高速切削稳定性及其动态优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削加工具有高效率、高精度和低成本的突出优势,是最重要、最具共性的先进制造技术之一,具有广阔的发展应用前景。高速切削系统(包括机床、刀具、工件和切削过程)是复杂的动态系统,随着切削速度的提高,切削过程中的振动导致的不稳定切削对生产效率、加工质量、成本以及机床和刀具寿命的影响比普通速度切削大得多。高速切削加工的诸多优越性的发挥必须以无振动稳定切削的实现为前提。目前,关于高速切削稳定性分析预测及其动态优化理论与方法的研究很少,严重限制了高速切削技术的发展。因此,以实现稳定切削条件下的高生产效率和高加工质量为优化目标,提出在高速切削机床和刀具的设计、制造、检验、切削加工生产与维护的整个生命周期中进行考虑切削稳定性的动态优化的新理念,研究适合高速切削特点的切削稳定性预测及其动态优化理论和工程应用方法,是促进高速切削技术发展和应用的重要应用基础课题,对充分发挥高速切削的技术优势和经济优势具有重要的理论意义和现实意义。
     探讨适合高速切削特点的高速切削系统动力学模型及其建模方法,据Lagrange方程,建立了考虑高转速下离心力和陀螺力矩等多变量影响的高速切削系统多自由度动力学模型。以DMU-70V五轴高速加工中心(HSK主轴-刀柄联结)和ACE-V500立式加工中心(BT主轴-刀柄联结)为例,分析比较了离心力和陀螺力矩对不同机床主轴-刀柄结构及其与不同刀具(立铣刀、面铣刀,不同直径、齿数、外伸长径比)匹配时在不同支承刚度、不同转速下的动态特性的影响。界定了不同主轴刀柄结构需考虑离心力和陀螺力矩影响的临界转速范围。数值计算和实验结果表明,高转速下离心力和陀螺力矩的影响不能忽略,HSK主轴-刀柄结构在高速下的动态特性明显好于BT结构。
     针对高速切削的特点,考虑在高速切削中不同切削条件和切削过程的振动对切削力的影响,建立高速切削过程的动态切削力模型。以螺旋立铣刀为例分析了不同切削条件对动态切削力的影响。
     基于所建的动力学模型和动态切削力分析,研究了高速切削过程的再生型自激振动、自激振动与强迫激励共同作用下的混合振动的稳定性判据及其稳定切削
High-speed machining (HSM) possessed outstanding advantages of high efficiency and high precision is one of the most important advanced manufacturing technologies and has wide application prospects. The HSM system (including machines, tools, workpierce and machining process) is complex dynamic one. With the increase of machining speed, the influence of instable machining caused by vibration in machining process on efficiency, surface quality, production cost as well as use time of machines and tools is larger than conventional cutting speed. The stable machining process is one of the preconditions of realizing the advantages of HSM technology. However, the shortage of research on stability predication and optimization theory and method of HSM system limits the development and reasonable application of the HSM technology. Therefore, a new conception of stability optimization used in the whole life cycle of the design, manufacture, inspection and machining operation and maintenance of HSM system is proposed, and the stability predication, optimization theory and method suitable HSM is researched. It is a important application foundation subject for promote high-speed machining technical development and application and have very important theoretical and realistic meaning to bring high-speed machining into technological advantage and economic advantage further.Studying the dynamic model and modeling method suit to the characteristics of HSM system, based on Lagrange's equation, the dynamics model of HSM system with multi-degrees of freedom are set up with respect to the influence of centrifugal force and gyroscopic moment due to high rotating speed on dynamic characteristics of system. Take DMU-70V five-axis machining center (with HSK spindle/holder) and ACE-V500 vertical-type machining center (with BT spindle/holder) as examples, the influence of centrifugal force and gyroscopic moment on dynamic characteristics of different spindle/holder and cutters (end milling cutter, face milling cutter) are analyzed and compared with matching in different bearing rigidity under different rotate speed. The critical rotate speed and operation speed ranges in which the influence of centrifugal force and gyroscopic moment must be considered are determined. And the results analyzed show that the dynamic characteristics of HSK spindle/holder in high speed are better than ones of BT spindle/holder.
    Considering the influence of different cutting condition and vibration in high speed cutting process on cutting force, a dynamic cutting force model with respect to high speed machining is established. Take helix end milling as an example, the influence of different cutting condition to dynamic cutting force is analyzed and compared by analytical predication and cutting experiments.Based on the dynamic cutting force and dynamics model established, the stability criterion and predicting method of the regenerative self-excited chatter and the mix vibration excited by both self-excited chatter and outside loads in high speed machining process is studied. The mode orthogonality are used to analyse the frequency response of the multi-degrees of freedom system, the predicting method of stability criterion and limits with respect to high order eigen-frequenceis of multi-degrees of freedom in high speed machining is proposed. In this way, the stability limits (lobe) diagram method of multi-degrees of freedom high speed machining system is established and the effect of structure parameter and cutting process parameter to high speed machining stability is analysed. And the stability lobe diagram of DMU-70V and ACE-V500 machining centers are given, which can be referenced in real production.Apply structural dynamic modification technique to the dynamic optimization for stability of HSM system, which is a "converse problem" of dynamics, and extent and improve it. Transforming the "converse problem" which aimed at high material remove ratio and high surface quality under stable cutting to "positive problem" which is based on step modification and reanalysis, the dynamic modification-based optimization theory and method for stability of HSM system are investigated. The synthetical optimization method for both the stability limit and machine tool's power utilization efficiency are proposed. In each stage of design and machining process, the different design variables including structural parameters and machining parameters are determined and modified repeat up to the desired optimum objectives are achieved by means of the sensitiveness and the perturbation analysis. And results achieved show that the material remove rate and surface quality had improved evidently and economically by optimizing drawbar force of spindle, rotating speed, axial cutting depth, number of teeth and overhung length of tool, as well as clamp of workpiece etc.Experimentations of modal analysis, idling of spindle and high-speed milling are designed and carried out to investigate and validate the dynamics models, theory and
    method proposed and the dynamic characteristics, machining stability on both DMU-70V and ACE-V500 machining centers. And the experimental methods suitable for performance examination and evaluation of HSM system with respect to stability are researched and established.
引文
1.艾兴等.高速切削加工技术.北京:国防工业出版社,2003
    2.H.Schulz.高速加工发展概况.机械制造与自动化,2002(1):4-8
    3. H. Schulz. Start High Speed Machining. Proc. of Int. Symposium of Advanced Manufacturing Technology (ISAMT'), 2001:1-2
    4.张伯霖,杨庆东,陈长年等.高速切削技术及应用.北京:机械工业出版社.2002.9
    5.李沪曾,郭重庆.浅谈高速切削加工技术的发展.现代制造工程.2004,6:115-118
    6.刘永强.高速切削及其关键技术的发展现状.航空精密制造技术.2001,37(2):1-5
    7.张伯霖,杨庆东.高速切削技术及应用.机电工程技术.2003,4:82-84
    8.何宁.高速切削技术.工具技术.2003,11:8-10
    9. Janez Gradisek, Malveram Kalveram, Tamas Insperger, Klaus Weinert, Gabor Stepan, Edvard Gobekar, lgor Grabec. On stalility prediction for milling. International Journal of Machine Tools & Manufacture, 45, 2005:769-781
    10. T. Insperger, B. P. Mann, G. Ste'pa'n, P. V. Bayly. Stability of up-milling and down-milling, part 1: alternative analytical methods, part 2 experimental verification. International Journal of Machine Tools & Manufacture ,43.2003: 25-34, 35-40
    11.李志英,黄晓明,张伯霖.超高速加工技术及其应用.现代制造工程,2001(11):71-71
    12.http://www.5mjc.cn(中国机床网)
    13. C. J. Salomon. Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools. German Patent, 523594, 1931,04
    14. J. F. Kahles, M. Frent, S. M. Harvey. High speed machining possibilities and needs, Annals of the CIRP, 1978 Vol.27(2): 551-558
    15.刘战强.高速切削技术的研究与应用.济南:山东大学博士后研究工作报告,2001
    16.艾兴.高速切削技术和刀具材料现状与展望.世界制造技术与装备市场(WMEM),2001(3):32-36
    17. N. N. IS01940-1, Mechanical Vibration-Balance Quality Requirements. 1986
    18. S. Smith, J. Tlusty. Current Trends in High-Speed Machining. Journal of Manufacturing Science and Engineering, Transaction of the ASME, Vol. 119(11) 1997:664-666
    19.李先广,廖绍华.在汉诺威EMO2001展出的齿轮加工机床.世界制造技术与装备市场(WMEM),2002(1):25-27
    20.邵传伟.电主轴与高速加工机床.世界制造技术与装备市场(WMZM),2002(5):24-26
    21.WMEM编辑部.美国芝加哥国际制造技术展(IMTS2002)综述.世界制造技术与装备市场(WMEM),2002(5):22-23
    22.盛伯浩.数控机床的现状与发展.2003年中国机械工程学会年会论文集.2003
    23.佟璞玮.“九五”期间我国机械工业科学技术取得的重大进展.世界制造技术与装备市场(WMEM), 2001(3): 8-10
    24. C. S. Suh, P. P. Khurjeak, B. Yang. Characterization and identification of dynamic instability in milling operation. Mechanical systems and Signal Processing, 2002 Vol.16(5): 853-872
    25. S. Smith. W. R. Winfough, H. J. Borchers. Power and stability limits in milling. Annals of the CIRP. Vol.49.1.2000:309-312
    26. J. R. Pratt, A. H. Nayfeh. Design and modeling for chatter control, Nonlinear Dynamics, Vol. 19. No.1,1999:49-69
    27.肖友谊,彭泽民.高速切削动力学研究.应用力学学报,1990(4):77-81
    28.杨肃,唐恒龄,廖伯瑜.机床动力学(Ⅰ,Ⅱ).北京:机械工业出版社,1983
    29. M. A. Davies, J. R. Pratt, B. Dutterer, T. J. Burns, Stability prediction for low radial immersion milling, Journal of Manufacturing Science and Engineering Vol. 124 (2).2002:217-225
    30.刘晓胜等.基于电流信号的铣削颤振识别技术研究.机械工程学报.2000,36(4):25-29
    31. C. A. van Luttervelt, T. H. C. Childs, I. S. Jashir, F. Klocke, P. K. Venuvinod. Present Situation and Future Trends in Modeling of Machining Operations, (Keynote Paper), Annals of the CIRP Vol.47, No.2, 1998:587-626
    32. R. S. Hahn. On the theory of regeneration chatter in precision grinding operation. Tran. ASME. B. 1954,76(1): 593-597
    33. J. Tlusty, L. Spacek. Self-excited vibration in machine tools, Czeech Nakladaterstivi CSAV Prague. 1954
    34. J. Tlusty. Die berchnung des rahrnens der werkzeugmaschine, Schwer-indusyrie der CSR, 1955(1), 8
    35. R. N. Arnold. The mechanism of tool vibration in cutting of steel. Proc. Ⅰ. Mech. E.,1946: 261-284
    36.吴雅.机床切削系统的颤振及其控制.北京:科学出版社,1993
    37. Y. Altintas, S. Engin. Generalized modeling of mechanics and dynamics of milling cutters, Annals of the CIRP, Vol. 50, No.1, 2001:25-30
    38. Y. Altintas, E. Shamto, P. Lee, E. Budak. Analytical prediction of stability lobes in ball end milling, Trans. ASME, J Manuf. Science and Eng., Vol.121,1999: 586-592
    39. S. Engin, Y. Altintas. Mechanics and dynamics of general milling cutters-Part Ⅰ: inserthed cutters, Part Ⅱ: hilical end mills, Int. Journal of Machine Tools and Manufacture, Vol. 41, 2001:2292-2231
    40. J. Tlusty, P. Macneil. Dynamics of cutting forces in end milling. Annals of the CIRP, Vol.24, 1975:21-25
    41. S. A. Tobias. Theory of regeneration machine tool chatter. Engineering, 1958:315-321
    42. S. A. Tobias. Machine tool vibration, Blackie and Sons, Ltd. 1965
    43. A. E. Merritt. Theory of self-excited machine tool chatter. Journal of Engineering for Industry, 1965 (11): 447-454
    44. J. Tlusty, W. Zaton, F. Lsomail. Stability lobes in milling. Annals of the CIRP, Vol. 32 (1), 1983: 309-313
    45. J. Tlusty, F. Lsmail, Based Non-linearity in machining chatter, Annals of the CIRP, Vol.30 (1), 1981:299-304
    46. D. Montgomery, Y. Altintas, Mechanism of cutting force and surface generation in dynamic milling, Transaction of the ASME, Journal of Engineering for industry, 1991, Vol.113 (2): 160-168
    47.师汉民.金属切削理论及其应用新探.武汉:华中科技大学出版社,2002
    48.师汉民.机械振动系统-分析、测试、建模、对策,武汉:华中科技大学出版社,2004
    49. I. Minis, T. Yanushevsky, R. Tembo, R. Hocken. Analysis of linear and nonlinear chatter in milling. Annals of the CIRP. 1990, Vol.39:459-462
    50. G.Ste'pa'n, T.Kalma'r. Nagy. Nonlinear regenerative machine tool vibrations, Proceedings of DETC'97. 1997. ASME Design Engineering Technical Conferences. 1997. 9: 14-17.
    51. G.Ste'pa'n. Modeling nonlinear regenerative effects in metal cutting. Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical, and Engineering Sciences. 2001, 359: 739-757,
    52.师汉民.金属切削过程中的分叉与突变现象——兼论切削过程的可控性问题.应力学报.1999,1:15-22
    53.张向慧等.非线性颤振对切削加工过程影响初探.机械工程师,2002,3:375-380
    54.刘习军,陈予恕.机床速度型切削颤振的非线性研究.振动与冲击,Vol.18(2),1999:5-9,94
    55. E. Abele, U. Fiedler. Creating stablity lobe diagrams during milling, Annals of the CIRP Vol. 53, No. 1, 2004:309-312
    56. Neil D. Sims, Phillip V. Bayly, Keith A. Young. Piezoelec sensors and actuators for milling tool stability lobes. Journal of Sound and Vibration 281 (2005)734-762
    57.GB50271-98金属切削机床安装工程施工及验收规范.北京:中国标准出版社
    58.GB/T16768-97金属切削机床振动测量方法.北京:中国标准出版社
    59.GB/T16769-97金属切削机床噪声声压级测量方法.北京:中国标准出版社
    60. Y. Altintas, P. Lee. Mechanics and dynamics of ball end milling, Trans. ASME, J Manuf. Science and Eng., 1998 Vol.120:684-692
    61. Y. Altintas, E. Budak. Analytical Prediction of Stability Lobes in Milling, Annals of the CIRP Vol.44, No. 1, 1995:357-362
    62. E. J. A. Armarago, N. P. Deshpande. Computerised end-milling force predictions with cutting models allowing for eccentricity and cutter deflection, Annals of the CIRP Vol.40, No. 1,1991: 25-29
    63. P. Lee, Y. Altintas. Prediction of ball end milling forces form orthogonal cutting data, Int. Journal of Machine Tools and Manufacture, Vol.36,No.9, 1996:1059-1072
    64. E. Budak,Y. Altintas, E. J. A. Armarego. Prediction of milling. force coefficients from orthogonal cutting data. Transctions of ASME 118.1996:216-224
    65. S. Jensen, Y. Shin. Stability analysis in face milling operations. Part 1: Theory, Part 2: experimental validation. Transactions of ASME Journal of Manufacturing Science and Engineering. 1999, 121(4): 600-614
    66. T. Schmitz, M. Davies. Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering. 2001, 123: 700-707
    67.张军,唐文彦,强锡富.再生型切削颤振稳定性极限的图解法.中国机械工程.2000,11(5):496-498
    68. Y. Altintas, S. Engin, E. Budak. Analytical stability prediction and design of variable pitch cutters. Transactions of ASME Journal of Manufacturing Science and Engineering. 1999, 121: 173-178
    69. S. Smith, W. R. Winfough, J. R. Pratt et al. The effect of tool length on stable metal removal rate in high-speed milling. Annals of the CIRP, 1998 Vol.47(1): 307-310
    70. M. A. Davies, B. Dutterer, J. R. Pratt et al. On the Dynamics of High-speed milling with long, slender endmilis. Annals of the CIRP, 1998 Vol.47(1): 55-60
    71. M. A. Davies. The stability of low radial immersion milling. Annals of the CIRP. 2000, Vol. 49(1): 37-40
    72.王立刚,刘习军.机床颤振的若干研究和进展.机床与液压.2004,11:1-5
    73. L. Tong, Schmiz. Automatic trimming of machining stability lobes, 2002.42(13): 1479-1486
    74. E. Solis, C. R. Peres, J. E. Jime, et al., A new analytical-experimental method for the identification of stability lobes in high-speed milling, International Journal of Machine Tools & Manufacture, 44, 2004:1591-1597
    75. T. L. Schmitz. Predicting high-speed machining dynamics by substructure analysis. Annals of the CIRP, 2000 Vol. 49(1): 303-308
    76. F. Abrari, M. Elbestawi, A. D. Spence, On the dynamics of ball end milling: modeling of cutting forces and stability analysis, International Journal of Machine Tools and Manufacture. 38, 1998: 215-237.
    77. S. Jayaram. Analytical stability analysis of variable spindle speed machining. Transaction of the ASME. Journal of the Manufacturing Science and Engineering. 2000, 122-132
    78. S. Jayaram. Analytical stability analysis of variable spindle speed machining. Transaction of the ASME. Journal of the Manufacturing Science and Engineering. 2000, 122-132
    79.孔繁森,于骏一,潘志刚.切削过程再生颤振的模糊稳定性分析.振动工程学报,Vol.11,No.1,1998:106-109
    80.臼井英治,松本英树,等.考虑机械结构非线性时自激颤振振动的仿真分析,第一报:单自由度非线性模态的分析,精密工学会志(日),Vol.66(12),2000:1968-1973
    81.通口峰夫,上井雅博,盖子正己,旋削加工振动发生判定关研究,日本机械学会论文集(C编),Vol.52(477),1986:1697-1700
    82.田中久隆,小幡文雄等,球形立铣加工再生振动的研究,第一报:颤振稳定性极限的理论分析,精密工学会志(日),Vol.64(7),1998:1047-1051
    83.田中久隆,小幡文雄等,球形立铣加工再生振动的研究,第二报:颤振稳定性极限的试验分析,精密工学会志(日),Vol.65(8),1998:1179-1183
    84.周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术.机床与液压.2000(6):53-56,77
    85. J. D. Destefani. Spindles key to high-speed machining. Manufacturing Engineering, Vol. 119(4) 1997:5-10
    86.张伯霖,潘珊珊等.直线电机及其在超高速机床上的应用.中国机械工程,1997(4):85-88
    87.孙季初编译.用于高速加工的数控系统.世界制造技术与装备市场(WMEM),2000(3):66-68
    88.张波,虎恩典.数控机床主轴部件动态优化设计.机械设计.2004,21(5):33-35
    89.苏健,何钦象,李旗,张华容.基于MATLAB软件对高速磁悬浮主轴的动态特性进行分析.机械研究与应用,Vol.14,No.1,2001:3,7-8
    90. U. Heisel, A. Feinauer. Dynamic influence on workpiece quality in high speed milling. Annals of the CIRP Vol.48, No.1, 1999: 321-324.
    91.卢熹,孙庆鸿等.CK1416型数控车床床身结构动态优化.机床与液压.2003,2:124-125,232
    92.胡如夫,孙庆鸿等.高精度内圆磨床机构动态优化设计研究.中国机械工程.2002,18:22~27
    93.闫占辉,勾治践.变速铣削的综合试验分析.试验技术与试验机.2002,142(1):51-52
    94.王海丽等.刀具磨损监控中提取AR模型特征量的新方法.中国生产工程分会2001年“面向21世纪的生产工程”学术会议论文集(文摘),2001:163
    95. W. M. Sim, R. C. Dewes, D. K. Aspinwall. An intergrated approach to the high-speed machining of moulds and dies involving both a knowledge-based system and a chatter detection and control system. Proc, Insten. Mech Engrs Vol216.PartB: J. Enginerring Manufacture, 2002:1635-1646
    96. S. Vafaei, H. Rahnejat, R. Aini. Vibration monitoring of high speed spindles using spectral analysis technique. Internal Journal of Machine Tools & Manufacture,(42)2002:1223-1234
    97. W. Min, Fei Renyuan, Improvement of machining stability using a tunable-stiffness boring bar containing an electroheololgical fluid, Smart Material and Structure, 1999,8:511-514
    98.费仁元,王民.切削颤振在线监控的研究现状及进展.中国机械工程,2001.9:1075-1079
    99.于骏一.变速切削方法的减振原理.机械工程学报.1995,31(6):11-16
    100.董绍强,廖道训,陆永忠.摄动法在局部结构动力修改逆问题中的应用研究.机械科学与技术.Vol.20,2001(6):801-805
    101.崔博文.结构振动摄动分析的新方法.应用力学学报,Vol.15,No.3,1998:115-118.
    102.徐燕申.机械动态设计.北京:机械工程出版社.1992
    103.陈新等.机械结构动态设计理论方法及应用.北京:机械工业出版社.1997.9
    104.闻邦椿,刘树英等.振动机械的理论与动态设计方法.北京:机械工业出版社,2001.11
    105.廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用---建模、分析、仿真、修改、控制、优化.北京:机械工业出版社.2004
    106.比春长等.齿轮传动机构人工神经网络辅助优化设计.机械设计,2000.29(2):35-36
    107. A. Tesar, M. Drzik. Genetic algorithms for dynamic tuning of structures, Computers & Structures, 1995.57(2): 287-295
    108.陈新.结构动态模型修正及优化重分析方法研究.华中理工大学博士论文,1995
    109.毛海军,孙庆鸿,陈南,陈新等.基于BP神经网络的磨床主轴系统动态优化方法研究,制造业自动化,2000.Vol.22(12):39-41
    110.从爽.神经网络、模糊系统及其在运动控制中的应用.北京:中国科学技术大学出版社,2001
    111. H. Adeli, Hyo, Seon Park, A neural dynamics model for structural optimization-theory, Computers & Structures, 1995.57(3): 383-390
    112. Hyo, Seon Park, H. Adeli,, A neural dynamics model for structural optimization-application to plastic design of structures, Computers & Structures, 1995.57(3): 391-399
    113.顾松年.结构动力修改的发展与现状.机械强度.Vol.13(1),1991:1-9
    114.徐张明,沈荣瀛,华宏星.基于频响函数相关性的灵敏度分析的有限元模型修正.机械强度,2003.25(1):5-8
    115.李德葆.结构修改—灵敏度分析和结构修改重分析.机械强度,1990(2):26-29
    116.顾亮,胡琪琪.结构动力修改的拟力修改法,北京理工大学学报,Vol.17.1997(5):533-538
    117. S. S. Rao, Li. Chen. Determination of Optimal Machining Conditions: a Coupled Uncertainty Model, Transactions of the ASME, Journal of Manufacturing Science and Engineering, 2000 Vol.122:207-214
    118. B. K. Suthas, Ramaraja, Bhat, K. Ramachandra. Simultaneous Optimization of Machining Parameters for Dimensional Instability Control in Aero Gas Turbine Components Made of Inconel 718 Alloy, Transactions of ASME, Journal of Manufacturing Science and Engineering, Vol.122. 2000:586-589
    119. Q. Meng, J. A. Arseculataine, P. Mathew. Calculation of Optimum Cutting Conditions for Turning Operations Using a Machining Theory. International Journal of Machine Tools & Manufacture, Vol. 40,2000:1709-1733
    120. M. Pogacnik, J. Kopac. Dynamic stabilitization of the turn-milling process by parameter optimization, Proc. Mech. Engrs. Vol.214, Part B, 2000:127-135
    121. B. Y. Lee,Y. S. Tang, H. R. Lii, An Investigation of Modeling of the Machining Database in Turning Operations, Journal of Materials Processing Technology, Vol. 105. 2000:1-6
    122. W.Y Lee, K.W. Kim, H.C.Sin. Design and analysis of a milling cutter with the improved dynamic characteristics. Transactions of ASME, International Journal of Machine Tools & Manufacture, 2002, Vol.42:961-967
    123.何伟,何邦贵,杨朝丽.万能工具铣床动态特性分析及结构动力修改.昆明理工大学学报,2002.4Vol.27(2):24-28
    124.徐燕申,张学玲.基于FEM的机械结构静、动态性能优化设计.西南交通大学学报,2003(5):517-520
    125.李兆前,邓建新,艾兴.基于刀具可靠性的切削用量优化.机械工程学报,1995.Vol.31(6):6-10
    126.师汉民,陈日耀.基因遗传算法用于切削用量优化.机械工艺师,1992(9):3-6
    127.郑华林,吴胜萍.切削用量的模糊优化设计.机械.1994(6):24-28
    128.李旭东,黄克正,艾兴等.切削用量智能化选择的神经网络建模.组合机床于自动化加工技术.1999(10):13-17
    129.贾春玉,姜桂荣.车削加工中切削用量的人工智能优化控制.机械设计与制造工程,2001(10):9-10
    130.钟一谔.转子动力学.北京:清华大学出版社.1987
    131.晏砺堂,朱梓根,李其汉.高速旋转机械振动.北京:国防工业出版社,1998
    132.王先逵.机械制造工艺学(上册).北京:机械工业出版社,1965
    133.张松.高速切削旋转刀具系统的安全性研究.山东大学博士论文.2004
    134. M.E.Martelloti. An analysis of the milling process. ASME Journal of Engineering for Industry. 1941, 63:677-700
    135. F.Koenigsberger, A.J.P.Sabberwal. Chip section and cutting force during the milling operation. Annals of CIRP, 1961:197-203
    136. G.M.Kim,PJ.Cho, C.N.Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map. Int. Journal of Machine Tools and Manufacture, Vol.40, 2000:277-291
    137. K.H.Fuh, R.M.Hwang. A predicted milling force model for high-speed end milling operation, Int. Journal of Machine Tools and Manufacture, Vol.37, 1997:969-979
    138.袁人炜.难加工材料高速铣削机理与工艺.上海交通大学.2001
    139.刘延柱.非线性振动.高等教育出版社.2001.8
    140.沃德.海伦,斯蒂芬.拉门兹,波尔.萨斯著(比利时).模态分析理论与试验.白化同,郭继忠译,北京:北京理工大学出版社,2001
    141.方远(乔羽),陈安宁,董卫平.振动模态分析技术.北京:国防工业出版社,1993
    142. K.K.Kim, M.C.Kang, J.S. Kim,Y.H. Jung, N.K.Kim. A study on the precision machinability of ball end milling by cutting speed optimization, Journal of Materials Processing Technology, 130-131, 2002:357-362
    143.金问林,张幼桢,严丽丽.切削过程优化问题边界极值解法.南京航空学院学报.1992.Vol.24(4):370-376
    144.于思远,姜培兰,李浩成.金属切削数据库切削参数优化方法,工具技术,1992(2):23-25
    145.叶文华,张幼桢.CIMS中切削数据优化方法的研究.组合机床与自动化技术.1991.No5:24-27
    146.狱冈悦雄,宫口孝司,岩部洋育.High speed end milling of hardened steel(2nd Report)—Comparison of high milling machine with air bearing spendle and that with ball bearing spendle.日.精密工学会志,Vol.65(2)1999:209-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700