纳米羟基磷灰石/SiC晶须复合生物陶瓷材料及其加工
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(Hydroxyapatite,简称HAP)因其良好的生物相容性和骨传导性
    而成为重要的人工骨移植材料。但合成HAP的力学性能较差,特别是其断裂韧性
    很低而被严格限制在非动载环境中使用。SiCw可以有效地提高HAP生物陶瓷的强
    度和断裂韧性,扩大其应用范围。
    本文对溶胶-凝胶法合成纳米羟基磷灰石进行了热力学分析,用原位复合法
    制备了HAP/SiCw复合微粉,用热压烧结法得到了HAP/SiCw复合生物陶瓷,对SiCw
    的增韧机制进行了理论研究和有限元分析,对HAP/SiCw复合生物陶瓷进行了分形
    分析,最后对HAP/SiCw复合生物陶瓷的超声波加工进行了研究。
    对溶胶凝胶法合成羟基磷灰石时水溶液中的Ca-P2O5-H2O系和
    Ca(OH)2-H3PO4-H2O系进行了热力学分析,得出了合成纳米HAP的合适条件:使用
    二甲基甲酰胺为分散剂,在145-150℃的温度下进行反应可以得到高纯度的纳米羟
    基磷灰石,并可以避免使用昂贵的高压釜。对纳米羟基磷灰石进行了表征。对热
    压烧结过程进行了理论分析,得出了热压烧结致密化速率的表达式。首次用原位
    复合法制备了HAP/SiCw复合微粉。用热压烧结法制备了HAP/SiCw复合生物陶瓷,
    得出了合理的烧结工艺为:烧结温度1300-1310℃,保温时间30min,烧结压力
    30-40MPa,保护气氛为氮气。
    对HAP/SiCw复合生物陶瓷的微观结构和力学性能进行了研究。研究了晶须含
    量和晶须取向对复合材料微观结构和力学性能的影响。通过理论计算和试验分析
    得出了HAP/SiCw复合生物陶瓷中SiCw的最大极限含量为23. 7%。试验结果表明,
    材料的致密度随着晶须含量的增加而降低,当晶须含量小于理论极限值时,材料
    的抗弯强度和断裂韧性随着晶须含量的增加而增大,当晶须含量大于理论极限值
    时,材料的抗弯强度和断裂韧性开始下降。当SiCw的体积含量为23. 7%时,复合
    材料的力学性能最好,抗弯强度190MPa,断裂韧性2. 31MPa·m1/2。分析了晶须
    取向对复合材料力学性能的影响,发现SiCw择优分布在垂直于热压面内,材料在
    平行于热压面的方向上力学性能最好,在垂直于热压面的方向上力学性能最差。
    对剪滞理论进行了修正,得出了晶须端部所受应力的表达式,推导出了预报
    晶须桥联、晶须拔出、裂纹偏转三者协同增韧效果的表达式。对晶须增韧HAP的
    微观单元进行了有限元分析,发现在受外力作用时,晶须端部与基体结合处的剪
    
    切应力是传递外部载荷的主要方式,晶须端部与基体的结合强度是决定复合材料
    力学性能的主要因素。
     用分形理论对HAP/s iCw复合生物陶瓷的断口SEM图像进行了分析,发现
    HAP/siCw复合生物陶瓷具有分形特征,材料的断口分维值随着晶须含量的增加而
    增大,而且在晶须含量达到23.7%时最大,当大于该含量时,材料的断口分维值下
    降。材料断口分维值随着晶须方向角的增大而增大。材料的致密度随着断口分维
    值的增大而降低,材料的抗弯强度和断裂韧性随着断口分维值的增大而增大。
     对HAP/siCw复合生物陶瓷材料的超声波加工进行了理论分析和试验研究,发
    现材料去除率和加工表面粗糙度随着晶须方向角0的增大而减小。在相同的加工条
    件下,材料的断裂韧性越高,其材料去除率人的叼天越低。磨料工作液的浓度在1:
    4(磨料:水)时最为合适。
    关键词:复合材料,HAP/s iCw生物陶瓷,增韧,分形,超声波加工
Hydroxyapatite(HAP) has become one of the most important artificial bone transplant materials because of its excellent biocompatibility and osteophony. The mechanical properties of synthesized hydroxyapatite are poor, especially its fracture toughness is very low. So that it has been strictly limited to being used in non-dynamic load circumstance. SiC whisker can be adopted to toughen HAP bio-ceramics effectively and enlarge its application range.Thermodynamics analysis on synthesizing nano HAP using sol-gel method was carried out. HAP/SiCw composite micro-powder was synthesized using in-situ composite method, and HAP/SiCw composite bio-ceramics was sintered using hot pressing method. The toughening mechanism of SiCw whisker was theoretically studied and analyzed by FEM, fractal analysis on HAP/SiCw was carried out. The ultrasonic machining of HAP/SiCw composite bio-ceramics was studied.The thermodynamics analysis of the systems of Ca-P2O5-H2O and Ca(OH)2-H3PO4-H2O in the water solution when synthesize hydroxyapatite using Sol-gel method was made the appropriate condition to synthesizing hydroxyapatite was got: using dimethylformamide as dispersant and acting under the temperature of 145-150℃ can get high purity nano HAP and avoid using expensive autoclave. Nano HAP was characterized. Theoretical analysis on hot pressing sintering process was carried out and the expression of hot press densification velocity was got. HAP/SiCw composite micro-powder was synthesized using in-situ composite method. HAP/SiCw composite bio-ceramics was sintered using hot pressing method. The proper sintering technical parameters are: the sintering temperature 1300~ 1310 ℃, the pressure 30-40MPa, the time of heat preservation 30min, and the protection gas nitrogen.The micro-structure and mechanical properties of HAP-SiCw composite bio-ceramics were investigated. The influence on micro-structure and mechanical properties of whisker content was studied. Theoretical calculation results indicate that
    
    the maximal critical content of SiCw in hydroxyapatite-SiCw composite bio-ceramics is 23.7%. The experimental results show that the mechanical properties are the best when the volume content of SiCw is 23.7%, the bending strength is 190MPa and the fracture toughness is 2.31MPa.m1/2. If the SiCw distributes in the plane parallel with the hot press plane, the mechanical properties are the best in the plane normal to the hot press plane, the mechanical properties are the worst in the plane which is parallel with the hot press plane.The stress expression of the whisker tip was got on the basis of modifying the shear lag theory. The expression to forecast the corporate toughening effect of whisker bridging, whisker evulsion and crackle deflexion was derived. The micro unit of HAP toughening by whisker was analyzed by FEM, and the results show that the stress transfer between the whisker tip and the matrix is the main manner to transfer stress. Therefore, the bonding strength between the whisker tip and the matrix is the key factor that determines the mechanical properties of the composite material.The fracture SEM images of HAP/SiCw composite bio-ceramics were analyzed using fractal theory. The results show that HAP/SiCw composite bio-ceramics has fractal character, the fractal dimension of the material fracture rises with the increase of the whisker content and reaches the maximum when the whisker content is 23.7%, however, the fractal dimension of the material fracture falls when the content is higher than this critical value. The fractal dimension of the material fracture rises with the increase of whisker direction angle. The density of the material decreases with the increase of the fracture fractal dimension, whereas the bending strength and fracture toughness of the material increase with the increase of the fracture fractal dimension.Theoretical analysis and experimental study were carried out upon the ultrasonic machining of HAP/SiCw composite bio-ceramics material. Research results show that the material removal rate and the surface roughnes
引文
1. 黄汉生.人工骨的现状与未来.现代科技译丛.2001,3:5-8.
    2. 钱文伟,林进,邱贵兴.人工骨替代物研究进展.医学研究通讯.2001, 30(4) :40-43.
    3. 熊建义.人工骨的研究进展.中国矫形外科杂志.2001,8(5) :488-491.
    4. Bauer TW, Muschler GF. Bone graft materials. Clin Orthop and Rel Res. 2000, 371: 10-27.
    5. Hench L L , Splinter, et al. Biomed. Mater res. 1972, 11: 267.
    6. Li Y, Zhang X, Chen W, et al. The influence of multiphase calcium phosphate bioceramics on bone formation in nonosseous tissues. Trans 19th Annual Meeting of the Society for Biomaterials. Birmingham, AL, USA. 1993: 165-170.
    7. 崔福斋,冯庆玲.生物材料学.北京:科学出版社.1996.
    8. 山口乔,柳田博明,牧岛亮男等著.生物陶瓷.窦筠,窦庆春,孙志毅等译. 北京:化学工业出版社.1992.
    9. Hench L L. Bioceramics: from concept to clinic. J Am ceramics Soc. 1991, 74(7) : 1487-1492.
    10. Gross U. Biocompatibility the interaction of biomaterials and hostresponse. J Dent Educ. 1988, 52(12) : 798-794.
    11. Prener J S. The growth and crystsallographic properties of calcium fluor and chlorapatite crystals. J. Electrochem. Soc. Solid State Science. 1967, 114(1) : 77-83.
    12. Nancollas G H, Wefel J S. The effect of stannous fluoride and stannous chloride on the crystallization of dicalcium phosphate dihydrate at constant. P H. J. of Crystal Growth. 1974,23: 169-176.
    13. Roy D M, Eysel W, Dinger D. Hydrothermal synthesis of various carbonate containing calcium hydroxyapatite. Mater. Res. Bull. 1974(9) : 35-40.
    14. Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions. J. Dent. Apparatus and Materials. 1972, 13(27) : 170-176.
    15. Jarcho M, Bolen C H, Thomas M B. Hydroxyapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 1976, 1: 2027-2035.
    
    16. Halperin W P. Quantum size effects in metal particle. Rev. Mod. Phys. 1986, 58(3) : 532-539.
    17. Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature. Nature. 1987, 330: 516-518.
    18. 胡科军,陈必胜,陶长仲.羟基磷灰石涂层种植体的生物学行为.国外医学 生物医学工程学分册.1999,22(4) :228-232.
    19. 王学江,汪建新,李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成.高技 术通讯.2000,11:92-94.
    20. Shirkhanzadeh M. direct formation of nanophase hydroxyapaatite on cathodically polarized electrodes. J. Mater. Sci. : Mater. In Medicine. 1987, 330: 516-518.
    21. Yubao L, Wijn J D, Klein C P A T, et al. Preparation and characterization of nanograde osteoapatatite-like rod crystals. J. Mater. Sci. : Mater. In Medicine. 1994, 5: 251-255.
    22. Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite. J. Mater. Sci. 1987, 22: 4247-4250.
    23. Monma H, Ueno S, Kanazawa T. Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate. J. Chem. Tech. Biotechnol. 1981, 31: 14-24.
    24. Moreno E C, Varughese K. Crystal growth of calcium apatite from dilute solutions. J. Crystal Growth. 1981, 53: 20-30.
    25. 李玉峰.水溶液中合成羟基磷灰石的实验研究.攀枝花大学学报.2002, 19(1) :76-81.
    26. Fujishiro Y, Yabaki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J. Chem. Tech. Biotechnol. 1993, 57: 349-353.
    27. 冯凌云,李世普,陈闻杰.羟基磷灰石溶液对W256癌肉瘤细胞和艾氏腹水瘤 细胞增殖的影响.中国有色金属学报.1999,9(3) :651-654.
    28. 陈闻杰.羟基磷灰石溶胶稳定性研究及其抑制癌机理初探.武汉工业大学硕 士学位论文.1997.
    29. Deptula A, Lada W, Olezak T, et al. Preparation of spherical powders of hydroxyapatite by sol-gel process. J. Non-Crystalline solids. 1992, 147-148: 537-541.
    30. Valler-Regf M, Gutierrez-Rios M T, Alonso M P, et al. Hydroxyapatite particles synthesized by qyrolysis of an aerosol. J. Solid State Chem. 1994, 112: 58-64.
    
    31. Lim G K, Wang J, Ng S C. et al. Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant. J. Mater. Chem. 1999, 9: 1635-1639.
    32. Lim G K, Wang J, Ng S C. et al. Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater. Lett. 1996, 28: 431-436.
    33. Lim G K, Wang J, Ng S C. et al. Processing of hydroxyapatite via microemulsion and emulsion routes. Biomaterials. 1997, 18(21) : 1433-1439.
    34. Miyazaki K, Horibe T, Antonucci J M, et al. Polymeric calcium phosphate cements: analysis of reaction preducts and properties. Dent Mater. 1993, 9(1) : 41-45.
    35. Ignjatovic N, Tomic S, Dakic M, et al. Synthesis and properties of hydroxyapatite/poly-L-Lacitide composite. Biomaterials. 1999, 20(2) : 809-816.
    36. Lu L, Mikos A. The importance of new processing techniques in tissue engineering. Materials Research Society Bull. 1996, 21(11) : 28-32.
    37. Ignjatovic N, Tomic S, Dakic M, et al. Synthesis and properities of hydroxyapatites/poly-L-Lactide composite biomaterials. Biomaterials. 1999, 20(2) : 809-816.
    38. Lewandrowski KU, Gresser JD, Wise DL, et al. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid bone cement. Biomaterials. 2000, 21(3) : 293-298.
    39. RL Coble. Sintering CrystallineSolids: Intermediate and Final Stage Diffusion Models. J. Appl. Phys. 1961, 32: 787-792.
    40. H. E. Exner, E. Arzt, Sintering-Key Papers. Eds., S. Somiya, Y. Moriyoshi, Elsevier Applied Science. London. 1987.
    41. 高瑞平,李晓光,施剑林等编著.先进陶瓷物理与化学原理及技术.北京:科 学出版社,2000.
    42. RE. Mistier, RL. Coble. Grain Boundary Diffusion and Boundary Widths in Metals and Ceramics. J. Appl. Phys. 1974, 45(4) : 1507-15099.
    43. Vieira JM, Brook RJ. Hot-pressing of high-purity magnisium oxide. J. Am. Ceram. Soc. 1984, 67(7) : 450-454.
    
    44. S. Pejovnik, V. Smolej, D. Susnik, D. Kolar. Closure of Isolated Pores in Liquid Phase Sintering of W-Ni. Powder Metall Int. 1979, 11: 22-24.
    45. M. P. Harmer. Advances in Ceramics. American Ceramic Society, Columbus, OH. 1985, 10: 679-696.
    46. S. T. Buljan, A. E. Pasto, H. J. Kim. Advanced Structural Ceramics: Properties, Reliability and Applications. Amer, Ceram. Soc. Bull. 1989, 28(2) : 567-571.
    47. N. T. Tiegs. Tailoring of properties of whiskeroxide matrix composite proceeding of the 3rd International symposium on ceramic materials and components. V. J. Edited. USA. 1989.
    48. 吴建光,李建保,黄勇.晶须增韧陶瓷基复合材料的设计要点与复合技术. 硅酸盐学报.1990,18(1) :72-82.
    49. 黄勇,李建保,郑隆烈,吴建光.晶须(纤维)补强陶瓷基复合材料的评述. 硅酸盐通报.1991,2:21-27.
    50. 黄勇,李建保,郑隆烈,吴建光.SiCw/Si3N4复合材料的界面设计.高技术通 讯.1991,7:18-21.
    51. Freund LB. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press. 1990.
    52. Benoit B, Mandelbrot, Dann E, Passoja, Alvin J. Paullay Fractal character of fracture surfaces of netals. Nature. 1984:721-722.
    53. Lung C W., Pietronero L, Tosatti E(eds). Fractals in Physics. North Holland, Amsterdam. 1986: 189-192.
    54. Lung C W. Mu Z Q. Fractal characterization of the fracture surface of a high-strength low-alloy steel. Phys. Rev. B. 1988, 38: 11781-11784.
    55. 谢和平,陈至达.分形几何与岩石断裂.力学学报.1988,20(3) :264-271.
    56. 穆在勤,龙其威.金属断裂表面的分形(Fractal)与断裂韧性.金属学 报.1988,24(2) :142-145.
    57. 董连科,王晓伟.分形维数与临界扩展力.金属学报.1990,26(2) : 145-149.
    58. 江来珠,崔崑.应用分形几何研究钢的冲击韧性与易切削相参数的相关性. 金属学报.1992,28(1) :27-33.
    59. 张人佶.油润滑下钢严重磨损表面的分形特征.摩擦学学报.1993,13(4) : 343-348.
    60. H.J.Herrmann. Fractal Deterministic Cracks. Physica D. 1989, (38) : 192-197.
    
    61. Maloy K J, Hansen A, Hinrichsen E L, Roux S. Hydrofracture pattern formation during central air injection in granular materials confined in thin layers. Phys. Rev. Lett. 1992, 68: 213-215.
    62. 陈安玉主编.成都:四川科学技术出版社.口腔种植学.1989:189-190.
    63. 邬鸿彦.HAP的结构及物理性能.四川师范大学学报(自然科学版).1996, 19(5) : 55-58.
    64. Hideki A. Science and Medical Applications of Hydroxyapatite. JAAS, 1991:95-98, 105-107.
    65. Dieter G E. Mechanical Metallurgy. New York: McGraw-Hill, 1986.
    66. 田从学.水溶液中合成羟基磷灰石的研究.攀枝花大学学报,1999,16(6) : 77-81.
    67. 杨显万,何蔼平,袁宝州等编.高温水溶液热力学数据计算手册.北京:冶金 工业出版社.1983年.
    68. 邝志清,潘春跃,黄可龙等.Sol-gel法制备羟基磷酸钙超细粉末.中南工业 大学学报.2000,31(3) :246-249.
    69. Chow L C. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue of the Ceramic Society of Japan. 1991, 99(10) : 954-964.
    70. 张长瑞,郝元恺编著.陶瓷基复合材料--原理、工艺、性能与设计.长沙: 国防科技出版社.2001.
    71. RL Coble. Sintering Crystalline Solids:Intermediate and Final State Diffusion Models. J. Appl. Phys. 1961, 32(5) :787-92.
    72. 高瑞平,李晓光,施剑林等.先进陶瓷物理与化学原理及技术.北京:科学出 版社,2001.
    73. 施剑林.固相烧结--Ⅰ.气孔显微结构模型及其热力学稳定性与致密化方 程.硅酸盐学报.1997,25(5) :499-505.
    74. J. L. Shi,Z. L. Lu, J. H. Gao, G. Q. Zhu, L.Li, T.R.Lai. Microstructure and Micro-mechanical Properties of Y-TZP and Y-TZP/Al2O3 Composite after Superplastic Deformation. Acta Meterialia. 1998, 46(6) : 1923-1932.
    75. J.L.Shi. Thermodynamics and Densification Kinetics in Solid-State Sintering of Ceramics. J. Mater. Res. 1999, 14(4) : 1398-1408.
    76. J.L.Shi. Research of High Temperature Structure Ceramics: Recent Progresses in China. Adv. Mater. 1999, 11(13) : 1103-09.
    
    77. Lian-zhou Wang, Jian-lin Shi, et al. Rapid Synthesis of Mesoporous Silica with Micrometer Sized Hexagonal Prism Structure. J. Mater. Chem. 1999, 9: 643-645.
    78. Z.Y.Deng, J.L Shi, Y.F.Zhang, T.R.Lai, J. K. Guo. Creep and Creep Recovery Behavior on Silicon-Carbide-Particle-Reinforced Alumina. J. Am. Ceram. Soc. 1999, 82(4) : 944-52.
    79. W. D. Kingery, B. Francois. The Sintering of Crystalline Oxides: Interactions Between Grain Boundaries and Pores. Sintering and Related Phenomena. Gordon Breach. New York. 1967.
    80. FF Lange. Sinterability of Agglomerates. J. Am. Ceram. Soc. 1984, 67(2) : 83-89.
    81. P. Murray et al. Analytical Method for Determination of Free Silica. Trans. Brit. Ceram. Soc. 1954, 53: 474-503.
    82. 李世普,陈晓明主编.生物陶瓷.武汉:武汉工业大学出版社,1989.
    83. 叶瑞伦等,无机材料物理化学,北京:中国建筑工业出版社,1986.
    84. 萧虹.晶须增韧陶瓷刀具材料的研制及其切削性能的研究.山东工业大学博 士论文.1990.
    85. 金志浩,高积强,乔冠华.工程陶瓷材料,西安:西安交通大学出版社,2000.
    86. 何林.新型陶瓷轴承套圈的研制及其应用基础研究.山东大学博士学位论文. 2003.
    87. 赵军.新型梯度功能陶瓷刀具材料的设计制造及其切削性能研究.山东工业 大学博士学位论文.1998.
    88. 龚江宏,张戈,关振铎.陶瓷材料压痕弯曲梁中残余应力的研究.硅酸盐学报. 1993,21(3) :275-279.
    89. 李兆前,艾兴.硬质合金断裂力学参数的试验研究.山东工业大学学报. 1996,6:12.
    90. 黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博 士学位论文.1994.
    91. M. Fukuhara, K. Fukazawa, A. Fukawa. Physical properities and cutting performance of silicon nitride ceramic. Wear. 1985, 102: 195-210.
    92. 金志浩,高积强,乔冠华.工程陶瓷材料.西安:西安交通大学出版社.2000.
    93. 邓建新,李兆前,艾兴.Al2O3/SiCw陶瓷刀具材料中晶须的取向对其力学和切 削性能的影响.硅酸盐学报.1995,23(2) :141-146.
    94. K. Niihara, R. Morena, DPH Hasselman. Evaluation of KIC of Brittle Solids by The Indentation Method With Low Crack-To-Indent Ratio. J. Mater. Sci.Lett. 1982, 1: 13-16.
    
    95. Vigneau J. Influence of the microstructure of the composite ceramic tools on their performance when machining nickel alloys. Annals of the CIRP. 1987, 36(1) : 13.
    96. 萧虹,艾兴.晶须增韧陶瓷刀具切削镍基合金时的切削性能.工具技术. 1991, 25(5) : 26.
    97. 邓建新,艾兴.SiC晶须增韧Al2O3陶瓷组成优化及其断裂行为的研究.材料 科学与工程.1994,13(1) :33-40.
    98. Dellacorte Christopher. An Analysis of the Wear Behavior of SiC Whisker Reinforced Alumina from 25℃ to 1200℃. Tribology Transactions. 1993, 36(3) : 452-460.
    99. Cox H L. The elasticity and strength of paper and other fiberous materials. Brit J Appl Phys. 1952, 3: 72.
    100. Rosen, B. W. Mechanics of Composite Strengthening Fiber Composite Materials. Amer. Soc. Of Metals. Metal Park Ohio. 1965.
    101. 顾震隆.短纤维复合材料力学.北京:国防工业出版社.1987.
    102. Fukuda, H. Chou, T. W. An advanced shear-lag model applicable to dis continuous fiber composites. J. Composite Materials. 1981, 15(1) : 79.
    103. Chon C. T., C. T. Sun. stress distributions along a short fibre in fibre reinforced plastics. J. Materials Sci. 1980, 15: 931-938.
    104. Halpin, J. S., Tsai, S. W. Effects of Environmental factors on Composite Materials. AFML-TR. 1969, 7: 67-423.
    105. Bengisu M, Inal O T, Tosyali O. Acta Metall. On Whisker Toughening in Ceramic Materials. Meter. 1991, 39: 2509-2517.
    106. Faber K T, Evans A G. Crack deflection processes:I. Theory. Acta Metall. 1983, 31: 565-576.
    107. Marshall D B, Cox B N, Evans A G. The Mechanics of Matrix Cracking in Brittle-matrix Fiber Composites. Acta Metall. 1985, 33: 2013-2021.
    108. Toughless M D, Evans A G. Effects of pull-out on mechanical properties of ceramic-matrix composites. Acta Metall. 1988, 36(3) : 517-522.
    109. Bansal P P, Ardell A J. The Mechanics of Matrix Cracking in Brittle-matrix Fiber Composites. Metallography. 1972, 5: 97-111.
    
    110. Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. Hellertown: Del Research Corporation. 1973, 2: 16-27.
    111. PF Becher. Microstructural Design of Toughened Ceramics. J. Am. Ceram. Soc. 1991, 74(2) : 255-69.
    112. 熊兆贤.陶瓷材料的分形研究.北京:科学出版社.2000.
    113. 董连科,王晓伟,王克钢等.分形用于材料断裂韧性研究的不定性问题.高 压物理学报.1990(4) :259.
    114. 谢和平.分形最新进展与力学中的分形.力学与实践,1993,(2) :9.
    115. Xie H. Fractal effects of crack propagation on dynamic stress intensity factors and crack velocities. Chinese Science Bulletin. 1989, 34(15) : 1292-1296.
    116. Xie H. Effects of fractal crack. Acta Mechanica Sinica. 1988, 4(3) : 255-264.
    117. Xie H. Fractals in Rock Mechanics. A. A. Balkema. Publishers. 1992
    118. Ganti S, Bhushan B. Generalized fractal analysis and its application to engineering surfaces. Wear. 1995, 180(1) : 17-34.
    119. Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanices of surface. ASME Journal of Tribology. 1990, 112: 205-216.
    120. Gagnepain J J, Roques-Carmes C. Fractal approach to two-dimensional and three-dimensional surface roughness. Wear. 1986, 109: 119-126.
    121. Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surface. ASME Journal of Tribology. 1991, 113: 1-11.
    122. Zhou G Y, Leu M C, Blackmore D. Fractal geometry model for wear prediction. Wear. 1993, 170: 1-14.
    123. P.F. Becher, G.. C. Wei. Toughening behavior in SiC whisker reinforced Alumina. J. Am. Ceram. Soc. 1984, 67(12) : 267-269.
    124. Farnjeng Lee, M.S. Sandlin. Toughness anisotropy in textured ceramics. J. Am. Ceram. Soc. 1993, 76(6) : 1793-1800.
    125. 邓建新,李兆前,艾兴.晶须的取向对Al2O3/SiCw陶瓷刀具材料的力学和切 削性能的影响.硅酸盐学报.1995,23(2) :141-147.
    126. Deng Jianxin, Ai Xing. Effect of whisker orientation on the friction and wear behavior of Al2O3/TiB2/SiCw composites in sliding wear tests and in machining processes. Wear. 1996, 201: 178-185.
    
    127. 邓建新,赵军,艾兴.晶须增韧陶瓷材料的超声波加工.材料导报.2000, 14(10) :370-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700