航空整体结构件铣削加工变形的有限元模拟理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体结构件的数控加工厂变形是航空制造技术所面对的最突出问题之一,严重地阻碍了航空制造业的发展。因此,实现航空整体结构件数控加工变形的预测和控制具有重大的理论意义和工程应用价值。鉴于问题的复杂性,本文通过机械制造、固体力学和有限元法等多学科的深入交叉,采用实验研究、理论建模和软件分析相结合的方法,从余属切削原理入手,分别建立了金属下交切削加工的热力耦合有限元模型和三维铣削加工的有限元模型,对铣削加工变形的机理、变形抑制的理论和工艺措施进行了广泛、深入的研究。
     本文,在第一章首先阐述了论文研究的背景和意义。其次总结了国内外航空整体结构件的数控加工概况,并对其加工变形产生的原因进行了详细的分析。进而,在详细论述本领域国內外研究现状的基础上,结合国家自然科学基金和国防型号工程项目,提出了航空整体结构件铣削加工有限元模拟的研究目标和技术路线。最后给出了本论文的研究内容和总体框架。
     第二章基于金属切削原理,建立了金属正交切削加工的热力耦合有限元模型,对有限元模拟所涉及的若干关键技术进行了研究,提出了几何—应力的切屑分离标准,并讨论了切削加工的模拟过程。最后,对所建立的有限元模型进行了实验验证。
     第三章提出了基于正交切削加工有限元模型的铣削参数优化方法。在铣削加工力学模型建立的基础上,对铣削加工模拟获得的一些基本物理量进行了分析、讨论,并对铣削加工产生的已加工表面残余应力,以及铣削刀具前角和铣削用量的优化进行了模拟研究。
     第四章基于M.C.Shaw提出的切屑可以视为一系列平行正交切片的思路,建立了基于正交切削加工模拟数据的切削力与切削温度的计算模型。通过将斜角切削加工时的切屑离散为数个切片,实现了三维切削加工与平面正交切削加工之间的相互映射,从而为斜角切削加工的切削力与切削温度的求解提供了一种新的思路,为进一步实现三维的铣削加工模拟提供了输入参数。
     第五章针对航空整体结构件铣削加工变形这一复杂的制造难题,建立了三维铣削加工的弹塑性热力耦合有限元模型,研究了材料模型、残余应力施加、刀具动态载荷、材料去除等铣削加工模拟所涉及的关键技术。最后,对三维铣削加工的模拟过程进行了详细的论述。
     第六章基于对航空框类结构件铣削加工变形产生原因的分析,分别研究了毛坯初始残余应力释放以及多因素耦合对零件加工变形规律的影响。通过将多因素耦合
    
    浙江大学博士学位论文
    模拟结果与比例件加工实验进行比较,证明了三维铣削加工有限元模型的正确性。
    在其它加工条件确定的前提下,对不同隔框加工顺序进行了模拟,确定了变形最小
    的隔框加工顺序。
     第七章对全文工作进行了概括总结,并对有待进一步研究的内容进行了展望。
    关键词:整体结构件;加工变形;热力祸合;正交切削;铣削加工;有限元模拟;
     生死单元;切屑成形;切屑分离标准;加工顺序;残余应力;切削力;切
     削温度;优化;动态切削载荷;加工路径
    本论文研究得到了国家自然科学基金项目、国防军工项目、教育部博士
    点基金项目等国家重点课题的资助
The distortion of monolithic component due to CNC machining is one of the most striking problems that aviation manufacturing technologies have to face up to, and seriously hinders the process of the aviation industry. So, it has great value in academic and engineering area to realize the prediction and manipulation of monolithic component machining distortion. The research of monolithic component involves many disciplines, such as mechanical manufacture, solid mechanics, finite element method and etc. In view of the complex nature of problem, a method combining experiment with theoretical modeling and computer analysis is proposed in this dissertation. Then, beginning with the metal cutting principle, two finite element models are constructed, one is a coupled thermo-mechanical finite element model with regard to plain strain orthogonal metal cutting and the other is a three-dimensional finite element model used to simulate milling process. Furthermore, these two models are used to study on the mechanism of milling distortion, the theory of restraining distortion and the process measure.Firstly, the background and significance of this dissertation are elaborated. Then, the current situation of CNC machining of aerospace monolithic component at home and abroad is summarized, and the main factors resulting in machining distortion are analyzed deeply. Furthermore, funded by the subject of national nature science fund and national defense model engineering, the research objective and technical route of this dissertation are advanced, and its research contents and overall structure are listed.In chapter 2, based on metal cutting principle, a coupled thermo-mechanical finite element model is constructed with regard to plain strain orthogonal metal cutting. In addition, several special finite element techniques, such as the chip separation criteria and friction model, have been implemented to improve the accuracy and efficiency of the finite element simulation. A chip separation criterion based on stress failure and geometry is proposed to realize separation of twin nodes. Then, simulating process of metal cutting is discussed. Afterwards, the above finite element model is proved to be right by comparing experiment data with simulation results.In chapter 3, an optimum method of milling parameter based on orthogonal cutting finite element model is proposed. According to mechanics analysis for milling process, a FEM for milling simulation is established. Then, some basic physical parameters, such as stress, strain, temperature and etc, are analyzed and discussed. After that, both residual stress of finished surface caused by milling process and optimization of milling tool rake and milling parameter are researched by simulation.In accordance with M.C.Shaw's idea that chip could be regard as a series of parallel orthogonal slices, a computing model of cutting force and cutting temperature based on orthogonal cutting simulation results is constructed in chapter 4, and a map is established between the three-dimensional cutting process and planar orthogonal cutting process. This
    
    method can be used to solve cutting force and cutting temperature of oblique angle cutting process, and provide input parameters for further simulation of 3D cutting process.So as to reveal the reason to bring in distortion due to milling and control it further, an elastic-plastic finite element model is established to simulate the aircraft integrated-components milling process in chapter 5. Some key techniques, including material model, initial residual stress model, dynamic cutting load model and material removal model, are explored and researched deeply. After that, a new flowchart for simulating the milling process is proposed.In chapter 6, the machining distortion law of part caused by release of initial residual stresses and multi-factors coupling are researched. Comparing the result of multi-factors coupling simulation to experiment, the FEA model is proved to be right and can be used to predict distortion of aircraft integrated-part due to milling
引文
[1] 王炎.飞机整体结构件数控加工技术应用中的问题与对策.航空制造工程,1998(4):28-30
    [2] 查治中,杨彭基.数控技术在飞机制造中的应用.北京:国防工业出版社,1992
    [3] 顾诵芬.航空航天科学技术(航空卷).济南:山东教育出版社,1998
    [4] 王立涛.基于铣削力要素的航空结构件变形机理研究及有限元模拟[博士学位论文] ,杭州:浙江大学,2003
    [5] 张伯霖,黄晓明,李志英.高速加工中心及其应用.机电工程技术,2001,30(5):11-14
    [6] 陈光明.高速切削技术的优势及经济性.机床与液压,2001(2):15-17
    [7] 徐强.高速切削加工技术及其相关技术的发展概况,机械工程师,2000(3):8-9
    [8] 张伯霖.高速加工技术在美国的最新发展.制造技术与机床,1999(4):5-6
    [9] 张永强.高速切削技术及其关键技术的发展现状.航空精密制造技术,2001,37(2):1-5
    [10] 程宝明.发展航空制造技术,迎接新世纪的挑战.航空制造技术,2001(1):19-27
    [11] 陈光明,杨勇.高速切削技术及其相关技术的发展现状与展望.机床与液压,2001(5):9-11
    [12] 赵威,何宁等.薄壁结构高效铣削加工.航空精密制造技术,2002,38(6):12-15
    [13] 王志刚,何宁.航空薄壁零件加工变形的有限元分析,航空精密制造技术,2000,36(6):7-10
    [14] 郭诚志,孟凡新,付燕松.框接头的数控加工.航天工艺,1998(5):12-15
    [15] 吴恒温.整体结构件的机械加工.航天工艺,1989(4):1-6
    [16] Sun J., Ke Y. L, Kang X.M., Study on Technology Stategies for Guarantee Machining Precision of Large-scale Integrated Aircraft Parts. 6th ICPMT, 2002, 695-701.
    [17] Kang X. M., Ke Y. L. Sun J. Research on the Mechanism of Machining Distortions in Manufacturing Large Integrated Aircraft Parts. 6th ICPMT, 2002, 661-664.
    [18] Huang Z. G., Ke Y.L. Finite Element Simulation of Dynamic Temperature Field of Orthogonal Machining Process. 6th ICPMT, 2002, 721-726
    [19] Wang Q. C., Ke Y. L. Prediction of Residually Stress- induced Warpage while Maching Aircraft Monolithic Parts. 6th ICPMT, 2002, 707-710
    [20] 刘亚俊,夏伟.金属切削理论发展的历史回顾.力学与实践,2001,23(4):72-74
    [21] 石光酶译,罗伯特·虎克.力学与实践,1981,3(3):70-73
    [22] Henkin A, Datsko J. The influence of physical properties on machinability. Trans ASME, 1963,85: 321-328.
    
    [23] Cocquilhat H. Experiences sur la resistance utile produties dans le forge. Annales des Traraus Publics en Belgique, 1851, 10(1): 199-205
    [24] Wiebe E Handbuch der Maschinen-Kunde, 1858
    [25] 黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究.浙江大学学报(已录用)
    [26] Mallock A. The action of cutting tools. Proceedings of the Royal society, 1881,33:127-139
    [27] Zvorikin KA. Rabota I Usilie. Neobkhodimie Dlaya Otdele-naya Metallicheskikh Struzhek, Moccow, 1893
    [28] Drucker DC. An analysis of the mechanics of metal cutting. Journal of Applied Physics, 1949, 20(1): 1,013-1,021
    [29] F.W. Taylor. On the Art of cutting Metal. ASME Transactions Vol., 1907, 28:31-35
    [30] Herbet EG. Cutting tools research committee. Report on Machinability. Proceeding, I Mech E, 1928, 114:175-825
    [31] 周鸿章.铝合金预拉伸板.铝加工,1999,22(3):16-19
    [32] Chao BT, Bisacre GH. The effect of feed and speed on the mechanics of metal cutting. Proceeding, I mech E, 1951, 165:1-13
    [33] Piispanen V. Lattunmoudostumisen Teoriaa, Teknillinen Aika Kauslehti. 1937
    [34] Ernst H. Merchant M. E. Chip formation, Friction, Finish. Cincinnati Milling Machine Company, Cincinnati, OH, 1941
    [35] Merchant, M. E., Mechanics of metal cutting process, Journal of Applied Physics, 1945, 16(5): 267-318
    [36] L.E. Lee, D.W. Shaffer, The theory of plastic applied to a problem of machining, Trans. ASME. J. Appl. Mech. 1951, 18(4): 405-413
    [37] M C Shaw, D. A. Farmer. Mechanics of the Abrasive Cutoff Operation. Transaction of the ASME, Journal of Engineering, 1967, 89(4): 495-502
    [38] Oxely P L B, Welsh M J M. An Explanation of the Apparent Bridgman Effect in Merchant's Orthogonal Cutting Results. Trans. ASME. Series B, 1967, 89(3): 549-555
    [39] Kudo H. Some New Slip-Line Solutions for Two-Dimensional Steady-state Machining. Int. J. Mech. Sci. 1965, 7(1): 43-55
    [40] E. Usui, T. Shirakashi, Mechanics of metal machining-from "descriptive" to "predictive" theory, on the art of cutting metals:A tribute to F. W. Taylor, PED 7, The winner annual meeting of the American Society of Mechanical Engineers, Ed. Kops, L., Ramalingam, S., 1982
    [41] K. lwata, A. Osakada, Y. Terasaka, Process modeling of orthogonal cutting by rigid-plastic finite element method, J. Eng. Mater. Technol., 1984, 106(1): 132-138
    
    [42] Strenkowski J S, Carroll J T. A Finite Element Model of Orthogonal Metal Cutting. Trans. ASME. 1985, 107(11): 347-354
    [43] Trent, E.M. Metal Cutting. Buttorworths, 1977
    [44] [日] 臼井英治 著,高希正,刘德忠译.切削磨削加工学.北京:机械工业出版社,1982
    [45] Shaw M C. Metal Cutting Priciples. Oxford: Clarendon Press, 1984
    [46] 陶乾.金属切削原理.北京:高等教育出版社,1956
    [47] 周泽华.刀—屑摩擦面上摩擦温度的分布.机械工程学报,1964,12(1):54-64
    [48] 周泽华 主编.金属切削原理(第二版).上海:上海科学技术出版社,1993
    [49] 艾兴,肖诗纲.切削用量手册.北京:机械工业出版社,1984
    [50] 袁哲俊.金属切削实验技术.北京:机械工业出版社,1988
    [51] 袁哲俊.金属切削刀具.上海:上海科学技术出版社,1993
    [52] 陈日曜.金属切削原理.北京:机械工业出版社,1993
    [53] 吴玉华.金属切削加工技术.北京:机械工业出版社,1998
    [54] 袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999
    [55] Klamecki B E. Incipient chip for mation in metal cutting-a three dimension finite analysis. [Ph D disscrtation] . Urbana: University of Illinois at Urbana-Chanpaign, 1973
    [56] Lajczok M R A study of some aspects of metal cutting by the finite element method. [Ph D dissertation] . NC State University 1980
    [57] M. Gremaud, W. Cheng, M. Prime, and I. Finnie. "Measurement of Residual Stresses in Laser Treated Layers Using the Crack Compliance Method. Proceedings of International Conference on Laser Advanced Materials Processing, eds.: A. Matasunawa and S. Katayama, 1992, 713-718
    [58] Strebjiwsjum H S, Carroll J T. A finite element model of orthogonal metal cutting. In: Proceedings of the North American Manufacturing Research Conference, Bethlehem, Pennsylvania, 1987, 506-509
    [59] Strenkowski J S, Moon K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting. Tran ASME J Eng Ind, 1990, 112(4): 313-318
    [60] Usui E, Maekawa K, Shirakashi T. Simulation analysis of the built-up edge formation in machining of low carbon steel. Bull Jan Soc Process Eng, 1981, 15(4): 237-242
    [61] Hasshemi J, Chou P C, Tseng A A. Thermomechanical behavior of adiabatic shear band in high speed forming and machining, In: ⅩⅫ ICHMT International Symposium on Manufacturing and Material processing, Dubrovnik, Yugoslavi, 1990, 10-14
    [62] Komvopoulos F K, Erpenbeck S A. Modeling of orthogonal metal cutting.Trans ASME J Englnd, 1991, 113 (3): 253-267
    
    [63] Furukawa Y, Moronuki N, Effect of material properties on ultra-precise cutting process.Ann CIRP, 1988, 37(1): 113-120
    [64] Tyan, T., Yang, W. H., Analysis of orthogonal metal cutting processes, International Journal for Numerical Methods in engineering, 1992, 34(1): 365-389
    [65] Ikawa N, Shimada S ed. Chip morphology and minimum thickness of cut in micromachining. JSPE, 1993, 59: 141-147
    [66] Moriwaki T, Sugimura N,Luan S.Combined stress, material flow and heat analysis of orthogonal micromachining of copper. Annals of the CIRP, 1993,42(1): 75-84
    [67] Lin, Z. C, Lin, S.Y., A Couple finite element model of thermo-elastic large deformation for orthogonal cutting, Journal of Engineering Material and Technology, 1992, 114(2): 218-226
    [68] Bouzid, W., Lebrun, J.L.. A numerical method to determine temperature distribution in orthogonal machining. Numerical Methods in Industrial Forming Processes, Proceedings of the 4th international conference, NUMIFORM'92 Valbonne, France, 14-18 September 1992, Chenot, Wood, Zienkiewicz (eds), A.A.Balkema Publishers, 1992, 895-900
    [69] Shih, A. J., Yang, H.T.Y., Experimental and finite element prediction^ on the residual stresses due to orthogonal metal cutting, International Journal for Numerical Methods in Engineering, 1993,36(8): 1,487-1,507
    [70] Hashemi, J., Tseng, A. A., Chou, P. C, Finite element simulation of segmented chip formation in high speed machining, Journal for mater. Eng. Perform., 1994, 3(5): 712-721,
    [71] Maruich, T. D., Ortiz, M. Modeling and simulation of high speed machining. International Journal of Numerical Methods In Engineering, 1995, 38(21): 3,675-3,694
    [72] Kim, K.W., Sin, H. C, Development of a thermao-viscoplastic cutting model using finite element method, International Journal of Machine Tool Manufacturing, , 1996, 36(3): 379-397
    [73] Sasahara H, Obikawa T, Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. Journal of Materials Processing Technology, 1996, 62(4): 448-453
    [74] Ceretti E, Fallbohmer P, Wu W T, Altan T. Application of 2D FEM to chip formation in orthogonal cutting. Journal of Materials Processing Technology, 1996, 59(2) : 169-180
    [75] Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation. Journal of Materials Processing Technology, 1999, 95(1): 17-26
    [76] Ceretti E,Lazzaroni C, Menegardo L,Altan T.Turning simulation using a three-dimension FEM code. Journal of Materials Processong Technology, 2000, 98(1): 99-103
    
    [77] Ceretti E, Taupin E, Altan T. Simulation of metal flow and fracture application in orthogonal cutting, blanking and cold extrusion. Annal of CIRP, 1997, 46(1): 187-190
    [78] Zhang Liangchi. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method. Journal of Materials Processing Technology, 1999, 88-89: 273-278
    [79] Huang J M, Black J T. An evaluation of chip separation Criteria for the FEM simulation of machining. ASME Journal of Manufacturing Science and Engineering, 1996(4), 118: 545-554
    [80] Lin Zone-Ching, Lai Wun-Ling, Lin H Y, Liu C R. The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut. Journal of Materials Processing Technology, 2000, 97(3): 200-210
    [81] Shet, C., Deng, X., Finite element analysis of the orthogonal metal cutting process, Journal of Material Processing Technology, 2000, 105(1): 95-110
    [82] McDill, J.M.J., Lindgren, Lars-Erik, Reed, r.C., Oddy, A.S., Continuous improvement in thermal-mechanical finite element analysis. International Conference on Processing and Manufacturing of Advanced Materials, Lasvegas, USA, 2000, 4-8
    [83] Lei, S., Shih, Y.C., Incropera, F.P. Thermo-mechanical modeling of orthogonal machining process by finite element analysis. International Journal of Machine Tools and Manufacture, Design, Research and Application, 1999, 39(5): 731-770,
    [84] 杨继昌,刘伟成.工件表面的加工硬化深度的数值分析.机械工程学报,1995,31(3):102-106
    [85] 李振加等.横向卷曲短螺旋卷屑折断数学模型与折断判据.机械工程学报,1996,32(6):105-110
    [86] 王希彬,师汉民,陆涛.切削过程的分支与突变.机械工程学报,1997,33(6):20-25
    [87] 顾立志,袁哲俊.正交切削中切屑温度分布的研究.机械工程学报,2000,36(3):82-86
    [88] 郑联语,汪叔淳.薄壁零件数控加工工艺质量改进方法.航空学报,2001,22(5):424-428
    [89] 杨勇,沈秀华,邵华,基于遗传算法的铣削参数优化,机械设计与研究,2001,17(2):613-63
    [90] Tlouei-Rad M, Bidhendi I M. On the Optimization of Machining Parameters for Milling Operations [J] . Int. J. Mach. Tools Manufact., 1997, 37(1): 1-6
    [91] 姜彬,郑敏利,徐鹿眉 李振加.数控铣削用量多目标优化.哈尔滨理工大学学报,2002,7(3):67-70
    [92] 齐继生,刘世清.最佳铣削用量的选择.华东冶金学院学报,2000,17(4):322-325
    [93] O.Mengx等人,吴希让 译.用切削计算车削加工的最佳切削条件.国外金属加工, 2001(2):50-63
    [9
    
    [94] 乔咏梅,张定华,张淼,魏生民.数控仿真技术的回顾与评述.计算机辅助设计与图形学报,1995,7(4):311-315
    [95] 林兰芬,董金祥,何志均.计算机仿真技术在模具数控加工中的应用.模具工业,1997.198(8):10-13
    [96] 冯裕强,雷保珍.NC铣削加工过程的仿真及其实现.华北工学院学报,1999,20(2):151-154
    [97] Tsai J S, Liao C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces [J] . J of Materials Processing Technology, 1999, 94(3): 235-246
    [98] Suh S H, Cho J H, Hascoet J Y. Incorporation of tool defelection in tool path computation: simulation and analysis [J] . Journal of Manufacturing Systems, 1996, 15(3): 190-199
    [99] Lim E M, Menq Chia-Hsiang. Integrated planning for precision machining of complex surfaces-part 1: cutting path and federate optimization [J] . Int. J. Mach. Tools Manufact., 1997, 37(1): 61-75
    [100] Schulz H, Bimschas K. Optimization of precision machining by simulation of the cutting process [J] . Annals of the CIRP, 1993, 42(1): 55-58
    [101] Leu M C, Lu F, Blackmore D. Simulation of NC machining with cutter defelection by modeling deformed swept volumes [J] . Annals of the CIRP, 1998, 47(1): 441-446
    [102] Mounayri H E, Spence A D, Elbestawi M A. Milling process simulation-a generic solid modeler based paradigm [J] . ASME Journal of Manufacturing Science and Engineering, 1998, 120(5): 213-221
    [103] 仇启源,庞思勤.现代金属切削技术.北京:机械工业出版社,1992
    [104] Natarajan R, Jeelani S. Residual stresses in machining using finite element method. Computers in Engineering, Computer Software and Applications ASME, New York, 1983, 3(1): 19-20
    [105] Liu CR, Lin ZC. Barash MM. Effects of plane strain and plane stress conditions on stress filed in the workpiece during machining an elasto plastic finite element analysis. High-speed Machining, 1984, 2:167-180
    [106] Liu CR, Lin ZC, Barash MM. Thermal and mechanical stresses in the workpiece during machining. High-Speed Machining, 1984, 2:181-191
    [107] Lin ZC, Lin YY, Liu CR. Effects of thermal load and mechanical load on the residual stress of a machined workpiece, International Journal of Mechanical Sciences, 1991, 33 (4): 263-278
    [108] Lin ZC, Lai WL, Lin HY, Liu CR. Residual stress with different tool flank wear lengths in the ultra-precision machining of Ni-P alloys. Journal of Materials Processing Technology, 1997, 65(2): 116-126
    [1
    
    [109] Shih AJ. Finite element simulation of orthogonal metal cutting. Transactions of the ASME, Journal of Engineering for Industry 1995, 117(1): 84-93
    [110] Booththrod, G., Fundamentals of metal machining and machine tools. Scripta book company, 1975
    [111] Piipanen, V. Theory of formation of metal chips. Journal of Applied Physics, 1948 19(10): 876-881
    [112] zorev, N. N. Metal Cutting Mechanics. Ed. Shaw, M. C., Pergamon Press, 1966
    [113] Ernst, H., Merchant, M, E. Chip formation, friction and high quality machined surfaces, in "Surface Treatment of Metals". American Society of Metals, New York, 1941, 29(2): 299-305
    [114] Oxley, P. L. B., Humphreys, A. G., Larizadeh, A. The influence of rate of strain hardening in machining. Proceeding of Institute of Mechanical Engineers, 1961, 175:881-891
    [115] Kececioglu, D., Shear strain rate in metal cutting and its effects on shear flow stress. Transactions of the ASME, 1958, 80(1): 158-168
    [116] Doyle, E. D., Horne, J. G., Tabor, D. Frictional interactions between chip and rake face in continuous chip formation. Proceedings of Royal Society of London, 1979, 366:173-183
    [117] Moufki, A., Molinari, A., Dudzinski, D. Modeling of orthogonal cutting with a temperature dependent friction law. Journal of Mechanics and the physics of solids, 1998, 46(10): 2,103-2,138
    [118] Molicari, A., Estrii, Y., Mercier, S. Dependence of the coefficient of friction on the sliding conditions on high velocity range. Journal of Tribology, 1999, 121 (1): 35-41
    [119] Y. YAMADA, Visco-elasticity Plasticity, Baifukan, Japan, 1980
    [120] 黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究.中国机械工程.2003,14(6):84-89
    [121] 黄志刚,柯映林,王立涛.金属正交切削加工的有限元模拟研究.航空学报(已录用)
    [122] B. Zhang, A. Bagchi. Finite element simulation of chip formation and comparison with machining experiment. ASME J. Eng. Ind., 1994, 116(3): 289-297
    [123] J.T. Carroll, J.S. Strenkowski. Finite element models of orthogonal cutting with application to single point diamond turning. Int. J. Mech. Sci., 1988, 30(11): 899-920
    [124] J.Q. Xie, A.E. Bayoumi, H.M. Zbib. A study on shear banding in chip formation of orthogonal machining. International Journal of machine tools & manufacture, 1996, 36(7): 835-847
    
    [125] Hibbit, Karlsson and Sorenson. ABAQUS Theory Manual(ver 5.8), Providence R1,1999
    [126] Yogesh Kesrinath Potdar. Measurements and simulations of temperature and deformation fields in transient orthogonal metal cutting [P.H.D dissertation] . Cornel University, 2001
    [127] E.-G. Ng a,* , D.K. Aspinwall. Modeling of temperature and forces when orthogonally machining hardened steel. International Journal of Machine Tools & Manufacture, 1999, 39(6): 885-903
    [128] Jung-Shu Wu, O. w. Dillon, Wei-Yang Lu. Thermo-Viscoplastic Modeling of Machining Process Using a Mixed Finite Element Method. Journal of Manufactureing Science and Engineering, 1996, 118 (11): 470-482
    [129] C.R. Liu, Y.B. Guo. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. International Journal of Mechanical Sciences, 2000, 42(9): 1,069-1,086
    [130] D.Lee. The Effect of Cutting Speed on Chip Formation Under Orthogonal Machining. Journal of Engineering for industry, 1985, 107(1): 55-63
    [131] 吴国玥 译.铣削加工切削参数优化.国外金属加工,1998(2):40-56
    [132] Lee, B.Y. Tarng, Y.S. Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. Journal of Materials Processing Technology, 2000, 105(9): 61-66
    [133] Tugul Ozel, Taylan Altan. Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high speed flat end milling. International Journal of Machine Tools & Manufacture 2000, 40(5): 713-738
    [134] 杨荣福,董申编.金属切削原理.北京:机械工业出版社,1988
    [135] H. K. Tonshoff et al, Influence of Thermal and Mechanical Impacts on Fatigue in Precision Grinding. Advancing in Surface Treatments, Oxford: Pergamon Press
    [136] E. Brinksmeier et al. Residual Stresses-Measurement and Causes in Machining Processes. CIRP, 1982, 31(1): 491-509
    [137] H. K. Tonshoff et al. Determination of the Mechanical and Thermal Influence on Machined Surfaces by Microhardness and Residual Stresses Analysis. CIRP, 1980, 29 (2): 519-530
    [138] E. Brinksmeier et al, Nondestructive Testing for Evaluating Surface Integrity, CIRP, 1984, 33 (2): 489-509
    [139] S.S.曼森.金属疲劳损伤——机理、检測、防止和修理(中译本).北京:国防工业出版社,1979
    [140] 胡华南.已加工表面残余应力的理论预测及控制[博士学位论文] .武汉:华南理工大学,1993
    
    [141] 熊上肫 主编.金属切削加工的表面完整性.南京:南京航空学院出版社,1984
    [142] 胡忠辉,衷哲俊.磨削时加工表面残余应力研究.哈尔滨工业大学学报,1989(3):51-56
    [143] Robert D. Halverstadt. How to minimize and structural phenomena of high-strength steel surface due to EMD and Ball-drop forming. CIRP, 1988, 31(1): 531-536
    [144] Field M. et al. Review of Surface Integrity of Machined Components. CIRP, 1971, 20 (2): 153-154
    [145] 黄志刚,柯映林.基于正交切削加工模拟的直齿圆柱铣刀前角优化.浙江大学学报(已录用)
    [146] E. G. Lowen, M. C. Show. Tool face temperature in high speed milling. Transactions of ASME, Journal of Engineering for Industry, 1954, 76 (2): 217-231
    [147] E. Usui, A. Hirota, M. Masuko. Analytical Prediction of Three Dimensional Cutting Process: part 1 basic cutting model and energy approach. Transactions of the ASME Journal of Engineering for Industry, 1978, 100 (2): 222-228
    [148] E. Usui, A. Hirota, M. Masuko. Analytical Prediction of Three Dimensional Cutting Process: part 2 chip formation and cutting force with conventional single-tool. Transactions of the ASME Journal of Engineering for Industry, 1978, 100 (2): 229-235
    [149] Z. Palmai, Cutting Temperature in Intermitent Cutting. International Journal of machine tools & manufacture, 1987, 27 (2): 261-274
    [150] M. C. Show, N. H. Cook, P. A. Smith. The Mechanics of Three Dimensional Cutting Operations. TRANS. ASME, 1952, 74(18): 1055-1064
    [151] 华南工学院,甘肃工业大学主编.金属切削原理及刀具设计(上册),上海:上海科学技术出版社,1979
    [152] 谭美田 编著.金属切削微观研究.上海:上海科学技术出版社,1988
    [153] C. E. Leshock, Y. C. Shin. Investigation on cutting temperature in turning by a tool-work thermocouple technique. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1997, 119 (11): 502-508
    [154] 刘献礼,袁哲俊等.切削温度测量的等效热电偶法.计量学报,1999,20(3):187-191
    [155] 刘献礼,陈波,孟安等.PCBN刀具切削温度的测量与控制.中国高校切削与先进制造技术研究会第六届年会论文集,北京:机械工业出版社,1999,105-109
    [156] 陈明,哀人炜,薛秉源等.铝合金高速铣削中切削温度动态变化规律的试验研究,工具技术,2000,34(5):7-10
    [157] Ismail Lazoglu, Yusut Altinas, Prediction of tool and chip temperature in continuous and interrupted machining. International Journal of machine tools & manufacture, 2000, 42(9): 1,011-1,022
    
    [158] Charles E. Knight, Jr. The finite element method in mechanical design. PWS-KENT Publishing Company, 1993
    [159] 宋天霞等 编著.非线性结构有限元计算.武汉:华中理工大学出版社,1996
    [160] I.霍拉德、K.贝尔主编.有限单元法在应力分析中的应用.北京:国防工业出版社.1978
    [161] 叶天麒,周天孝主编.航空结构有限元分析指南.北京:航空工业出版社,1996
    [162] Liu C. Simulation of strip and slab rolling using an elastic-plastic finite-element method [Ph.D. Thesis] . University of Birmingham, 1985
    [163] 黄志刚,柯映林.航空框类整体结构件铣削加工模拟的关键技术研究.中国机械工程(已投稿)
    [164] 王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除[J] .航空材料学报,2002,22(3):21-24
    [165] 康小明,大型整体结构件加工变形问题研究[博士后出站报告] ,杭州:浙江大学,2002
    [166] 王志刚等.薄壁零件加工变形分析及控制方案.中国机械工程,2002,13(2):114-117
    [167] Budak E, Altintas Y. Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates. International Journal of machine tools & manufacture. 1995, 35(3): 459-476
    [168] Sutberland J W, Devor R E. An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems. Trans. ASME, J. Eng. Ind, 1986, 108(4): 269-279
    [169] 黄志刚,柯映林,王立涛.基于正交切削模拟的零件铣削加工变形预测研究.机械工程学报(录用)
    [170] ANSYS Inc. Ansys Theory manual, (Revision 6.1). ANSYS Inc. 2002
    [171] 王立涛,柯映林,黄志刚.航空结构件铣削残余应力分布规律的研究.航空学报,2003,24(3):286-288
    [172] [日] 米古茂.残余应力的产生和对策[M] .北京:机械工业出版社,1983
    [173] G.K.Hu, G.J.Weng, Influence of thermal residual stresses on the composite macroscopic behavior. Mechanics of materials. 1998, 27(4):229-240.
    [174] S.A.Meguid, g.Shagal, J.C.Stranart etc, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses. Finite elements in analysis and design, 1999, 31(3):179-191
    [175] Hahn Choo, Mark Bourke, Philip Nash etc. Thermal residual stresses in NiAI-AIN-A1203 composites measured by neutron diffraction. Materials science & engineer, 1999, 264(2): 108-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700