AZ31镁合金疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是最轻的金属结构材料,具有高的比强度、比刚度、减振性、导热性、可切削加工性和可回收性,因而被称为21世纪的“绿色工程材料”。尤其是随着汽车工业及电子行业的迅速发展,大量的镁合金构件应运而生,部分代替了塑料、铝合金甚至钢铁材料,预计镁合金将成为本世纪最重要的商用轻质金属结构材料之一。目前,铸造镁合金应用关键技术已取得较大突破,产业化已初具规模。研究结果表明,变形镁合金无论在强度还是韧性方面均远优于铸造镁合金。因此,变形镁合金必然为下一代新型镁合金的发展重点。作为结构材料,镁合金必然会受到循环应力/应变作用,为了其安全应用,需要了解其疲劳行为及失效机理。但是对镁合金疲劳性能的研究,一般采用唯象连续介质模型,忽略了镁合金独特的变形机制特点。AZ31镁合金独特的hcp晶格结构,导致孪生成为其重要的变形机制之一。但目前的研究,一般将位错滑移与孪生混合在一起研究,甚至忽略了孪生在疲劳开裂中的作用。事实上,孪生在一定条件下可以成为疲劳变形主要的变形机制,同时通过改变晶粒取向为位错的进一步滑移提供条件。因此,了解孪生在镁合金疲劳变形过程中的作用,可以更深刻的了解镁合金的疲劳变形行为。
     为此,本文以AZ31镁合金为研究对象,通过研究镁合金疲劳过程中孪生的影响因素入手,了解孪生在镁合金疲劳中的作用。对镁合金而言,影响孪生行为的因素主要包括织构、应变率、晶粒尺寸和预先引入的孪晶等。采用X射线衍射技术确定镁合金织构,沿特定取向切割试样,研究孪生与位错滑移各自对疲劳性能的影响规律;通过不同频率下的疲劳实验,产生不同的孪生量,分析孪生量对镁合金疲劳寿命的影响;ECAP变形细化镁合金,抑制孪晶的产生,研究细晶对镁合金疲劳性能的影响规律;采用预变形手段在镁合金中引入孪晶,研究初始孪晶对镁合金疲劳的影响。取得以下主要结论:
     (1)当镁合金以孪生为主要变形机制时,由于出现了大量的残余孪晶,试样具有较高的循环硬化行为;孪生主导试样具有较大的裂纹尖端循环塑性区,其尺寸大约是位错主导试样的的四倍,由此导致了孪生主导试样断口较为粗糙,而位错主导试样断口较为光滑,并出现了含有大量孪晶的小平面;由于粗糙裂纹面诱发的裂纹闭合效应,孪生主导试样具有较高的疲劳寿命。
     (2)恒应力幅对称高周疲劳条件下,随着疲劳的进行,能量参数逐渐降低至零,表明滞后环不对称性逐渐减轻;棘轮行为只存在于镁合金疲劳初期,随后出现棘轮安定,因此其对镁合金疲劳损伤影响不大;压缩应变峰值随疲劳进行逐渐变小,在约200周时反向,表现为拉伸应变,抑制了退孪生行为;疲劳裂纹易在材料表面孪晶带处形核,并以穿晶方式沿着孪晶界面扩展。
     (3)低于0.2%的应变幅下,加载频率提高可以延长镁合金疲劳寿命;而高于0.2%的应变幅时,频率对疲劳寿命影响不大。疲劳寿命的增加源于低应变幅高频率下,提高了孪晶的数量。
     (4)等径角变形AZ31镁合金在应变疲劳条件下表现出循环软化行为,且随着应变幅的增加,软化程度加剧;该软化行为可归因于疲劳过程中的微结构的不稳定性。等径角挤压变形造成了AZ31镁合金内部的缺陷沿着最后一道次的切变面分布,引起晶粒的再结晶,并使得再结晶晶粒的长轴沿着等径角挤压的切变面。等径角变形材料具有较小的疲劳应变能,由此提高了镁合金的低周疲劳寿命,其弹性应变幅、塑性应变幅与断裂时的载荷反向周次之间的关系可分别采用Basquin和Coffin-Manson公式描述。
     (5)无预压缩镁合金在拉伸阶段以位错滑移为主要变形机制,在压缩阶段以孪生为主要变形机制,而预压缩变形改变了拉伸和压缩阶段的变形机制,并导致了平均应力的改变。在高应变幅下,疲劳寿命取决于塑性应变幅。但在低应变幅下,位错运动的主要部分可逆,此时材料的疲劳寿命取决于平均应力。
Magnesium alloys are among the lightest metallic materials for structural applications. Due to high specific strength and rigidness, as well as good machinability and recyclability, magnesium alloy has been known as the 21st century 'green' engineering material. In recent years, with the rapid progress of automotive and electronic industries, a number of magnesium alloy components have been manufactured to replace those made from plastics, aluminium alloy and steel ones. It can be expected that magnesium alloys will become the most important structural materials in commercial metal materials. Wrought magnesium alloys can exhibit the higher strength and better plasticity than cast magnesium alloys, and show the more significant potential in further applications of magnesium based materials. As structural materials in service, magnesium alloys are usually subjected to repeated reverse loading, and therefore the cyclic deformation behavior of these materials needs to be studied in detail for safety reasons. However, many investigations were based on the macroscopic fatigue properties, neglecting the deformation characteristics of magnesium alloys. Due to hcp crystal lattice, twinning and slip are important to deformation of magnesium alloys. And in some cases, twinning may be the main deformation mechanism. As such, it is important to understand the role of twinning in fatigue process.
     So in this dissertation, the widely used AZ31 wrought magnesium alloy are chosen as model material to understand the role of twinning. In fact, some factos influence the behavior of twinning, such as texture, strain rate, grain size and initial twins. According to the initial texture of the extruded AZ31 plate investigated by X-ray diffraction, samples were cut along different directions to discriminate the role of twinning and slip in fatigue process. Under different frequencies, the degree of twinning is different and its effect on fatigue properties was analyzed. Magnisum alloy can be fined by equal channel angular pressing (ECAP), which suppress the activation of twinning. And the fatigue properties of ultrained AZ31 can be understood. Initial twins can alter the deformation mechanism under fatigue process, and the influence of initial twins on fatigue properties can be acquired by pre-deformation. From this work, the following conclusions are drawn:
     (1) The low-cycle tension-tension fatigue properties of extruded Mg-3%Al-1%Zn alloy plate have significantly different features in twinning-dominated samples and dislocation-dominated samples. The twinning-dominated samples show more pronounced cyclic hardening and longer fatigue life than those of the slip-dominated samples. The elongated lifetime of the twinning-dominated samples may be due to the roughness-induced crack closure, according to the calculated reverse plastic zone size.
     (2) A number of uniaxial stress-controlled cyclic loading experiments were conducted on extruded AZ31 magnesium alloy, in order to investigate the influence of tension-compression asymmetry on fatigue properties. The results show that the systeresis loops exhibit asymmetry during initial fatigue cycles, but this asymmetry vanishes after 200 cycles. The peak compressive strain gradually decreases, and at about 200 cycles, it reverses to tensile strain. Fatigue crack initiates at the twin bands in the surface, and the crack propagates along with specific twin boundaries. Due to texture and deformation mechanism, twining and detwinning behaviors are often observed in the fatigue process, which leads to the hysteresis loop asymmetry.
     (3) Fully reversed strain-controlled tension-compression fatigue tests were carried out at frequencies of 1Hz and 10Hz in ambient air to investigate the frequency effect. When the strain amplitude was lower than 0.2%, the fatigue life exhibited a positive correlation with loading frequency, and the activity of twinning was increased at 10Hz. When the strain amplitude was higher than 0.2%, significant twinning was observed both at both frequencies, and the fatigue life was found to be independent of frequency. The possible reasons for this frequency-related fatigue lifetime may be due to the dependence of twinning upon loading frequency and strain amplitude.
     (4) The low-cycle tension-compression fatigue tests were performed at ambient temperature on ultrafine grained AZ31 magnesium alloy processed by equal channel angular pressing. All samples exhibited cyclic softening, and the softening effect increased with increasing total strain amplitude, which may be due to the instability of microstructure. Observations by optical microscope revealed that pronounced recrystallization occurred, and the direction of larger axis of recrystallized grains was nearly 45°with respect to the loading axis. A model is proposed to account for the recrystallization, based on the characteristic distribution of defects introduced by equal channel angular pressing. Compared with the conventional extruded AZ31 alloy, the ECAP processed AZ31 alloy has lower hysteresis strain energy and leads to enhanced fatigue lives. And the dependences of the strain fatigue life on plastic strain amplitude and elastic strain amplitude can be described by the Coffin-Manson and Basquin equations, respectively.
     (5) The fatigue properties of a AZ31 magnesium alloy was investigated in both thermomechanically treated extruded and pre-compression conditions. For pre-compression materials, twinning was the dominant deformation mechanism during the tensile loading, and slips were the dominant during the compressive loading, which induced different mean stresses in extruded and pre-compressin materials. Expermental results show that in high strain amplitude, the fatigue lifetime was controlled by plastic strain amplitude which could lead to accumulated cyclic damage. On the other hand, in low strain amplitude, it is invalid for most of dislocation slips are reversal, and the fatigue lifetime was controlled by mean stress.
引文
[1]徐灏.疲劳强度[M].北京:高等教育出版社,1988
    [2]曾春化,邹十践.疲劳分析方法及实践[M].北京:国防工业出版社,1991
    [3]J.A.Ewing, J.C.W.Humfrey. The fracture of metals under Rapid Alternations of stress[J]. Philosophy of Transaction R. Scociety.1903,A200:241-250
    [4]N.Thompson, N.J.Eadsworth, N.Louat. The origin of fatigue fracture in copper[J]. Philosophical Magazine,1956,1:113-126
    [5]张哲峰.铜双晶体的循环变形行为与疲劳损伤机制.沈阳:中国科学院金属研究所博士论文,1998
    [6]朱荣.热处理对疲劳铜单晶体位错结构的影响.沈阳:中国科学院金属研究所硕士论文,2003
    [7]李勇.铜晶体循环形变过程中的位错组态演化.沈阳:中国科学院金属研究所硕士论文,2003
    [8]陈振华.变形镁合金[M].北京:化学工业出版社,2005
    [9]H.Mayer, M.Papakynacon, B.Zettl, S.Stanzl-Tschegg. Influence of porosity on the fatigue limit of die cast magnesium and aluminm alloys [J]. International Journal of Fatigue.2003,25(3):245-256
    [10]周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展[J].材料导报.2003,17(11)16-18
    [11]D.K.Xu, L.Liu, Y.B.Xu, E.H.Han. The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime[J]. Scripta Materialia. 2007,56:1-4
    [12]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势[J].材料导报.2008,,22(5):58-61
    [13]刘洋,谢骏,郭雪锋Mg-Zn系耐热铸造镁合金的最新研究进展[J].《铝加工》技术工程.2010,3:20-25
    [14]B. L. Mordike and T. Ebert. Magnesium:properties-applications-potential [J]. Materials Science and Engineering A.2001,302 (1):37-45
    [15]H. Friedrich and S. Schumann. Research for a "new age of magnesium" in the automotive industry[J]. Journal of Materials Processing Technology.2001,117 (2): 276-281
    [16]I. J. Polmear. Magnesium alloys and applications[J]. Materials Science and Technology. 1994,10(2):1-16
    [17]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002
    [18]崔昆.钢铁材料及有色金属材料[M].北京:机械工业出版社,1986
    [19]陈振华.镁合金[M].北京:化学工业出版社,2004
    [20]孙丰翠Mg-12Gd-3Y-0.5Zr合金力学及阻尼性能研究[D].南京:南京理工大学硕士论文,2009
    [21]李忠盛,潘复生,张静.AZ31镁合金的研究现状和发展前景[J].金属成形工艺.2004,22(1):54-57
    [22]谢春晓,陈丙璇,刘凯.AZ31变形镁合金的研究与开发[J].金属世界,2006,2:22-26
    [23]J.B. Clark, L. Zabdyr, and Z. Moser.Phase Diagrams of Binary Magnesium Alloys[J]. ASM International.Metals Park. OH.1988,353-364
    [24]张诗昌,段汉桥,蔡启周.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-314
    [25]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685
    [26]智莹.热挤压AZ31镁合金低周疲劳行为研究[D].沈阳:沈阳工业大学硕士论文,2009
    [27]J.B. Clark. Age hardening in a Mg-9 wt.%Al alloy [J]. Acta Metallurgic, 1968,16(2):141-152
    [28]S.Celotto. TEM study of continuous precipitation in Mg-9wt%Al-1wt%Zn alloy [J]. Acta Materialia,2000,48(8):1775-1787
    [29]J.F.Nie, X.L.Xiao, C.P.Luo, B.C.Muddle. Characterisation of precipitate phases in magnesium alloys using electron microdiffraction [J]. Micron,2001,32(8):857-863
    [30]S.M.He, X.Q.Zeng,L.M.Peng,X.Gao,J.F.Nie,W.J.Ding. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J]. Journal of Alloy and Compounds,2007,427:316-323
    [31]J.F.Nie. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia,2003,48:1009-1015
    [32]S. R. Agnew and O. Duygulu. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. International Journal of Plasticity,2005,21:1161-1193
    [33]R. V. London, R. E. Edelman and H. Markus. Development of a wrought high-strength magnesium-yttrium alloy[J]. Transactions of American Society for Metals,1996,59 250-261
    [34]A.Staroselsky, L.Anand. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B[J]. International Journal of Plasticity, 2003,19:1843-1864
    [35]M.H.Yoo. Slip, twinning, and fracture in hexagonal close-packed metals[J].Metallurgical Transactions,1981,12A:409-418
    [36]J. W. Christian, S. Mahajan. Deformation twinning[J]. Progress in Material Science, 1995,39:1-157
    [37]M.R.Barnett, Z.Keshavarz, A.GBeer, X.Ma. Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy [J]. Acta Materialia,2008,56:5-15
    [38]吕宜振,Mg-Al-Zn合金组织、性能、变形和断裂行为研究.上海:上海交通大学博士论文,2001
    [39]S.Kleiner, P.J.Uggowitzer. Mechanical anisotropy of extruded Mg-6%Al-1%Zn alloy[J]. Materials Science and Engineering A,2004,379:258-263
    [40]J.Bohlen, M.R.Nurnberg, J.W.Senn, D.Letzig, S.R.Agnew. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Materialia,2007,55:2101-2112
    [41]Y.Chino, K.Kimura, M.Hakamada, M.Mabuchi. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Materials Science and Engineering A,2008, 485(1/2):311-317
    [42]J.T.Wang, D.L.Yin, J.Q.Liu, J.Tao, Y.L.Su, X.Zhao. Effect of grain size on mechanical property of Mg-3Al-1Zn alloy[J]. Scripta Materialia,2008,59:63-66
    [43]Y.N.Wang, J.C.Huang. The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn alloy [J]. Acta Materialia,2007,55(3):897-905
    [44]L.Wu, A.Jain, D.W.Brown,G.M.Stoica, S.R.Agnew, B.Clausen, D.E.Fielden, P.K.Liaw. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A[J]. Acta Materialia,2008,56:688-695
    [45]S.H.Park, S.G.Hong, C.S.Lee. Activation mode dependent{10-12} twinning characteristics in a polycrystalline magnesium alloy [J]. Scripta Materialia,2010, 62(4):202-205
    [46]S.M.Yin, H.J.Yang, S.X.Li, S.D.Wu, F.Yang. Cyclic deformation behavior of as-extruded Mg-3%Al-1%Zn[J]. Scripta Materialia,2008,58:751-754
    [47]H.Mugrabi. The cyclic hardening and saturation behaviorof copper single crystals[J]. Materials Science and Engineering,1978,33:207-223
    [48]B.Gong, Z.R.Wang, Z.G.Wang, Cyclic deformation behavior and dislocation structures of [001] copper single crystals-I cyclic stress-strain response and surface feature[J]. Acta Materialia,1997,45(4):1365-1377
    [49]A.Vinogradov, Y.Kaneko, K.Kitagawa, S.Hashimoto, V.Stolyarov, R.Valiev. Cyclic response of ultrafine-grained copper at constant plastic strain amplitude[J]. Scripta Materialia,1337,36(11):1345-1351
    [50]J.X.Zhang, Q.Yu, Y.Y.Jiang, Q.Z.Li. An experimental study of cyclic deformation of extruded AZ61A magnesium alloy[J]. International Journal of Plasticity,2010, 21(11):2174-2190
    [51]L.Wu, S.R.Agnew, Y.Ren, D.W.Brown, B.Clausen, G.M.Stoica, H.R.Wenk, P.K.Liaw. The effect of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy AZ31B[J]. Materials Science and Engineering A,2010,527:7057-7067
    [52]L.Wu, S.R.Agnew, D.W.Brown, G.M.Stoica, B.Clausen, A.Jain, D.E.Fielden, P.K. Liaw. Intenal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A[J]. Acta Materialia,2008,56:3699-3707
    [53]X.L.Tan, H.C.Gu. Fatigue crack initiation in high-purity titanium crystals [J]. International Journal of Fatigue,1996,18(5):329-333
    [54]H.Li, Q.Q.Duan, X.W.Li, Z.F.Zhang. Compressive and fatigue damage behavior of commercially pure zinc [J].Materials Science and Engineering A,2007,466(1/2):38-46
    [55]R.Stevenson, J.B.V. Sande. The cyclic deformationo of magnesium single crystals [J].Acta Metallurgica,1974,22(9):1079-1086
    [56]F.Yang, S.M.Yin, S.X.Li,Z.F.Zhang. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A,2008,491:131-136
    [57]S.M.Yin, F.Yang, X.M.Yang, S.D.Wu, S.X.Li, G.X.Li. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy[J]. Materials Science and Engineering A,2008,494:397-400
    [58]O.H.Basquin. The exponential law of endurance tests[J]. Proceedings of the American Society for testing and Materials,1910,10:625-630
    [59]L.F.Coffin. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers,1954,76:931-950
    [60]S.S.Manson. Behavior of materials under conditions of thermal stress[M]. National Advisoty Commission on Aeronautics:Reports 1170. Cleverland:Lewis Flight Propulsion Laboratory
    [61]S.Suresh,王中光(译).材料的疲劳[M].北京:国防工业出版社
    [62]S.Hasegawa, Y.Tsuchida, H.Yano,M.Matsui. Evaluation of low cycle fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue,2007,29:1839-1845
    [63]M.Matsuzuki, S.Horibe. Analysis of fatigue damage process in magnesium alloy AZ31[J]. Materials Science and Engineering A,2009,504:169-174
    [64]Q.Z.Li, Q.Yu, J.X.Zhang,Y.Y.Jiang. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy[J]. Scripta Materialia,2010
    [65]S.H.Park, S.G.Hong, W.Y.Bang, C.S.Lee. Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy[J]. Materials Science and Engineering A,2010, 527(3):417-423
    [66]S.H.Park, S.G.Hong,B.H.Lee, W.Y.Bang, C.S.Lee. Low-cycle fatigue characteristics of rolled Mg-3Al-1Zn alloy [J]. International Journal of Fatigue,2010,32:1835-1842
    [67]S.A.Khan,Y.Miyashita,Y.Mutoh,Z.B.Sajuri. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys [J]. Materials Sciences and Engineering A,2006,520:315-321
    [68]K.Gall.G.biallas, H.J.Maier, P.Gullett, M.F.Horstemeyer, D.L.McDowell. In-situ observations of low-cycle fatigue damage in cast AM60B magnesium in an environmental scanning electron microscope [J]. Metallurgical and Materials Transactions A,2004,35(1):321-331
    [69]K.Gall,G.Biallas,H. J.Maier,P.Gullett,M.F.Horstemeyer,D.L.McDowell, J.Fan. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments [J]. International Journal of Fatigue,2004,26(1):59-70
    [70]K. Gall, G.Biallas,H.J.Maier, M.F.Horstemeyer,D.L.McDowell. Environmentally influenced microstructurally small fatigue crack growth in cast magnesium [J]. Materials Science and Engineering A,2005,396(1/2):143-154
    [71]H.E.Kadiri, A.L.Oppedal. A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects [J]. Journal of the Mechanics and Physics of Solids,2010,58:613-624
    [72]J.D.Bernard, J.B.Jordon, M.F.Horstemeyer, H.E.Kadiri,J.Baird, D.Lamb, A.A.Luo. Structure-property relations of cyclic damage in a wrought magnesium alloy [J]. Scripta Materialia,2010,63:751-756
    [73]S.Ishihara, T.Namito, S.Yoshifuji,T.Goshima. On fatigue lives of diecast and extruded Mg alloys[J]. International Journal of Fatigue,2010, doi:10.1016/j.ijfatigue.2010.11.023
    [74]Y.Uematsu, K.Tokaji, M.Matsumoto. Effect of aging treatment on fatigue behavior in extruded AZ61 and AZ80 magnesium alloy [J]. Materials Science and Engineering A, 2009,517:138-145
    [75]Y.Yoshida, L.Cisar, S.Kamado. Texture development of AZ31 magnesium alloy during ECAE processing[J]. Materials Science Forum,2003,419-422:533-439
    [76]Y.N.Wang, J.C.Huang. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics,2003,81(1):11-26
    [77]P.Yang, Y.Yu, L.Chen, W.Mao. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta Materialia, 2004,50(8):1163-1168
    [78]S.R.Kalidindi. Incorporatino of deformation twinning in crystal plasticity models[J]. Journal of the Mechanics and Physics of Solids,1998,46:267-275
    [79]A.Styczynski, C.Hartig, J.Bohlen, D.Letzig. Cold rolling texture in AZ31 wrought magnesium alloy[J]. Scripta Materialia,2004,50:943-947
    [80]S.Myagchilov, P.R.Dawson. Evolution of texture in aggregates of crystals exhibiting both slip and twinning[J]. Modelling and Simulation in Materials Science and Engineering,1999,7:975-1042
    [81]A.Galiyev, O.Sitdikov, R.Kaibyshev. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy [J]. Materials Transaction, 2003,44(4):426-433
    [82]S.Ando, M.Tanaka, H.Tonda. Pyramidal slip in magnesium alloy single crystals[J]. Materials Science Forum,2003,419-422:87-92
    [83]S.R.Agnew, M.H.Yoo,C.N.Tome. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia,2001,49:4277-4289
    [84]F.Lv,F.Yang,Q.Q.Duan,T.J.Luo,Y.S.Yang,S.X.Li, Z.F.Zhang. Tensile and low-cycle fatigue properties of Mg-2.8%Al-1.1%Zn-0.4%Mn alloy along the transverse and rolling directions[J]. Scripta Materialia,2009,61:887-890
    [85]杨瑞成,邓文怀,冯辉霞.工程设计中的材料选择与应用[M].北京:化学工业出版社,2004
    [86]S.Ishihara, Z.Y.Nan, T.Goshima. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy[J]. Materials Science and Engineering A,2007,468-470:214-222
    [87]T.Liu, Y.D.Wang,S.D.Wu,R.L.Peng,C.X.Huang,C.B.Jiang,S.X.Li. Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP[J]. Scripta Materialia, 2004,51:1057-1061
    [88]Y.Uematsu, K.Tokaji,M.Kamakura, K.Uchida,H.Shibata,N.Bekku. Effect of extrudion conditions on grain refinement and fatigue behavior in magnesium alloy [J]. Materials Science and Engineering A,2006,434:131-140
    [89]E. O. Hall. The deformation and ageing of mild steel:Ⅲ. Discussion of results[J]. Proceedings of the Physical Society B,1951,64:747-753
    [90]N. J. Petch. The cleavage strength of polycrystals[J]. Iron Steel Institute,1953,174 25-28
    [91]Y.Yoshida, L.Cisar, S.Kamado. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy[J]. Materials Transaction. 2003,44(4):468-475
    [92]R.Z. Valiev and T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Progress in Materials Science,2006,51 881-981
    [93]R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science,2000,45 (2):103-189
    [94]M. C. Roco, T. C. Lowe and M. Krebs. Nanomaterials:from promise to production[J]. Advanced Materials & Processes,2001,159 (8):42-43
    [95]P. W. Bridgman. Studies in large plastic flow and fracture[M]. New York:McGraw-Hill, 1952,p9
    [96]G. A. Salishchev, R. M. Galeyev, S. P. Malysheva and M. M. Myshlyaev. Structure and density of sub-microcrystalline titanium produced by severe plastic deformation[J]. Nanostructured Materials,1999,11 (3):407-414
    [97]陆文林,王勇,冯泽舟.沙漏挤压镦粗复合加工技术[J].塑性工程学报,2000,74:1-4
    [98]V. M. Segal, V. I. Reznilkov and V. I. Kopylov. Processes of plastic transformation of metals[M]. Minsk:Navukai Teknika,1984:295
    [99]K. Xia, J. T. Wang, X. Wu, G. Chen and M. Gurvan. Equal channel angular pressing of magnesium alloy AZ31[J]. Materials Science and Engineering A,2005:410-411
    [100]V. V. Stolyarov, R. Lapovok, I. G. Brodova and P. F. Thomson. Ultrafine-grained Al-5 wt.% Fe alloy processed by ECAP with backpressure[J]. Materials Science and Engineering A,2003,357:159-167.
    [101]A. Azushima and K. Aoki. Properties of ultrafine-grained steel by repeated shear deformation of side extrusion process[J]. Materials Science and Engineering A,2002, 337:45.49.
    [102]V. M. Segal, V. I. Reznikov, A. E. Drobyshevkiy and V. I. Kopylov. Plastic working of metals by simple shear [J]. Russian Metallurgy,1981,1:99-105.
    [103]A.Mussi, J.J.Blandin, E.F.Rauch. In Nanomaterials by Severe Plastic Deformation, Weinheim.Germany,2004:740-745
    [104]Z.Horita, K.Matsubara, T.Langdon. In Nanomaterials by Severe Plastic Deformation, Weinheim.Germany,2004:711-716
    [105]O.Kulyasova, R.Islamgaliev, B.Mingler,M.Zehetbauer. Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing[J]. Materials Science and Engineering A,2009,503:176-180
    [106]A.Yamashita, Z.Horita, T.G.Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A,2001,300(1/2):142-147
    [107]W.J.Kim, S.I.Hong, Y.S.Kim, S.H.Min, H.T.Jeong, J.D.Lee. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J]. Acta Materialia,2003,51(11):3293-3307
    [108]B.Beausir, S.Suwas, L.S.Toth, K.W.Neale, J.J.Fundenberger. Analysis of texture evolution in magnesium during equal channel angular extrusion [J]. Acta Materialia, 2008,56:200-214
    [109]Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Landong. The process of grain refinement in equal channel angular pressing [J]. Acta Materialia,1998,46(9):3317-3331
    [110]陶俊.织构和晶粒尺寸对变形镁合金AZ31力学性能的影响.南京:南京理工大学硕士论文,2007
    [111]S.R.Agnew, J.A.Horton,T.M.Lillo,D.W.Brown. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing [J]. Scripta Materialia, 2004,50:377-381
    [112]H.K.Kim, Y.I.Lee, C.S.Chung. Fatigue properties of a fine-grained magnesium alloy produced by equal channel angular pressing[J]. Scripta Materialia,2005,52:473-477
    [113]C.Z.Xu, Q.J.Wang, M.S.Zheng, J.D.Li, M.Q.Huang, Q.M.Jia, J.W.Zhu, L.Kunz, M.Buksa. Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equal-channel angular pressing(ECAP) [J]. Materials Science and Engineering A,2008,475:249-256
    [114]H.Mughrabi, H.W.Hoppel,M.Kautz. Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation [J]. Scripta Materialia,2004,51:807-812
    [115]H.W.Hoppel,M.Kautz,C.Xu, M.Murashkin, T.G.Langdon, R.Z.Valiev,H.Mughrabi. An overview:Fatigue behavior of ultrafine-grained metals and alloys [J]. International Journal of Fatigue,2006,28:1001-1010
    [116]L.Kunz, P.Lukas, M.Svoboda. Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper [J]. Materials Science and Engineering A, 2006,424:97-104
    [117]A.Vinogradov, S.Nagasaki, V.Patlan, K,Kitagawa, M.Kawazoe. Fatiuge properties of 5056 Al-Mg alloy produced by equal-channel angular pressing [J]. Nanostructured Materials,1999,11(7):925-934
    [118]H.K.Kim, M.I.Choi,C.S.Chung,D.H.Shin. Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing [J]. Materials Science and Engineering A,2003,340:243-250
    [119]S.D.Wu, Z.G.Wang, C.B.Jiang, G.Y.Li. Scanning electron microscopy-electron channeling contrast investigation of recrystallization during cyclic deformation of ultrafine grained copper processed by equal channel angular pressing [J]. Philosophical Magazine Letter,2002,82(10)559-565
    [120]S.D.Wu, Z.G.Wang,C.B.Jiang,G.Y.Li,I.V.Alexandro,R.Z.Valiev. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP[J]. Scripta Materialia,2003,48:1605-1609
    [121]K.Tokaji, M.Kamakura, Y.Ishizumi, N.Hasegawa. Fatigue behavior and fracture mechanism of a rolled AZ31 magnesium alloy[J]. International Journal of Fatigue,2004, 26:1217-1224
    [122]列文(著),秦曾志(译).金属的显微镜研究[M].北京:中国工业出版社,1963:159-165
    [123]R.B.Heywood. Designing Against Fatigue[M]. London:Chapman and Hall,1962
    [124]L.Kunz, P.Lukas, B.Weiss, D.Melisova. Effect of loadng history on cyclic stress-strain response [J]. Materials Science and Engineering A,2001,314:1-6
    [125]M.Barnett, Z.Keshavarz, A.Beer, D.Atwell. Influence of grain size on the compressive deformation of wrought Mg-3A1-1Zn[J]. Acta Materialia,2004,52:5093-5103
    [126]M.Gharghouri, G.Weatherly, J.Embury, J.Root. Study of mechanical properties of Mg-7.7at.%A1 by in-situ neutron diffraction[J]. Philosophical Magazine A, 1999,79:1671-1695
    [127]J.Koike. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature [J]. Metallurgical Materials Transaction A, 2005,36:1689-1696
    [128]R.Kwadjo, L.M.Brown. Cyclic hardening of magnesium single crystals [J].Acta Metallurgica, 1978,26(7):1117-1132
    [129]余永宁.金属学原理[M].北京:冶金工业出版社,2000
    [130]P.Reed, W. Gale, J.King. Intrinsic threshold in polycrystalline Udimet 720[J]. Materials Science and Technology,1993,9(4):281-287
    [131]Z. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys[J]. International Journal of Mechanical Sciences,2006,48:198-209
    [132]L.Kucherov, E.B.Tadmor. Twin nucleation mechanisms at a crack tip in an hcp material:Molecular simulation[J]. Acta Materialia,2007,55:2065-2074
    [133]J.Koike, T.Kobayashi, T.Mukai, H.Watanabe, M.Suzuki, K.Maruyama, K.Higashi. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia,2003,51:2055-2065
    [134]周锦银.镁合金及其应用技术发展的新动向[J].江苏冶金,2006,34:1-2
    [135]王良模,陈玉发,王晨至,王清政.铝合金车轮弯曲疲劳寿命的仿真分析与试验研究[J].南京理工大学学报(自然科学版),2009,33(5):571-575
    [136]S.K.Paul, S.Sivaprasad, S.Dhar, S.Tarafder. Racheting and low cycle fatigue behavior of SA333 steel and their prediction [J]. Journal of Nuclear Materials,2010,404:17-24
    [137]罗秀芳,杨婷慧,李政,张新平,王阳,董成,黄杨佳,张念苏.单轴应力循环作用下AZ91D镁合金的棘轮行为[J].中国有色金属学报,2009,19(10):1726-1732
    [138]X.P.Zhang, S.Castagne, X.F.Luo, C.F.Gu. Effects of extrusion ratio on the ratcheting behavior of extruded AZ31B magnesium alloy under asymmetrical uniaxial cyclic loading [J]. Materials Science and Engineering A,2011,528(3):838-845
    [139]罗秀芳.单轴拉压循环载荷作用下镁合金棘轮行为研究.南京:南京理工大学硕士论文,2010
    [140]徐尹杰.316L不锈钢单轴棘轮与蠕变行为研究.成都西南交通大学博士论文,2006
    [141]Y.J.Wu, R.Zhu, J.T.Wang, W.Q.Ji. Role of twinning and slip in cyclic deformation of extruded Mg-3%Al-1%Zn alloys[J]. Scripta Materialia,2010,63:1077-1080
    [142JT.S Shih, W.S.Liu, Y.J.Chen. Fatigue of as-extruded AZ61A magnesium alloy[J]. Materials Science and Engineering A,2002,325:152-162
    [143]Y.Furuya, S.Matsuoka,T.Abe,K.Yamaguchi. Gigacycle fatigue properties for high-strength low-alloy steel at 100Hz,600HZ, and 20kHz[J]. Scripta Materialia, 2002,46:157-162
    [144]J. Koike, N. Fujiyama, D. Ando, Y. Sutou. Role of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys [J]. Scripta Materialia,2010;63:747-750
    [145]D.Ando, J.Koike, Y.Sutou. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys [J]. Acta Materialia,2010,58(13):4316-4324
    [146]S.M.Fatemi-Varzaneh, A.Zarei-Hanzaki, M.Haghshenas. A study on the effect of thermo-mechanical parameters on the deformation behavior of Mg-3Al-1Zn[J]. Materials Science and Engineering A,2008,497:438-444
    [147]P. K. Liaw, H. Wang, L. Jiang, et al. Thermographic detection of fatigue damage of pressure vessel steels at 1000Hz and 20Hz[J]. Scripta Materialia,2000,42:389-395
    [148]N.Urabe, J.Weertman. Dislocation mobility in potassium and iron single crystals[J]. Materials Science and Engineering,1975,18:41-49
    [149]T.Murakami, T.Nomoto, T.Ueda. On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part Ⅱ:influence of hydrogen trapped by inclusions[J]. Fatigue Fracture Engineering Materials Structure,2000,23(11):903-910
    [150]M. H. Yoo. Slip, twining, and fracture in hexagonal close-packed metals[J]. Metallurgic Transaction A,1981,12:409-418
    [151]Q. Li, Q. Yu, J. Zhang, Y Jiang. Effect of strain amplitude on tension-compression fatigue behavior of extruded Mg6Al1ZnA magnesium alloy[J]. Scripta Materialia, 2010,62:778-781
    [152]王经涛.亚微晶材料发展概述[J].94’秋季中国材料研讨会论文集.北京:化学工业出版社,1995:376-381
    [153]Y. Iwahashi Y, Z. Horita, M. Nemoto, T. G. Langdon. The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia,1998,46:3317-3331
    [154]K. Xia, J. T. Wang, X. Wu, G. Chen, GURVAN M. Equal channel angular pressing of magnesium alloy AZ31[J]. Materials Science and Engineering A,2005,410-411:324-327
    [155]R. Z. Valiev. Paradoxes of severe plastic deformation [J]. Advanced Engineering Materials,2003,5:296-300
    [156]C.E.Feltner, C.Laird. Cyclic stress-strain response of F.C.C. metals and alloys-Ⅰ Phenomenological experiments [J]. Acta Metallurgic,1967,15(10):1621-1632
    [157]C.E.Feltner, C.Laird. Cyclic stress-strain response of F.C.C. metals and alloys-Ⅱ Dislocation structures and mechanisms [J]. Acta Metallurgic,1967,15(10):1633-1653
    [158]M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon. The shearing characteristics associated with equal-channel angular pressing[J]. Materials Science and Engineering A,1998,257:328-332
    [159]W.J.Kim, C.W.An, Y.S.Kim, S.I.Hong. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing[J].Scripta Materialia, 2002,47:39-44
    [160]H.W. Hoppel, Z.M.Zhou, H.Mughrabi, R.Z. Valiev. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper [J]. Philosophical Magazine A,2002,82(9):1781-1794
    [161]S.Malekjani, P.D.Hodgson, P.Cizek, T.B.Hilditch. Cyclic deformation response of ultrafine pure Al [J]. Acta Materialia,2011,13(59):5358-5367
    [162]T.Takasugi, O.Izumi, N.Fat-Halla. Activated slip systems during yielding of α-β brass two-phase bicrystals [J]. Journal of Materials Science,1978,13(9):2013-2021
    [163]S. Miura, K.Hamashima, K.T.Aust. Plastic deformation of aluminium bicrystals having Σ7 and Σ21 coincidence tilt boundaries [J]. Acta Metallurgica, 1980,28(11):1591-1602
    [164]P.Sittner, V.Paidar. Observation and interpretation of grain boundary compatibility effects in Fe-3.3wt%Si bicrystals [J]. Acta Metallurgica, 1989,37(7):1717-1726
    [165]C.Rey, A.Zaoui. Grain boundary effects in deformated bicrystals [J]. Acta Metallurgica, 1982,30(2):523-535
    [166]S.H.Xiao, Y.Z.Zhou, J.D.Guo, S.D.Wu, GYao, S.X.Li, GH.He, B.L.Zhou. The effect of high current pulsing on persistent slip bands in fatigued copper single crystals [J]. Materials Science and Engineering A,2002,332:351-355
    [167]S.H.Xiao, J.D.Guo, S.D.Wu, G.H.He, S.X.Li. Recrystallization in fatigued copper single crystals under electropulsing [J]. Scripta Materialia,2002,46:1-6
    [168]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [169]S.R.Agnew, A.Y.Vinogradov, S.Hashimoto, J.R.Weertman. Overview of fatigue performance of Cu processed by severe plastic deformation [J]. Journal of Electronic Materials,1999,28(9):1038-1044
    [170]H. Mughrabi, H.W. Hoppel. Proceedings of the Symposium B on Structure and Mechanical Properties of Nanophase Materials-Theory and computer simulations. Boston:MRS Fall Meeting,2000,634:B2.1.1-2.1.12
    [171]S.D.Wu, Z.G. Wang, C.B. Jiang, G.Y. Li, I.V. Alexandrov, R.Z. Valiev. Shear bands in cyclically deformed ultrafine grained copper processed by ECAP [J]. Materials Science and Engineering A,2004:387/389:560-564
    [172]M.Goto, S.Z.Han, S.S.Kim, N.Kawagoishi, C.Y.Lim. Significance of non-equilibrium grain boundaries in surface damage formation of ultrafine-grained copper in high-cycle fatigue [J]. Scripta Materialia,2007,57:293-296
    [173]D.Lefebvre, F.Ellyin. Cyclic response and inelastic strain energy in low cycle fatigue [J]. International Journal of Fatigue,1984,6(1):9-15
    [174]I.Bantounas,T.C.Lindley, D.Rugg, D.Dye. Effect of microtexture on fatigue cracking in Ti-6A1-4V [J].Acta Materialia.2007,55(16):5655-5665
    [175]王芝秀,李海,魏修宇,郑子樵.预变形对2E12铝合金拉伸性能和疲劳寿命的影响[J].稀有金属材料与工程,2010(39):138-141
    [176]李海,王芝秀,郑子樵.预变形及时效处理对7055铝合金组织和性能的影响[J].稀有金属材料与工程,2006(8):1276-1279
    [177]S.H.Park, S.G.Hong, C.S.Lee. Role of initial{10-12} twin in the fatigue behavior of rolled Mg-3Al-1Zn alloy [J]. Scripta Materialia,2010(63):666-669

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700