用户名: 密码: 验证码:
盾构机冗余驱动回转系统动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构机是一种隧道掘进的专用工程机械,它广泛地应用于城市地铁、公路隧道等隧道工程之中。国产盾构机于地下施工作业时,其回转系统常常发生刀盘堵转,极端情况下甚至出现电机传动轴断裂等重大事故,导致无法连续施工作业,造成巨大的经济损失。作为直接承担掘进负载的盾构机回转系统,出于大功率大扭矩的需要,一般采用多电机冗余驱动,与此对应采用多点啮合齿轮传动。冗余驱动和多点啮合传动动力传递过程复杂,其动态特性和一般静定机械系统有所不同,面临的新问题是驱动、传动系统的均载性和整个回转系统的稳定性。盾构机冗余驱动回转系统极易发生驱动负荷分配不均和载荷积聚,导致个别传动小齿轮轮齿断裂、驱动电机断轴等重大事故。国产盾构机在设计时大多直接借鉴发达国家的成熟型号,缺乏对盾构机冗余驱动回转系统动态特性的深入理论研究。因此,进行盾构机冗余驱动回转系统动态特性的研究,对于提高其均载性与稳定性,降低载荷分配不均,防止断轴等事故的发生,保证盾构机的正常施工作业具有重要意义。
     本文以盾构机冗余驱动回转系统为研究对象,针对其冗余驱动与多点啮合传动特点,提出多点啮合传动动力稳定性判据,基于此建立冗余驱动回转系统均载性判别方法,阐明盾构机冗余驱动回转系统偏载断轴的发生机理。论文首先建立了考虑掘进过程诸多因素的盾构机掘进动力学模型;针对多点啮合齿轮传动,基于Floquet-Lyapunov理论,提出了其动力稳定性判据;在此基础上,进一步提出了冗余驱动回转系统的均载性判别方法;应用上述理论成果,对某型盾构机回转系统复合地层下掘进的动态特性进行仿真与评价,提出参数改进设计方案;研制盾构机回转系统模拟掘进实验台,进行载荷模拟实验加以验证。论文内容包括以下几个部分:
     (1)盾构机掘进动力学模型的研究
     基于盾构机掘进过程中的受载分析,建立较为完整考虑冗余驱动回转系统、液压推进系统、盾体、地质条件等诸多要素相互作用的盾构机掘进动力学模型。该模型引入多电机矢量控制变频调速驱动、多点啮合齿轮传动、动态变化掘进负载等影响冗余驱动回转系统动力传递的关键因素,为分析盾构机冗余驱动回转系统的动态特性提供前提条件。
     (2)多点啮合齿轮传动动力稳定性判据的研究
     针对齿轮时变啮合刚度引起的参数振动动力稳定性问题,基于Floquet-Lyapunov理论,提出多点啮合齿轮传动动力稳定性判据。经由计算系统状态方程的最大Floquet乘子,判断其与单位圆关系,判别多点啮合传动动力稳定性,为降低盾构机冗余驱动回转系统动力不稳定性进行了参数研究。
     (3)冗余驱动回转系统均载性分析方法的研究
     在冗余驱动回转系统稳定性判据的基础上,针对齿轮啮合扭转与支承弹性变形耦合引起的负荷分配不均的问题,基于Floquet-Lyapunov理论,提出了冗余驱动回转系统均载因子,进行系统均载性分析,为预测评价盾构机冗余驱动回转系统均载性提供了理论依据。
     (4)盾构机回转系统复合地层掘进动态特性的研究
     针对某型盾构机回转系统,对其在复合地层中掘进的动态性能进行仿真,基于其在复杂掘进负载下响应特性与动态均载特性,提出参数改进与结构优化建议。结果表明,采用驱动周向均匀布置方式,用柔性支承取代传统传动小齿轮支承,将传动小齿轮与驱动偏离特定位置,减小盾体前盾长度与盾体总长度之比等措施,可以有效地提高盾构机冗余驱动回转系统均载性,避免动态掘进负载引起的偏载断轴事故发生。
     (5)盾构机回转系统掘进模拟实验的研究
     以研究盾构机回转系统动态特性为目标,按照相似性理论建立盾构机掘进模拟实验台,验证回转系统结构参数与载荷性质对系统动态均载性的影响。结果表明,轴向与弯矩负载作用下,回转系统各驱动电机间易产生偏载,且负荷分配与传动小齿轮安装布置位置有关;将传动小齿轮与驱动电机布置偏离特定位置能大幅度改善驱动偏载现象,实验结果与理论分析较为吻合。
     论文提出了多点啮合传动动力稳定性判据,基于此建立了冗余驱动回转系统均载性分析方法。应用理论成果对某型盾构机回转系统进行了其均载性预测评价,提出了相应的参数改进方案,可以有效改善回转系统在复杂掘进负载下的动态特性,提高其动态均载性能,避免断轴等事故的发生,保证盾构机连续掘进作业。
Shield TBM is a kind of special engineering machine for tunnel excavation, which is widely applied in tunnel constructions such as metro subways and road tunnels. When a domestic-made shield TBM was conducting underground constructions, cutterhead stalls even failures of drive shaft frequently took place in its revolving system. That would lead to the stoppages of the machine and induce great loss. The revolving system of a shield TBM bears the excavation load directly, and so it is usually redundantly driven by multiple motors due to the need of large power and torques, which means the multi-point gear meshing is also employed. The power transmission process of redundant drive and multi-point gear meshing is complex and their dynamic characteristics are different from that of common statically determinated mechanical systems. New problems of the load sharing performance of the drive and transmission system as well as the stability of the revolving system arise. Unevenly load distribution is very inclined to happen in the redundantly driven revolving system of shield TBM, which often leads to catastrophic failures such as some transmission gears broken and even drive shaft failures. Due to the lack of complete and systematic design theories for shield TBMs, most domestic-made ones were still made by directly borrowing ideas from mature designs of foreign ones. Therefore, to study the dynamic characteristics of the revolving system of shield TBM will have great importance on improving its load sharing performance and stability, decreasing unevenly load distribution, preventing shaft failure and ensuring the normal work of shield TBM.
     This text focuses on the redundantly driven revolving system of shield TBM, aiming at the redundant driven and multi-point gear meshing, investigates the reason of drive shaft failure in virtue of studying the load sharing performance under complicated excavation loads. The study starts from the bending-torsional coupled vibration, and then puts forwards the determination theory of stability of redundantly driven revolving system. Based on that, the analysis method of load sharing performance of the system is established and the mechanism of shaft failure is studied. The dynamic model of the shield TBM, considering all the factors during excavation, is established, firstly. Based on the Floquet-Lyapunov theory, the analysis methods of the dynamic stability and load-sharing performance by calculating the Floquet multiplier and the load sharing factor are proposed. The dynamic characteristics of a typical shield TBM under complex excavation loads are investigated and evaluated. The test rig of the shield TBM revolving system is then built to verify the method. The main contents are listed as follows:
     (1) Comprehensive dynamic model of shield TBM tunneling
     Through load analysis during excavation, the theoretical dynamic model of the shield TBM has been established, considering the interactions between the redundantly driven revolving system, the hydraulic propulsion system, the shield body and the geologic conditions. Multiple vector-controlled variable frequency electric motors, multi-point gear meshing, dynamic excavation loads are taken into consideration.
     (2) Dynamic stability conditions of the multi-point gear meshing
     The parameter vibration problem due to the time-varying mesh stiffness in the multi-point gear meshing process is analyzed. In virtue of Floquet-Lyapunov theory, the analysis method of dynamic stability of shield TBM revolving system is studied and key parameters’influence on the instability conditions have been deeply investigated.
     (3) Load sharing performance of the redundantly driven revolving system
     The load sharing performance of the redundantly driven revolving system is studied. Based on the Floquet-Lyapunov theory, the analysis method for load-sharing performance of the redundantly driven revolving system of the shield TBM has been proposed. By calculating the load sharing factor, parameters’influences on the load sharing performance have been studied.
     (4) Dynamic characteristics of shield TBM revolving system in mixed-face conditions
     The dynamic behavior of a typical shield TBM revolving system has been simulated and evaluated. The results show that, while adjusting the cutterhead reference speed in time could effectively reduce the torque loads and overcome the adverse excavation environments. Reasonable distribution of the pinion gears and drive motors could improve the load sharing performance of the revolving system, and therefore the failure of drive shaft could be avoided.
     (5) Simulation test of reduandantly driven revolving system of shield TBM
     In virtue of similarity theory, the test rig for shield TBM redundant driven revolving system has been set up. Through applying the torque and bending moment loads by load simulating set and measuring the output torque and speed of each driving motor, the influence of key structural parameters on load distribution of driving pinions have been verified. The results show that, under the axial force load and bending moment load, the torque load on each driving motor would be unevenly distributed; by arranging the driving pinions and motors at proper positions could effectively improve the load-sharing performance.
     Based on the analysis method of dynamic stability and load sharing performance for redundantly driven revolving system established in this text, parameter design and optimization could be carried out on the redundantly driven revolving system of shield TBM. By means of that, the dynamic characteristics would get improved, the shaft failure accident would be prevented and continuous operation of the shield TBM could be realized.
引文
[1]杨华勇,龚国芳.盾构掘进机发展战略研究. 2003上海国际隧道工程研讨会,上海,2003,339-346.
    [2]蒙先君.复合式土压平衡盾构机刀盘常见故障(损坏)原因分析及解决措施.隧道建设. 2004,24(2):61-66.
    [3]黄威然,竺维彬,郭广才.泥水盾构刀盘开裂和解体事故原因分祈.城市轨道交通研究. 2007,10(1):29-33.
    [4]黄宏伟,闫玉茹,胡群芳.复合式土压平衡盾构刀盘失效风险分析.岩土力学. 2009(8):2324-2330.
    [5] Y. J. Shang, J. H. Xue, S. J. Wang etc. A case history of Tunnel Boring Machine jamming in an inter-layer shear zone at the Yellow River Diversion Project in China. Engineering Geology. 2004, 71(3-4): 199-211.
    [6]宋天田,肖正学,苏华友等.上公山TBM施工2·22卡机事故工程地质分析.岩石力学与工程学报. 2004,23(增1):4544-4546.
    [7]薛继洪,尚彦军,史永跃等.昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策.岩石力学与工程学报. 2005,24(21):3858-3863.
    [8]肖明清.国内大直径盾构隧道的设计技术进展.铁道标准设计. 2008(8):84-87.
    [9]寇晓林.泥水盾构保险轴断裂原因浅析.建筑机械化. 2009(4):58-60.
    [10]田华军.盾构电机减速器与刀盘主轴承连接轴断裂分析.工程机械. 2009,40:71-75.
    [11]成大先.机械设计手册,第四版.北京:化学工业出版社,2002.
    [12]李润方,王建军.齿轮系统动力学-振动、冲击、噪声.北京:科学出版社,1997.
    [13] J. Wang, R. Li, X. Peng. Survey of nonlinear vibration of gear transmission systems. Applied Mechanics Reviews. 2003, 56(3): 309-329.
    [14] W. A. Tuplin. Gear tooth stresses at high speed. Proceedings of the Institution of Mechanical Engineers. 1950, 16: 162-167.
    [15] H. Nevzat ?zgüven, D. R. Houser. Mathematical models used in gear dynamics - a review. Journal of Sound and Vibration. 1988, 121(3): 383-411.
    [16] H. Vinayak, R. Singh, C. Padmanabhan. Linear dynamic analysis of multi-mesh transmissions containing external, rigid gears. Journal of Sound and Vibration. 1995, 185(1): 1-32.
    [17] H. Vinayak, R. Singh. Multi-body dynamics and modal analysis of compliant gear bodies. Journal of Sound and Vibration. 1998, 210(2): 171-212.
    [18] M. Benton, A. Seireg. Simulation of resonances and instability conditions in pinion-gear systems. Journal of Mechanical Design, Transactions of the ASME. 1978, 100(1): 26-32.
    [19] M. Benton, A. Seireg. Factors influencing instability and resonances in geared systems. Journal ofMechanical Design, Transactions of the ASME. 1981, 103(2): 372-378.
    [20] K. L Wang, H. S. Cheng. A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears. Part ii. Results. Journal of Mechanical Design, Transactions of the ASME. 1966, 103(1): 188-194.
    [21] W. Kim, H. H. Yoo, J. Chung. Dynamic analysis for a pair of spur gears with translational motion due to bearing deformation. Journal of Sound and Vibration. 2010, 329(21): 4409-4421.
    [22] A. Kahraman, R. Singh. Non-linear dynamics of a spur gear pair. Journal of Sound and Vibration. 1990, 142(1): 49-75.
    [23] A. Kahraman, R. Singh. Non-linear dynamics of a geared rotor-bearing system with multiple clearances. Journal of Sound and Vibration. 1991, 144(3): 469-506.
    [24] C. Padmanabhan, R. Singh. Spectral coupling issues in a two-degree-of-freedom system with clearance non-linearities. Journal of Sound and Vibration. 1992, 155(2): 209-230.
    [25] C. Padmanabhan, R. C. Barlow, T. E. Rook etc. Computational issues associated with gear rattle analysis. Journal of Mechanical Design, Transactions of the ASME. 1995, 117(1): 185-192.
    [26] A. Kahraman, G. W. Blankenship. Interactions between commensurate parametric and forcing excitations in a system with clearance. Journal of Sound and Vibration. 1996, 194(3): 317-336.
    [27] A. Kahraman, R. Singh. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. Journal of Sound and Vibration. 1991, 146(1): 135-156.
    [28] Y. Cai. Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon (a new stiffness function of helical involute tooth pair). Journal of Mechanical Design, Transactions of the ASME. 1995, 117(3): 460-469.
    [29] S. Theodossiades, S. Natsiavas. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. Journal of Sound and Vibration. 2000, 229(2): 287-310.
    [30] A. Kahraman, G. W. Blankenship. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters. Journal of Mechanical Design, Transactions of the ASME. 1997, 64(1): 217-226.
    [31] Haris S. L. Dynamic loads on the teeth of spur gears. Proceedings of the Institution of the Institution of Mechanical ENgineers. 1958, 172: 87-112.
    [32] A. H. Nayfeh, D. T. Mook. Nonlinear oscillations. New York: John Wiley, 1995.
    [33] J. G. Bollinger, R. J. Harker. Instability potential of high speed gearing. Journal of Industrial Mathematics. 1967, 17: 39-55.
    [34]李继彬,刘曾荣,林常.在动载荷状态下,齿轮振动方程的稳定性分析.昆明理工大学学报(理工版). 1986(01):77-82.
    [35]陈安华,罗善明,王文明等.齿轮转子系统参数振动特征的数值研究.湖南科技大学学报(自然科学版). 2003,18(03):36-40.
    [36]陈安华,罗善明,王文明等.齿轮系统动态传递误差和振动稳定性的数值研究.机械工程学报. 2004,40(4):21-25.
    [37] V. V. Bolotin. The dynamic stability of elastic system. San Francisco: Holden-Day Inc., 1964.
    [38] G. V. Tordion, R. Gauvin. Dynamic stability of a two-stage gear train under the influence of variable meshing stiffnesses. Journal of Engineering for Industry, Transactions of the ASME. 1977, 99 Ser B(3): 785-791.
    [39] M. Benton, A. Seireg. Normal mode uncoupling of systems with time varying stiffness. Journal of Mechanical Design, Transactions of the ASME. 1980, 102(2): 379-383.
    [40] P. P. Friedmann. Numerical methods for determining the stability and response of periodic systems with applications to helicopter rotor dynamics and aeroelasticity. Computers and Mathematics with Applications. 1986, 12(1 PART A): 131-148.
    [41] J. Lin, R. G. Parker. Mesh stiffness variation instabilities in two-stage gear systems. Journal of Vibration and Acoustics, Transactions of the ASME. 2002, 124(1): 68-76.
    [42] J. Lin, R. G. Parker. Planetary gear parametric instability caused by mesh stiffness variation. Journal of Sound and Vibration. 2002, 249(1): 129-145.
    [43] A. Al-shyyab, A. Kahraman. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: period-one motions. Journal of Sound and Vibration. 2005, 284(1-2): 151-172.
    [44]黄劲枝,厉江帆.行星齿轮传动中内啮合中心轮齿圈径向共振问题的研究.湖南师范大学自然科学学报. 2008,115(02):64-67.
    [45]王海,彭泽乡,杨铁钢等.刚性连接方式下两台伺服电机驱动同一负载.微电机. 2000(6):42-43.
    [46]刘国海,李建勇,王勤等.多电机同步系统的解耦控制.控制工程. 2003,10(2):169-172.
    [47]王洪勇,刘希喆,吴捷等.硬联接双电机的变频同步驱动方案研究.中国农村水利水电. 2003(7):57-60.
    [48]徐军,张莉,李彦明等.基于模糊PID控制器的多电机同步控制装置的应用.工业仪表与自动化装置. 2003(4):11-13.
    [49]张惠萍,施火泉.多电机传动系统的同步控制.江南大学学报(自然科学版). 2003,2(4):371-373.
    [50]李天石,易春辉.多电机直流传动系统在钢丝绳卷扬提升中的应用.电气传动. 2004(4):57-59.
    [51]左伟臣.高性能多电机同步联动控制系统[硕士论文].南京:南京理工大学,2004.
    [52]邓先荣.天线伺服系统多电机同步控制方法.现代雷达. 2005,27(6):45-47.
    [53]金贺荣.大型回转双驱动系统关键参数测量与同步性研究[博士论文].秦皇岛:燕山大学,2005.
    [54]刘晓星.多电机传动的刚性连接机构控制要求及实现方法.重工科技. 2006(2):19-20.
    [55]尹义林,毛耀,包启亮等. 1.2m地平式望远镜驱动系统设计与多电机同步控制策略.天文研究与技术. 2006,3(3):289-294.
    [56]袁新.海上钻井平台起重机的电控方案研究-多电机齿轮驱动机构的主从控制研究.重工与起重技术. 2009(4):25-30.
    [57]陈朝阳,姜鹏.多电机负荷分配技术在连铸机传动系统中的应用.安徽工业大学学报(自然科学版). 2008,25(2):171-175.
    [58]杨非.多电机同步联动控制系统的设计与分析[硕士论文].南京:南京理工大学,2005.
    [59]曾荣.多电机同步联动控制系统的设计与实现[硕士论文].南京:南京理工大学,2004.
    [60]王建侠,陈庆伟,郭毓等.多电机同步联动系统的动力学分析与建模.东南大学学报(自然科学版). 2004,34(增):135-140.
    [61]王建侠.多电机同步联动系统的动力学建模及消隙控制算法研究[硕士论文].南京:南京理工大学,2004.
    [62]刘晓星,苗根蝉,张建平.挖掘机传动系统的主从控制.变频器世界. 2008(8):I9.
    [63]黎琦,陈德传.一种新型的多电机同步变频传动控制系统.杭州电子科技大学学报. 2005,25(1):68-70.
    [64]石元奇,庄欠伟,吕建中.大直径盾构机刀盘驱动系统.筑路机械与施工机械化. 2008(9):18-20.
    [65] A. Sramoon, M. Sugimoto, K. Kayukawa. Theoretical model of shield behavior during excavation. II: Application. Journal of Geotechnical and Geoenvironmental Engineering. 2002, 128(2): 156-165.
    [66] M. Sugimoto, A. Sramoon. Theoretical model of shield behavior during excavation. I: Theory. Journal of Geotechnical and Geoenvironmental Engineering. 2002, 128(2): 138-155.
    [67]傅德明,李向红,刘计山.大型多功能盾构掘进模拟试验台的研制.工程机械. 2005(12):14-17.
    [68]吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究.岩石力学与工程学报. 2006,25(增1):3137-3146.
    [69]徐前卫,朱合华,廖少明等.砂土地层盾构法施工的地层适应性模型试验研究.岩石力学与工程学报. 2006,25(增1):2902-2909.
    [70]何於琏.泥水盾构控制系统检测试验台的研制.工程机械. 2007,38(11):28-32.
    [71]李贤妮.盾构掘进试验系统的研制[硕士论文].北京:北京交通大学,2007.
    [72]管会生,高波.复合式土压平衡盾构刀具切削扭矩的研究.现代隧道技术. 2008,319(2):73-78.
    [73] J. Rostami, L. Ozdemir, B. Nilsen. Comparison between CSM and NTH hard rock TBM performance prediction models. Proceedings of Annual Technical Meeting of the Institute of Shaft Drilling and Technology (ISDT). 1996: 11.
    [74]宋克志,潘爱国.盾构切削刀具的工作原理分析.建筑机械. 2007,2(3):74-76.
    [75]高大钊,袁聚云.土质学与土力学.北京:人民交通出版社,2001.
    [76]矢野信太郎.盾构工法.东京:鹿岛研究所出版会,1980.
    [77]富昭治郎.建筑机械学.东京:鹿岛研究所出版会,2001.
    [78]万姜林,洪开荣.采用复合式盾构修建混合地层隧道.施工技术. 2002,31(6):7-9.
    [79]白中仁.广州地铁三号线客大盾构区间盾构机选型技术[硕士论文].成都:西南交通大学,2003.
    [80]陈叔.如何选用土压平衡盾构机施工复合地层.四川建筑. 2003,23(2):79-80.
    [81]孙永刚.广州地铁三号线客村~大塘盾构区间盾构机掘进技术研究[硕士论文].成都:西南交通大学,2003.
    [82]汪如曾.用于复杂地层的φ4.65m复合盾构掘进机.中国市政工程. 2004(4):48-50.
    [83]许少辉,竺维彬,袁敏正.广州地铁复合地层盾构技术的探索和突破.大直径隧道与城市轨道交通工程技术-2005上海国际隧道工程研讨会,上海,2005,189-191.
    [84]张良辉.广州复合地层中盾构施工技术难点及应对措施.施工技术. 2005,34(6):21-23.
    [85]李斌汉.广州地铁工程复合式盾构施工技术研究[硕士论文].重庆:重庆大学,2006.
    [86]谭忠盛,洪开荣,万姜林等.软硬不均地层复合盾构的研究及掘进技术.岩石力学与工程学报. 2006,25(增2):3945-3952.
    [87]杨书江.盾构在硬岩及软硬不均地层施工技术研究[硕士论文].上海:上海交通大学,2006.
    [88]韩风险.特殊地质情况下土压平衡盾构掘进施工技术.铁道建筑技术. 2007(4).
    [89]靳世鹤.广州地铁硬岩段土压平衡盾构掘进施工的对策.都市快轨交通. 2007,20(3):64-70.
    [90]吕佳欢,周松,朱继文.复杂地层地铁盾构施工技术研究. 2007(1):41-44.
    [91]宋克志,孙谋.复杂岩石地层盾构掘进效能影响因素分析.岩石力学与工程学报. 2007,26(10):2092-2096.
    [92]张志国,章龙管.国产砂砾复合地层刀盘在北京地铁中的使用.采矿技术. 2007,7(1):80-83.
    [93]周顺华,宋天田.复合地层条件下盾构刀盘设计研究.地下空间与工程学报. 2007,3(3):479-482.
    [94]竺维彬,鞠世健.复合地层盾构隧道工程地质勘察方法的研究.隧道建设. 2007,27(6):10-14.
    [95]郭广才.复合地层中盾构过江风险及对策.广东建材. 2008(6):212-215.
    [96]郭庆华,李彦.广州地区疑难地层中土压平衡盾构推进技术措施浅谈.煤炭工程. 2008(1):41-42.
    [97]蒙先君.复合式土压平衡盾构机在特殊地质段的掘进方法.工程机械与维修. 2008(10):104-108.
    [98]苏小江,李笑.复杂地质中盾构掘进控制技术探讨.现代隧道技术. 2008,45(4):39-43.
    [99]闫岢宏.复合地层中大直径盾构刀盘刀具的选型与优化.工程机械与维修. 2008(2):104-108.
    [100]靳世鹤.广州地铁特殊地质土压平衡盾构施工方法.都市快轨交通. 2009,22(3):55-57.
    [101]马云新.广州地铁复合地层中盾构机掘进适应性分析.山西建筑. 2009,35(6):322-323.
    [102]高军,赵运臣.武汉长江盾构隧道洞口浅埋段施工地层稳定性数值分析.隧道建设. 2007,27(1):8-12.
    [103]Gary J. E. Kramer, Jess Albino. Los Angeles Metro - TBM starter tunnels-mixed face conditions, Minneapolis, ASCE, 1997, 241-250.
    [104]J. H. Steingrimsson, E. Gr?v, B. Nilsen. The significance of mixed-face conditions for TBM performance. World Tunnelling. 2002, 15(9): 435-441.
    [105]S. Dalgic. Tunneling in fault zones, Tuzla tunnel, Turkey. Tunnelling and Underground Space Technology. 2003, 18(5): 453-465.
    [106]Marc C. Bosse. Performance of EPB-TBM in Mixed Face Conditions City of Edmonton South LRT Extension[Master Dissertation]. Canada, Edmenton: University of Alberda, 2005.
    [107]S. Nabendererde, E. Hoek, P. Marinos. Geological risk in the use of TBMs in heterogeneous rock masses - The case of 'Metro do Porto' and the measures adopted. Geotechnical Risks in Rock Tunnels. 2006.
    [108]M. A. Krulc, J. J. Murray, M. T. McRae etc. Construction of a mixed face reach through granitic rocks and conglomerate, Toronto, 2007, 928-942.
    [109]J. Zhao, Q. M. Gong, Z. Eisensten. Tunnelling through a frequently changing and mixed ground: A case history in Singapore. Tunnelling and Underground Space Technology. 2007, 22(4): 388-400.
    [110]F. M. Saavedra. Boring of tunnels in mixed face conditions with large diameter TBMs. Recent experiences. Revista de Obras Publicas. 2009, 156(3498): 65-78.
    [111]周渊深.交直流调速系统与MATLAB仿真.北京:中国电力出版社,2003.
    [112]朱其先,赵淑兰.钻机绞车矢量变换变频调速机械特性和工作原理.石油矿场机械. 2004,33(4):8-12.
    [113]欧阳名三,朱旋.异步电动机变频调速后机械特性的研究.煤矿机械. 2006,27(6):951-952.
    [114]吴序唐.齿轮啮合原理,第一版.北京:机械工业出版社,1982.
    [115]X. H. Tian. Dynamic simulation for system response of gearbox including localized gear faults[Master Dissertation]. Canada, Edmonton: University of Alberta, 2004.
    [116]曲秀全,戴恒震.关于渐开线圆柱齿轮重合度的另一种定义方法.机械. 2002(S1):130-131.
    [117]陈茂海.具有周期系数线性微分方程的性质.工科数学. 2001,17(1):94-96.
    [118]郑大钟.线性系统理论.北京:清华大学出版社,2002.
    [119]王生泽,任计格.线性周期时变振动系统的稳定性分析.振动与冲击. 2004,23(3):111-112.
    [120]朱伟译.日本隧道标准规范(盾构篇)及解释.北京:中国建筑工业出版社,2001.
    [121]Y. Huang, Y. Xiong. Force planning for underground articulated robot. 2008, 5314 LNAI: 64-74.
    [122]杨洪杰,杨耀,傅德明.土压平衡式盾构周围的土压力分析.城市轨道交通研究. 2006,9(12):51-53.
    [123]加瑞.盾构隧道垂直土压力松动效应的研究[硕士论文].南京:河海大学,2007.
    [124]亓洪玲.盾构掘进机壳体选型及力学问题[硕士论文].大连:大连理工大学,2008.
    [125]齐静静,徐日庆,纲魏等.隧道盾构法施工引起周围土体附加应力分析.岩土力学. 2008,29(2):529-544.
    [126]徐前卫,朱合华,廖少明等.均匀软质地层条件下土压平衡盾构施工的合理顶进推力分析.岩土工程学报. 2008,30(1):79-85.
    [127]肖衡.大直径泥水盾构掘进对土体的扰动研究[硕士论文].北京:北京交通大学,2009.
    [128]余海东,丁晟,张凯之等.盾构机主轴回转支承轴承刚度及变形特性研究.中国机械工程. 2011(4):452-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700