: An International Journal, 17(6): 625–629.
    Luck J M, Ben-Othman D, Albarede F. 2002. What do Cu-Zn isotopes tell us on meteorites[J]. Geochimica et Cosmochimica Acta, 66: A462.
    Lyon T D B, Fell G S. 1990. Isotopic composition of copper in serum by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 5:135-137.
    Maddin R, Wheeler T S, Muhly J D. 1980. Distinguishing artifacts made of native copper[J]. Journal of Archaeological Science, 7: 211-225.
    Maher K C, Larson P B. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru [J]. Economic Geology, 102: 225-237.
    Maréchal C N, Telouk P, Albarede F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 156:252-273.
    Martin S R. 1999.Wonderful power : the story of ancient copper working in the Lake Superior Basin [M]. Detroit: Wayne State University press.
    Mason, T F D, Weiss D J, Chapman J B, et al. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals,Russia[J]. Chemical Geology, 221: 170-187.
    Mathur R, Titley S, Hart G, et al. 2009.The history of the United States cent revealed through copper isotope fractionation[J]. Journal of Archaeological Science, 36: 430-433.
    Mathur R, Ruiz J, Titley S, et al. 2005.Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 69 (22):5233-5246.
    McDowell C A. 1963. Mass Spectrometry[M]. New York: McGraw-Hill, 69-103.
    McGill R A, Budd P, Scaife B, et al.1999. The investigation and archaeological applications of anthropogenic heavy isotope fractionation[A]. Young S M M, Pollard A M, Budd P, et al.Metals in antiquity Bar International Series 792 [M]. Oxford, 258-161.
    McHugh W P. 1973. New archaeology and the Old Copper Culture[J]. The Wisconsin Archaeologist, 54:70-83.
    McKnight M D. 2007. The copper cache in early and middle woodland North America[D]:[Ph.D.]. United States: Pennsylvania State University.
    Metz R A, Rose A W. 1966. Geology of Ray copper deposit, Ray,Arizona[A]. Titley S R, Hicks C L. Geology of porphyry copper deposits[M]. University of Arizona Press, Tucson, 177-188.
    Michigan Technological University Archives. Keweenaw Digital Archives - Michigan's Copper Country in Photographs: http://digarch.lib.mtu.edu/.
    Miles S W. 1951. A revaluation of the Old Copper Industry [J]. American Antiquity, 16(3): 240-247.
    Moffit F H, Capps S R. 1911. Geology and Mineral Resources of the Nizina District, Alaska.US Geol.Survey Bulletin 448[M].Washington, D.C.
    Moreau J F. 1993. Some advances in INAA of Cu based artifacts from the Saguenay-lac-saint-jean [A].The 26th annual meeting of the canadian archaeological association[C]. Montreal, Quebec.
    Moore C B. 1894.Bertain sand mound of St.john's river, Florida [J]. Journal of Academy of Natural Sciences of Philadelphia, 2nd Ser. ,10 (Part 2) :129-41.
    Packard R L. 1893. Pre-Columbian copper mining in North America[M]. Washington D.C.: G.P.O.
    Patterson C C. 1971. Native copper, silver, and gold accessible to early metallurgists [J].American Antiquity, 36:286-321.
    Penman G T. 1977. The Old Copper Culture[J]. The Wisconsin archaeologist, 58:3-23.
    Phillips G B. 1922. The composition of some ancient bronze in the dawn of the art of metallurgy [J]. American Anthropologist. New Series, 24(2):129-143.
    Phillips G B. 1925. The metal industry of the Aztecs [J]. American anthropologist. New Series, 27(4): 550-557.
    Phillips G B. 1926. The primitive copper industry of America, Pt. II [J]. Institute of Metals Journal , 36: 99-106.
    Phillips G B. 1928. The earliest ornamental metal work[J]. American Anthropologist, New Series, 30(3): 465-469.
    Rapp G , Allert J, Vitali V, et al. 2000.Determining Geologic Sources of Artifact Copper: Source Characterization Using Trace Element Patterns[M]. Lanham, Md:University Press of America.
    Rapp G, Allert J, Henrickson E. 1984.Trace element discrimination of discrete sources of native copper[A]. Lambert J B. Archaeological Chemistry-III. Advances in Chemistry Series 205[M]. Washington D.C.: American Chemical Society, 273-293.
    Rapp G. 1984.The provenance of artifactual raw materials[A] Rapp G, Gifford J. Archaeological geology[M]. New Haven: Yale university press, 353-375.
    Rapp G, Henrickson E, Miller M, et al. 1980. Trace-element fingerprinting as a guide to the geographic sources of native copper[J]. Journal of Metals, 32:35-44.
    Rapp G. 1983.Native copper and the beginning of smelting: chemical studies [A]. Muhly J D, Maddin R, Karageorghis V.Early metallurgy in Cyprus, 4000-500 B.C. [C] Pierides Foundation, Cyprus.
    Rapp G, Allert J, Peters G. 1990a.The origins of copper in three northern Minnesota sites: Pauly, River Point, and Big Rice[A]. Gibbon G E. The Woodland Tradition in the Western Great Lakes[C]. University of Minnesota, Minneapolis, 233-238.
    Rapp G, Henrickson E, Allert J. 1990b. Native copper sources of artifact copper in pre-Columbian North America[A] Lasca N, Donahue J.Archaeological Geology of North America[M], Geological Society of America Centennial, Volume 4.
    Rickard T A. 1934. The use of native copper by the indigenes of North America[J]. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 64: 265-287.
    Root W C. 1937.Analyses of metal artifacts from Cocle and adjacent regions[A]. Samuel K L. Cocle, an archaeological central panama, Pt. 1[M]. Cambridge: Peabody museum ofarchaeology and enthnology, 307-309.
    Root W C. 1951. Metallurgical analyses and their aid to archaeology [A]. Essays on archaeological methods, No.8 [M]. Ann Arbor: university of Michigan, 85-93.
    Russell R D, Farquhar R M. 1960. Lead isotopes in geology [M]. New York: Interscience Publishers, Inc.
    Schwatka F. 1996. Schwatka’s Last Search: the New York Ledger Expedition Through Unknown Alaska and British America: Including the Journal of Charles Willard Hayes, 1891[M]. Fairbanks: University of Alaska Press.
    Shields W R, Murphy T J, Garner E L. 1964. Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper[J]. Journal of Research of the National Bureau of Standards, 68A : 589-592.
    Shields W R, Goldich S S, Garner E L, et al. 1965. Natural variations in the abundance ratio and the atomic weight of copper [J]. Journal of Geophysical Research, 70:479-491.
    Squier E G,Davis E H . 1848. Ancient monuments of the Mississippi valley:Smithsonian contributions to knowledge. Vol.1 [M]. Washington, DC: Smithsonian Institution.
    Trevelyan A M. 1987.Prehistoric native American copperwork from the Eastern United States [D]: [Ph.D.]. United States: University of California, Los Angeles.
    Vastokas R. 1970. Aboriginal Use of Copper in the Great Lakes Area [D]: [Ph.D.]. United States: Columbia University, New York.
    Veakis E. 1979. Archaeometric Study of Native Copper in Prehistoric North America [D]: [Ph.D. ]. United States: State University of New York at Stony Brook. 97.
    Voce E. 1948. Ancient mining and metallurgy group: Preliminary report, Part II. Notes on some analyses of native copper and ancient artifacts [J]. Man, 48: 19-21.
    Walker E C, Cuttitta F, Senftle F E. 1958.Some natural variations in the relative abundances of the copper isotopes[J]. Geochimica et Cosmochimica Acta, 15:183-194.
    Wayman M L. 1995.The effects of melting on native copper [A]. The beginnings of metallurgy: proceedings of the International Conference [C], Bochum: Deutsches Bergbau-Museum.
    Wayman M L. 1989.Native copper: Humanity's introduction to metallurgy? [A]. All that Glitters: Readings in Historical Metallurgy [M], 3-6.
    Wayman M L. 1985a. Native copper: Humanity's introduction to metallurgy? Part 1:Occurrence, Formation and Prehistoric Mining[J]. Canadian Mining and Metallurgical Bulletin, 78(880):67-69.
    Wayman M L. 1985b.Native copper - Humanity's introduction to metallurgy? Part 2: Metallurgical characteristics and utilization [J]. Canadian Mining and Metallurgical Bulletin, 78(881):75-77.
    Wellman H B. 1994. The provenance of copper artifacts from the Boucher Site [D]: [M.D.]. United States: Boston University.
    Winchell N H. 1911. The aborigines of Minnesota [M]. St.Paul: Minnesota Historical Society. Whittlesey C. 1863. Ancient mining on the shores of Lake Superior,Smithsonian Contributions to Knowledge, 155[M]. Washington, DC: Smithsonian Institution.
    Zhu X K, O'Nions R K, Guo Y, et al. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers [J]. Chemical Geology, 163:139-149.
    Zhu X K, Guo Y, Williams R J P, et al. 2002. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 200: 47-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700