基于切削体分解组合策略的工艺特征识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
良好的工艺特征识别方法是有效集成CAD/CAPP/CAM系统的重要手段。论文以金属加工零件的切削体为研究对象,对切削体工艺特征识别方法进行研究。提出一种切削体分解组合策略,研究该策略下切削体分解、组合、匹配等工艺特征识别操作,探讨特征识别过程中设计、工艺信息转换,以实现工艺特征智能化识别。论文的主要研究工作如下:
     (1)构建了基于切削体分解组合策略的工艺特征识别框架,对该策略下工艺特征识别的原理、流程进行研究,并将本文特征识别方法与多种类似特征识别方法进行比较区分。
     (2)提出了一种基于扩展属性邻接图(EAAG)的切削体过程模型统一描述方法。定义工艺特征识别中的各类过程模型,描述过程模型的主要操作模式,提出过程模型信息提取方法。
     (3)提出了切削体分解组合策略。研究切削体分解组合策略中分割面产生原理和表示方法、切削体分解和组合规则的生成、排序以及规则冲突消解,并对特征识别过程中的分割面新增和失效、切削体多重组合等现象进行了探索。
     (4)研究了工艺特征识别过程中信息的转化和处理方法。改进定位面的定位能力计算方法,并设计出自动产生工序的定位方案的算法;引入小位移旋量(SDT)数学模型描述了工序切削体的工序公差,构建工序尺寸公差网络,建立公差回路上的工序公差累积模型,利用基于小生境的协同进化算法实现三维工序尺寸公差的优化分配。
     (5)在SolidWorks设计平台上,开发了部分典型工艺特征识别功能模块。描述了功能模块的开发目标、开发环境以及相关开发工具;实现了切削体生成、分解、组合等十余个子功能。最后通过应用实例给出工艺特征识别功能模块的主要应用过程。
     论文提出的基于切削体分解组合策略的工艺特征识别方法不仅有助于提高工艺设计的智能化,同时为CAD/CAPP/CAM的集成应用提供了一条有效的途径,具有一定的理论意义和实际应用价值。
Appropriate feature recognition technology is always considered as an important and effective method for integration of CAD/CAPP/CAM systems. Treating delta-volume of metal machining part as research object, this dissertation researches process feature recognition approach of delta-volume.Delta-volume decomposition and combination strategy is proposed, and some operations such as decomposition、combination and matching are researched, the translation between design and process information is discussed to realize intelligent process feature recognition. The main contributions and works are as follows:
     (1) The framework of process feature recognition is constructed, then the basis theory, recognition process and the realization method of the proposed process feature recognition approach are analyzed after the current main feature recognition approaches are compared each other.
     (2) The unified description method of delta-volume procedure models is put forward as Extended Attribute Adjacency Graph (EAAG). All kinds of procedure models related to process feature recognition are defined, whose primary operation modes are expounded. The extraction method of the information of procedure models is discussed, too.
     (3) The delta-volume decomposition and combination strategy is researched, which includes the generation theory and description method of partition surfaces, the creating and ordering and conflicts resolving of the rules for decomposing and combining the delta-volumes. In addition, some phenomenons are analyzed such as new-adding and losing effectiveness of partition surfaces and multi-combination of delta-volumes.
     (4) The information transferring and processing during the process of feature recognition are researched. Locating capability of selected surfaces is computed, and then location program is generated automatically. Small Displacement Torsor (SDT) theory is used to describe process tolerances of operation cut volumes, and operation tolerance net is organized, then the process tolerance stack-up models are constructed. Using dynamical niche sets-based cooperative evolutionary algorithm, operation tolerances assignment is achieved.
     (5) The function on process feature recognition is researched and realized. Its development goals, environments and tools are mentioned. More than ten sub-functions are developed, including generation, decomposition and combination of delta-volumes. At last, one application case is afforded to show the primary flow of the given functions.
     The proposed approach on process feature recognition based on delta-volume decomposition and combination strategy is not only helpful to enhance the intelligence of process feature recognition, but also provides an effective way to integrate CAD/CAPP, with certain theory significance and practice application values.
引文
[1]李长文.基于先进制造技术的机械制造业研究[J].机械制造与自动化,2009,38(3):103-104,134.
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL]. www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [3]顾小锋.2.5维零件特征识别及其应用研究[D].西安:西北工业大学,2006.
    [4]张凤军.具有健壮性的加工特征识别系统研究及其应用[D].杭州:浙江大学,2002.
    [5]张立文,黄传真,田峰.创成式CAPP系统中基于特征的零件信息模型研究[J].组合机床与自动化加工技术,2006,(04):105-108.
    [6]顾琳,刘文剑,常伟,等.基于中介信息元的CAD/CAPP信息集成技术研究[J].中国机械工程,2001,12(11):1269-1273.
    [7]Dimitris Kiritsis. A review of knowledge-based expert systems for process planning Methods and problems[J]. The International Journal of Advanced Manufacturing Technology,1995,10(4):240-262.
    [8]Bojan Babic, Nenad Nesic, Zoran Miljkovic. A review of automated feature recognition with rule-based pattern recognition[J]. Computers in Industry,2008,59(4):321-337.
    [9]朱强.基于SolidWorks的二次开发在零件特征信息提取中的研究[J].机械制造,2004,42(479):38-40.
    [10]胡亚辉,徐燕中,曹克伟,等.集成环境下基于SolidWorks的特征信息提取技术[J].组合机床与自动化加工技术,2004,(03):43-45.
    [11]陈树晓,秦慧斌,吴淑芳,等.基于SolidWorks的加工特征信息提取与存储技术[J].机械工程与自动化,2007,(06):14-16.
    [12]马飞,李雷.基于SolidWorks的零件非几何特征信息提取[J].机械制造与自动化,2009,(03):112-114.
    [13]刘书桂,赵金才Pro/E零件模型几何信息的自动提取[J].机床与液压,2005,(12):128-134.
    [14]刘书桂,赵金才Pro/E零件模型检测信息的提取方法[J].制造技术与机床,2005,(04):62-65.
    [15]刘新凯,刘书桂,赵金才.基于Pro/Toolkit的实体模型尺寸信息的提取[J].组合机 床与自动化加工技术,2005,(03):22-24.
    [16]蔡汉明,肖举,宋金霞,等.基于vc++实现pro/Engineer自定义属性的提取与入库[J].制造业自动化,2007,29(10):91-93.
    [17]王文静,王培俊,杨利明,等.基丁Pro/Toolkit及数据库的装配信息提取[J].机械制造与自动化,2010,39(02):126-128.
    [18]黎荣,王金诺.基于UG实体模型的特征信息提取技术研究[J].机械,2004,31(06):40-43.
    [19]何丽,孙文磊.基于STEP的BOM信息的自动提取与应用研究[J].机械工程与自动化,2010,(2):5-9.
    [20]张莉彦.基于Internet的STEP-NC的研究[D].北京:北京化工大学,2008.
    [21]董唯光.基于STEP标准的CAD产品数据交换[D].兰州:兰州理工大学,2005.
    [22]Yanping Zhang, Chun Zhang, H. P. Wang. An Internet based STEP data exchange framework for virtual enterprises[J]. Computers in Industry,2000,41(1):51-63.
    [23]王志江,冯立艳.集成化CAD/CAPP系统设计[J].成组技术与生产现代化,2001,(1):7-9.
    [24]Mahmut Gulesjn, Process Planning in Design and Manufacturing Systems[M]. Expert Systems,2002,327-380.
    [25]M. Kang, J. Han, J. G. Moon. An approach for interlinking design and process planning [J]. Journal of Materials Processing Technology,2003,139(1-3):589-595.
    [26]任蕾.基于STEP标准的几何信息的提取和模型重建[D].吉林:吉林大学,2008.
    [27]刘传慧.基于STEP中性文件的产品数据信息提取的研究[D].苏州:苏州大学,2003.
    [28]时兵.基于STEP的三维实体特征提取与模型重建技术研究[D].吉林:吉林大学,2004.
    [29]Yusri Yusof, Keith Case. Design of a STEP compliant system for turning operations[J]. Robotics and Computer-Integrated Manufacturing,2010,26(6):753-758.
    [30]X.W.Xu. Realization of STEP-NC enabled machining[J]. Robotics and Computer Integrat- ed Manufacturing,2006,22(2):144-153.
    [31]X.W.Xu, Q.He. Striving for a total integration of CAD, CAPP, CAM and CNC[J]. Robotics and Computer-Integrated Manufacturing,2004,20(2):101-109.
    [32]Riliang Liu, Aydin Nassehi, Richard Allen, et al. Feature-Based process planning for interoperable STEP-NC manufacture[J].Information Control Problems in Manufacturing, 2006,781-786.
    [33]Dae Hyuk Chung, Suk Hwan Suh. ISO 14649-based nonlinear process planning implementa tion for complex machining[J]. Computer-Aided Design,2008,40(5): 521-536.
    [34]X. Zhang, R. Liu, A. Nassehi. A STEP-compliant process planning system for CNC turning operations[J]. Robotics and Computer-Integrated Manufacturing,2011,27(2): 349-356.
    [35]王骏.基于STEP-XML的虚拟企业信息集成及信息安全的研究[D].武汉:华中科技大学,2004.
    [36]李伟平,谷正气,邓彪.面向CAD/CAPP/CAM的特征识别技术[J].中国机械工程,2006,(17):249-255.
    [37]Mangesh P. Bhandarkar, Rakesh Nagi. STEP-based feature extraction from STEP geometry for Agile Manufacturing[J]. Computers in Industry,2000,41(1):3-24.
    [38]JungHyun Han, Mujin Kang, Hoogon Choi. STEP-based feature recognition for manufac-turing cost optimization[J]. Computer-Aided Design,2001,33(9):671-686.
    [39]P. Holland, P. M. Standring, H. Long, et al. Feature extraction from STEP (ISO 10303) CAD drawing files for metalforming process selection in an integrated design system[J]. Journal of Materials Processing Technology,2002,125-126:446-455.
    [40]V. Rameshbabu, M. S. Shunmugam. Hybrid feature recognition method for setup planning from STEP AP-203[J]. Robotics and Computer-Integrated Manufacturing, 2009,25(2):393-408.
    [41]张伟.基于STEP的CAD/CAPP/CAM集成技术研究[D].南京:南京航空航天大学,2006.
    [42]A.R. Grayer. The automatic production of machined components starting from a stored geometric description[J]. Advances in computer-aided manufacturing,1977:137-151.
    [43]L Kyprianou. Shape classification in Computer-Aided Design[D]. Cambridge: Cambridge university,1980.
    [44]高曙明.自动特征识别技术综述[J].计算机学报,1998,21(3):281-288.
    [45]张红武.语义特征造型系统中相交特征识辨机制的研究[D].哈尔滨:哈尔滨理工大学,2005.
    [46]D.C. Anderson M.R. Henderson.Computer recognition and extraction of form features:a CAD/CAPP link[J]. Computers in Industry,1984,(5):329-339.
    [47]B. Babic', Development of an intelligent CAD-CAPP interface[C].The Proceedings of the International Conference on Intelligent Technologies in Human-Related Sciences,1996.
    [48]Z. Miljkovic'B. Babic', Feature recognition as the basis for integration of CAD and CAPP Systems[C]. The Proceedings of the Second World Congress on Intelligent Manufacturing Processes and Systems,1997.
    [49]G. Andreadis H.K. D. Bouzakis. A feature-based algorithm for computer aided process planning for prismatic parts[J]. International Journal of Production Engineering and Computers,2000,3(3):17-22.
    [50]S. Joshi, T. C. Chang. Graph-based heuristics for recognition of machined features from a 3D solid model[J]. Computer-Aided Design,1988,20(2):58-66.
    [51]S Hinduja O Owodunni. Evaluation of existing and new feature recognition algorithms: Part 1:theory and implementation[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,(6):839-851.
    [52]刘晓平,吴敏,金灿.采用图分解的特征识别算法研究[J].工程图学学报,2010,(1):67-71.
    [53]Woo T C, feature extraction by volume decomposition[C]. The Proc CAD/CAM Technology in Mechanical Engineering, Cambridge,1982.
    [54]Y. S. Kim. Recognition of form features using convex decomposition[J]. Computer-Aided Design,1992,24(9):461-476.
    [55]Yong Se Kim, Youngjin Kim, Frederic Pariente, et al. Geometric reasoning for mill-turn machining process planning[J]. Computers & Industrial Engineering,1997,33 (4):501-504.
    [56]Y.S.Kim, E.Wang. Recognition of machining features for cast then machined parts[J]. Computer-Aided Design,2002,34(1):71-87.
    [57]Frederic Pariente, Yong Se Kim. Incremental and localized update of convex decompo-sition used for form feature recognition[J]. Computer-Aided Design,1996,28(8): 589-602.
    [58]Yoonhwan Woo. Fast cell-based decomposition and applications to solid modeling[J]. Computer-Aided Design,2003,35(11):969-977.
    [59]Han JungHyun, M. Pratt, W. C. Regli. Manufacturing feature recognition from solid models:a status report[J]. Robotics and Automation, IEEE Transactions,2000,16(6): 782-796.
    [60]Yoonhwan Woo, Hiroshi Sakurai. Recognition of maximal features by volume decompo-sition[J].Computer-Aided Design,2002,34(3):195-207.
    [61]Hiroshi Sakurai. Volume decomposition and feature recognition:part 1:polyhedral objects[J].Computer-Aided Design,1995,27(11):833-843.
    [62]Hiroshi Sakurai, Parag Dave. Volume decomposition and feature recognition, part Ⅱ: curved objects[J]. Computer-Aided Design,1996,28(6-7):519-537.
    [63]Y Shen, J Shah. Determination of machining volumes from extensible sets of design features[J]. Adances in Feature Based Manufacturing,1994.
    [64]J. H. Vandenbrande, A. A. G. Requicha.Spatial reasoning for the automatic recognition of machinable features in solid models[J]. Pattern Analysis and Machine Intelligence, 1993,15(12):1269-1285.
    [65]JungHyun Han, Aristides A. G. Requicha.Integration of feature based design and feature recognition[J]. Computer-Aided Design,1997,29(5):393-403.
    [66]Han Jung Hyun, Han Inho, Lee Eunseok, et al. Manufacturing feature recognition toward integration with process planning[J]. Systems, Man and Cybernetics, Part B:Cybernetics, 2001,31(3):373-380.
    [67]卢正鼎,陈传波,韩水华.特征识别中的不确定性推理算法研究[J].计算机工程与应用,2001,(03):60-61.
    [68]汤岑书,褚学宁,孙习武,等.基于几何与公差信息的加工特征识别方法[J].计算机集成制造系统,2010,16(02):256-262.
    [69]刘文剑,金天国,陈广锋.工件定位特征识别与定位方案自动推理算法[J].哈尔滨工业大学学报,2005,39(02):238-241.
    [70]F. S. Y. Wong, K. B. Chuah, K. Venuvinod. Automated inspection process planning: Algorithmic inspection feature recognition and inspection case representation for CBR[J]. Robotics and Computer-Integrated Manufacturing,2006,22(1):56-68.
    [71]刘金山,廖文和,刘长毅.基于图的夹具特征识别方法研究[J].机械科学与技术,2007,26(06):723-727.
    [72]鲁泳,李迎光.基于再扩展属性面边图的复杂结构件特征识别技术[J].机械设计与制造,2009,(05):236-238.
    [73]赵鹏, 盛步云,邓伟刚.工艺设计过程中的切削体分解组合策略[J].计算机集成制造系统,2010,16(09):1793-1800.
    [74]王晓慧.尺寸设计理论与应用[M].北京:国防工业出版社,2004:25-26.
    [75]符爱红.非设计基准定位时工序尺寸及其偏差的新探讨[J].现代机械,2004,(01):28-30.
    [76]符爱红,施进宇,宋长林.非设计基准定位时工序尺寸及其偏差[J].机械工人冷加工,2004,(08):54-56.
    [77]符爱红,施进宇,宋长林.非设计基准定位时工序尺寸及其偏差的新探讨[J].制造技术与机床,2004,(10):67-69.
    [78]安宏宇.基准不重合时工序尺寸及其公差的确定[J].河北建筑工程学院学报,2006,24(03):113-114.
    [79]李红英.基准不重合时工序尺寸及公差的计算方法[J].装备制造技术,2009,(05):151-153.
    [80]K Britton Whybrew, G. A. Tolerance analysis in manufacturing and tolerance chartingin [J]. Advanced Tolerancing Techniques,1997:13-41.
    [81]E. A. Lehtihet, S. Ranade, P. Dewan. Comparative evaluation of tolerance control chart models[J]. International Journal of Production Research,2000,38(7):1539-1556.
    [82]T. C. Chang, Y. S. Hong. A comprehensive review of tolerancing research[J]. International Journal of Production Research,2002,40(11):2425-2459.
    [83]Aristides A. G. Requicha. Representation of Tolerances in Solid Modelling:Issues and Alternative Approaches[M]. University of Rochester.1983.
    [84]Aristides A. G. Requicha.Toward a Theory of Geometric Tolerancing[J]. International Journal of Robotics Research,1986,2(4):45-60.
    [85]R. C. Hillyard, I. C. Braid. Analysis of dimensions and tolerances in computer-aided mechani-cal design[J]. Computer-Aided Design,1978,10(3):161-166.
    [86]Peter Hoffmann. Analysis of tolerances and process inaccuracies in discrete part manufac- turing[J]. Computer-Aided Design,1982,14(2):83-88.
    [87]Bing Chun Zhang. Geometric modeling of dimensioning and tolerancing[D].Tempe: Arizona State University,1992.
    [88]茅健.基于数学定义的公差建模与误差评定技术的研究[D].杭州:浙江大学,2007.
    [89]蔡敏.基于数学定义的圆柱要素公差数学建模与分析技术的研究[D].杭州:浙江大学,2002.
    [90]杨将新,吴昭同,蔡敏.基于数学定义的圆柱要素形状公差数学模型的研究[J].机械工程学报,2003,(12):86-90.
    [91]高曙明,吴昭同,杨将新,等.一种基于数学定义的三维公差语义表示方法[J].中 国机械工程,2003,(03):241-246.
    [92]吴昭同,杨将新,高曙明,等.基于数学定义的平面尺寸公差数学模型[J].机械工程学报,2001,(09):12-17.
    [93]J. J. Shah, J. K. Davidson, A. Mujezinovic. A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces[J]. Journal of Mechanical Design,2004,126 (3):504-518.
    [94]J. J. Shah, J. K. Davidson, A. Mujezinovic. A New Mathematical Model for Geometric Tolerances as Applied to Round Faces[J]. Journal of Mechanical Design,2002,124(4): 609-622.
    [95]宋述稳,徐先懂.基于最大工序能力的工序公差优化方法[J].装备制造技术,2003,(04):3-6.
    [96]杨将新,黄平捷.基于工序能力指标的工序公差优化设计研究[J].工程设计,2000,(03):45-47.
    [97]付颖斌,江平宇,刘道玉.多工序尺寸及公差优化[J].计算机集成制造系统,2009,15(01):142-146.
    [98]肖人彬,邹洪富,陶振武.公差设计多目标模型及其粒子群优化算法研究[J].计算机集成制造系统,2006,12(07):976-982.
    [99]彭和平,蒋向前,徐振高,等.基于多重相关特征质量损失函数的公差优化设计[J].中国机械工程,2008,19(05):590-594.
    [100]彭和平,蒋向前,徐振高,等.基于现值质量损失的相关特征产品的公差设计[J].华中科技大学学报(自然科学版),2009,37(02):71-74.
    [101]景大英,王伯平.基于遗传算法的配合尺寸公差优化设计[J].农业机械学报,2004,(04):198-200.
    [102]王蕾,陈义保.改进遗传复合形算法及其在并行公差优化设计中的应用[J].烟台大学学报(自然科学与工程版),2006,19(02):130-135.
    [103]乐英.基于遗传算法的形位公差优化设计[J].煤矿机械,2005,(12):20-22.
    [104]匡兵,黄美发,钟艳如,等.基于粒子群算法的装配公差优化分配[J].机械设计与制造,2009,(02):35-37.
    [105]C. Yuen. Development of a generic computer-aided process planning support system[J]. Journal of Materials Processing Technology,2003,139(1-3):394-401.
    [106]M. Marefat. Geometric Reasoning for Recognition of Three-Dimensional Object Features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12:949-965.
    [107]S.N.Trika. Geometric Reasoning for Extraction of Manufacturing Features in ISO-Oriented Polyhedrons[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16:1087-1100.
    [108]Saleh M. Amaitik, S. Engin Kilic. An intelligent process planning system for prismatic parts using STEP features[J].Int J Adv Manuf Technol,2007, (31):978-993.
    [109]吴玉光.基于工序要求的夹具定位方案自动规划方法[J].机械工程学报,2010,46(11):185-192.
    [110]刘璇,王晶,冯涛.定位基准的自动优选原理与算法[J].现代制造工程,2002,(5):5-8.
    [111]秦国华,洪连环,吴铁军.基于齐次线性方程组的工件自由度分析技术[J].计算机集成制造系统,2008,14(3):466-470.
    [112]P. Bourdet, Mathieu, L. Lartigue C. The concept of the small displacement torsor in metrology[J]. Advanced Mathematical Tools in Metrology II, Series on Advances in Mathematics for applied Sciences,1990,40:110-122.
    [113]胡洁,吴昭同.面向装配的变动几何约束网络的生成方法研究[J].计算机辅助设计与图形学学报,2002,14(1):79-82.
    [114]杨将新.基于装配成功率的公差优化设计系统研究[D].浙江大学,杭州.1996.
    [115]F. Pezzella, Morganti, G. Ciaschetti. A genetic algorithm for the Flexible Job-shop Scheduling Problem [J]. Computers & Operations Research.2008,35(10):3202-3212.
    [116]陆青,梁吕勇,杨善林,等.面向多模态函数优化的自适应小生境遗传算法[J].模式识别和人工智能,2009,22(1):91-100.
    [117]Lu Qing, Liang Chang-yong, Yang Shan-lin, et al. An Adaptive Niche Genetic Algorithm for Multimodal Function Optimization[J]. PR&AI,2009,22(1):91-100.
    [118]De Jong K A. An analysis of the behaviour of a class of genetic adaptive systems[D].Ann Arbor:University of Michigan,1975.
    [119]Goldberg D E. Genetic algorithm with sharing for multimodal function optimization [M]. Proceeding of the Second International Conference on Genetic Algorithm. Hillscale: Lawrence Erlbaum Associates,1987:41-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700