新型陶瓷喷砂嘴的研究开发及其冲蚀磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从喷砂嘴的使用要求出发,研究开发出新型B_4C基陶瓷喷砂嘴,深入研究了陶瓷喷砂嘴材料的组分设计、工艺设计、力学性能和微观结构。运用气固两相流动理论对喷砂过程进行了模拟和仿真。对陶瓷喷砂嘴进行了大量的冲蚀磨损试验,分析了陶瓷喷砂嘴冲蚀磨损的影响因素,建立了陶瓷喷砂嘴冲蚀磨损模型,探索了陶瓷喷砂嘴的冲蚀磨损机理。
     以B_4C为基体,(W,Ti)C固溶体为增韧补强剂,借助于热压过程的B_4C和(W,Ti)C原位化学反应,首次成功制备出B_4C/(W,Ti)C陶瓷喷砂嘴。与B_4C陶瓷相比,B_4C/(W,Ti)C陶瓷喷砂嘴材料的抗弯强度从300MPa提高到693MPa,断裂韧性从2.5MPa.m~(1/2)提高到3.9MPa.m~(1/2),烧结温度从2200℃降低到1850℃,减少了能耗,降低了制造成本。
     B_4C/(W,Ti)C陶瓷喷砂嘴材料的相对密度、抗弯强度和断裂韧性随(W,Ti)C含量的增加而增大,而硬度随(W,Ti)C含量的增加而降低。B_4C陶瓷的断口表面存在许多气孔,晶粒大小为6~8μm左右,而B_4C/(W,Ti)C陶瓷材料的断口表面几乎没有气孔存在,晶粒尺寸小于2μm,各相分布均匀,晶粒显著细化。
     系统研究了10种不同材料喷砂嘴的冲蚀磨损行为,得出抗冲蚀能力由强到弱的顺序依次是:B_4C陶瓷、B_4C/(W,Ti)C陶瓷、Al_2O_3/(W,Ti)C陶瓷、YG8和YT15硬质合金、75瓷、铸铁(HT15-33)、45#淬火钢、45#钢和聚氨脂塑料,其中B_4C/(W,Ti)C陶瓷喷砂嘴表现出了最佳的综合性能指标。
Based on the requirements of sandblasting nozzles, B4C based advanced ceramic nozzles have been successfully developed. Researches were carried out on its composition and hot-pressing parameters, mechanical properties and microstructure. With the theory of gas-solid two-phase flow, computer simulation of sandblasting process was discussed. Under the experimental results, effect of the factors that influence the nozzle wear was investigated, the erosion wear model was established, and the wear mechanisms were studied.B_4C/(W,Ti)C ceramic composites with different content of solid-solution (W,Ti)C were produced by hot pressing. Chemical reaction took place for this ceramic system during hot pressing sintering, and resulted in a B4C/TiB_2A/W_2B_5 composite. The flexure strength and fracture toughness were increased from 300 MPa and 2.5 MPa.m~(1/2) for monolithic B_4C to 693 MPa and 3.9 MPa.m~(1/2)for B_4C/(W,Ti)C composites respectively, while the sintering temperature was lowered from 2200℃ to 1850℃.The density, flexure strength and fracture toughness of B4C/(W,Ti)C ceramic composites continuously increased with increasing (W,Ti)C content, while the hardness decreased with increasing (W,Ti)C content. There are a lot of obvious pores located at the B_4C grain boundary, and the grain size is about 6-8 urn. While there are almost no pores observed in the composite and the grain size is less than 2 μm.Erosion wear behavior of the nozzles made from different materials has been studied. Results showed that the wear resistance of the nozzles from high to low is B_4C, B_4C/(W,Ti)C, Al_2O_3/(W,Ti)C, 75 ceramic, YG8, YT15,45# steel, 45# hardened steel, cast iron(HT 15-33) and polyurethane plastic in turn, and B_4C/(W,Ti)C ceramic nozzle has high ratio of capability to price among all of these nozzles.The effect of abrasive particle hardness(H_p), the ratio of particle hardness to nozzle
引文
1.岳岗.高压喷雾用硬质合金喷嘴.硬质合金,1992,9(4):210-216
    2.程一坚,刘建华.激光切割喷嘴及流场分析综述.宇航材料工艺,1999,15(2):17-20
    3.刘力红,张东建.磨料射流切割机的试验研究.机械科学与技术,1997,26(4):23-26
    4.韩长富.耐磨超细型雾粒喷嘴的研制与应用.水泥,1997,4:39-40
    5.段继光,王元山.工程陶瓷喷砂嘴在防护技术中的应用.防腐蚀工程,1994,(1):132-134
    6.李成贤.喷砂在零件表面处理中的应用.材料保护,1994,27(8):33-36
    7.蔡日恒,吴登真.强化喷丸在汽车零件上的应用.汽车技术,1994,(1):33-34
    8.沈国良.喷丸用文丘里型喷嘴.材料保护,1989,5(2):22-23
    9.李国英.表面工程手册.北京:机械工业出版社,1998
    10.邱关明.新型陶瓷.北京:兵器工业出版社,1992
    11.曾果特,张金兰,王声宏.陶瓷喷砂嘴的研制.钢铁研究学报,1994,6(1):103-104
    12.张清.金属磨损和金属耐磨材料手册.北京:冶金工业出版社,1991
    13.唐国宏,张兴华,陈昌麒.碳化硼超硬材料综述.材料导报,1994,11(4):69-75
    14.江东亮.精细陶瓷材料.北京:中国物资出版社,2000
    15. D.M.Bylander, L.Kleinman, S.Lee. Self-consistent calculations of the energy bands and bonding peroorties of B_(12)C_2. Physical Review B, 42(2); 1394-1403
    16.吴桢干,顾明元,张国定.碳化硼的氧化特性研究.材料工程,1997,11(2):55-59
    17.李世波.热压烧结碳化硼(B_4C)陶瓷复合材料的组织与性能.博士学位论文,哈尔滨:哈尔滨建筑大学,1999
    18. M. Bouchacourt, F. Thevenot. The structure and properties of the boron carbide phase. J. Less-common Metals, 1981, (82): 227-233
    19. M. Beauvt. Stoichiometric limits of carbide-rich boron carbide phase. The 7th International symposium on boron, borides and related compounds. Uppsala, Sweden, 1981
    20.蒋国新,王声宏.碳化硼的低温热压.粉末冶金技术,1995,18(2):109-114
    21. H.T. Larker, et al. Hot isostatic pressing and applicability to silicon carbide and boron carbide. Mater. Sci., 1987, (38): 795-799
    22.白克武,王永兰等.热压工艺对碳化硼显微结构和性能的影响.西安交通大学学报,1994,16(7):73-78
    23.唐军,谭寿洪,陈忠明,江东亮.B_4C陶瓷的协同增韧.无机材料学报,1997,12(3): 297-303
    24.黄启忠,杨巧勤等.C-B_4C-SiC复合材料抗氧化性能的研究.硅酸盐学报,1995,23(5):514-519
    25. Hideaki Itoh, Kouji sugiura, et al. Preparation of TiB_2-B_4C composites by high-pressure sintering. J less-commet, 1996, (22): 186-191
    26.谭寿洪,唐军.碳化硼陶瓷的韧性设计.96中国材料研讨会论文集,1996,63-69
    27. G. Sasaki, et al. Microstructure of B_4C/TiB_2 composites fabricated by reaction sintering of B_4C and TiC. J. Ceram. Soc. Jpn, Int Ed, 1994, (102): 320-325
    28. Robert Ruh, et al. Phase and property studies of B_4C-BN composites. J. Am. Ceram. Soc, 1995, (78): 864-869
    29. E Fendler, O. Babushkin, et al. Modification of thermal mismatch in B_4C-diboride ceramics. J. Hard Mat., 1993, (4): 137-142
    30.张宝生,李世波,温广武.添加Al_2O_3对B_4C烧结行为的研究.哈尔滨建筑大学学报,1999,22(3):72-77
    31. H. Hofmann. Structure and properties of reaction hot pressed B_4C-TiB_2-W_2B_5 materials. J. Less-common metals, 1996, (117): 121-127
    32.郝元恺,赵恂等.纯镁对碳化硼颗粒的常压渗透.复合材料学报,1995,23(3):12-18
    33. V.V. Skorokhod, M. D. Vlajic, et al. Pressureless sintering of B4C-TiB_2 ceramic composites. Mat. Sci. Fornm, 1998, (282): 219-225
    34. J. Liu, P. D. Ownby. Boron carbide reinforced alumna composites. J. Am. Ceram. Soc., 1991,(3): 674-680
    35. C. H. Jung, C. H. Kim. Sintering and characterization of Al_2O_3-B_4 composites. J. Mater. Sci., 1991, (18): 5037-5043
    36.邓建新,周军.B_4C/(W,Ti)C陶瓷复合材料的制备及其性能.硅酸盐通报,2002,21(1):16-20
    37. Danny C. Halverson. Processing of boron carbide-Aluminum composites. J. Am. Ceram. Soc., 1989, (5): 755-761
    38. S. Hayashi et al. TiB_2-B_4C composites pressureless-sintered using Ni and C as densification aids. J. Ceram. Soc. Jpn Int Ed., 1993, (101): 149-155
    39. D. K. Kim and C. H. Kim. Pressureless sintering and microstructure development of TiB_2-B_4C composites. Advanced Ceramic materials, 1988, 3(1): 52-60
    40. L. S. Sigl and H. J. Kleebe. Microcracking in TiB_2-B_4C composites. J. Am. Ceram. Soc., 1995, 78(9): 2374-2380
    41. Y. Kanno et al. Additive effect on sintering of boron carbide. J. Ceram. Soc. Jpa., 1987, (95): 1137-1142
    42. Z. Zakhariev, D. Radev. Properties of polycrystalline boron carbide sintered in the presence of W_2B_5 without pressing. J. Mater. Sci. Lett., 1988, (7): 695-701
    43. Slikkerveer, P. J., Veld, F. H. Model for patterned erosion. Wear, 1999, (233-235): 377-386
    44. A. J. Speyer, R. J. K. Wood, K. R. Stokes. Erosion of aluminium-based claddings on steel by sand in water. Wear, 2001, (250): 802-808
    45.孙家枢.金属的磨损.北京:冶金工业出版社,1986
    46.刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    47. K. Anand, H. Conrad. Local impact damage and erosion mechanisms in WC-6wt.%Co Alloys, Mater. Sci. Eng. A, 1988, (105-106): 411-421
    48. R. Wellman, C. Allen. The effect of angle of impacet and material properties on the erosion rates of ceramics, Wear, 1995, (186-187): 117-122
    49. T.J. Kim, J. Zeng. Material removal kinetics of advanced ceramics by high-pressure abrasive waterjet. Proc. 1st Japan international ASMPE Symposium, 1989, 769-776
    50. H.C. Meng and K. C. Ludema. Wear models and predictive equations: their form and content. Wear, 1995, (181-183): 443-457
    51. I. Finnie. Some reflections on the past and future of erosion. Wear, 1995, (186-187): 1-10
    52. J.E. Ritter. Erosion damage in structural ceramics. Mater. Sci. Eng., 1985, (71): 195-202
    53. K. Anand, S. K. Hovis, et al. Flux effects in solid particle erosion. Wear, 1987, (118): 243-249
    54. Bu Qian Wang. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers. Wear, 1999, (225-229): 502-509
    55. R.J.K. Wood, Y. Puget. et al. The performance of marine coatings and pipe materials under fluid-borne sand erosion. Wear, 1998, (219): 46-59
    56. I. Finnie. Some observations on the erosion of ductile metals. Wear, 1972, (19): 81-87
    57. I. Finnie and D. H. Mcfadden. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence. Wear, 1978, (48): 181-187
    58. I. Finnie, G. R. Stevick and J. R. Ridgely. The influence of impingement angle on the erosion of ductile metals by angular abrasive particles. Wear, 1992, (152): 91-98
    59. R. G. Wellman and C. Allen. The effect of angle of impact and material properties on the erosion rates of ceramics. Wear, 1995, (186-187): 117-123
    60. K. Shimizu and T. Noguchi. Erosion characteristics of ductile iron with various matrix structures. Wear, 1994, (176): 255-230
    61. C.M. Thai, M. Kurakado, et al. Erosion of plastic materials by repeated impacts with single particles. JSMS, 1982, (31): 834-839
    62. K. L. Powell, J. A. Yeomans, P. A. Smith. A study of the erosive wear behavior of continuous fibre reinforced ceramic matrix composites. Acta Metall. Mater., 1997, (45): 321-330
    63. A. G. Evans, M. E. Gulden and Rosenblatt. Impact damage in brittle materials, Proc. Roy. Soc. Lond., 1978, (A361): 343-365
    64. S. W. Wiederhom, B. R. Lawn. Strength degradation of glass impacted with sharp particles. J. Am. Ceram. Soc, 1979, (62): 66-70
    65. S. M. Wiederhom, B. K.Hockoy. Effect of material parameters of the erosion resistance of brittle materials. J. Mater. Sci., 1983, (18): 766-780
    66. W. Yabakoff, R. Kotwal, A. Hamed. Erosion study of different materials affected by coal ash particles. Wear, 1979, (52): 161-173
    67. J. G.A. Bitter. A study of erosion phenomena, Part Ⅱ. Wear, 1963, (6): 169-190
    68. Z. Feng, A. Ball. The erosion of four materials using seven erodents-towards an understanding. Wear, 1999, (233-235): 674-684
    69. Said Bouzid, N. bouaouadja. Effect of impact angle on glass surfaces eroded by sand blasting. Journal of the European Ceramic Society, 2000, (20): 481-488
    70. P. J. Slikkerveer, P. C. R Bouten, F. C. M. de Haas. High quality mechanical etching of brittle materials by powder blasting. Sensors and Actuators, 2000, (85): 296-303
    71. Y. I. Oka, H. Ohnogi. The impact angle dependence of erosion damage caused by solid particle impact. Wear, 1997, (203-204): 573-579
    72. Dong F. Wang, Zhi Y. Mao. A study for erosion of Si_3N_4 ceramics by impact of solid particles. Wear, 1996, (199): 283-286
    73. J. F. Bell and P. S. Rogers. Laboratory scale erosion testing of a wear resistant glass-ceramic. Materials Science and Technology, 1987, (3): 807-813
    74. N. Gerarson et al. Wear of ceramics in grit blasting. Br. Ceram. Trans. J., 1989, (88): 213-218
    75. I. Finnie. Erosion of surfaces by solid particles. Wear, 1960, (3): 87-103
    76.孙大千,高南,曹书云.NiWC喷焊层冲蚀磨损性能的研究.华中理工大学学报,1992,20(6):31-35
    77. G. P. Tilly, A two stage mechanism of ductile erosion. Wear, 1973, (23): 87-96
    78. A. V. Levy. P. Chik. The effects of composition and shape on the erosion of steel. Wear, 1983, (89): 151-162
    79.材料耐磨抗蚀及表面处理丛书编委会主编.材料的冲蚀磨损与微动磨损.北京:机械工业出版社,1984
    80. Yang-Yao Niu. Evaluation of erosion in tow-way coupled fluid-particle system. Int. J. Meth. Fluid, 2001, (36):711-742
    81.郦剑,毛志远,黄兰珍,涂江平.高强韧陶瓷的冲蚀磨损行为.浙江大学学报,1993,27(3):371-379
    82. S. Srinivasa, R. O. Scatterrgood. Effect of erodent hardness on erosion of brittle materials. Wear, 1988, (128): 139-152
    83. A. G. Evans. D. B. Marshall. Wear mechanisms in ceramics. Proc. of Int. conf. on Fundamentals of Friction and Wear of Materials, ASME, 1980: 439-452
    84. Malkin S, Hwang TW. Grinding mechanisms for ceramics. CIRP Ann, 1996, (45-2): 569-580
    85.牟军.ZrO_2增韧AT30新型金属陶瓷的冲蚀及增韧机理研究.博士学位论文.杭州:浙江大学,1995
    86. M. Hashish. Wear in abrasive-waterjet cutting system, in K. E. Ludema (ed.), Proc. Int. Conf. On wear of Materials. Houston, TX, ASME, Newyork, 1987: 769-776
    87. K. A. Schwetz et al. Wear of boron carbide ceramics by abrasive waterjets. Wear, 1995,(181-183): 148-155
    88. P. H. Shipway, I. M. Hutchings. Influence of nozzle roughness on conditions in a gas-blast erosion rig. Wear, 1993, (162-164): 148-158
    89.程兰征,章燕豪编.物理化学.上海:上海科学技术出版社,1988
    90.樊宁.基于切削可靠性的复相陶瓷刀具材料的设计与开发研究.博士学位论文.济南:山东大学,2001
    91.梁英教.车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1994:456
    92.唐国宏,陈昌麒,张兴华.B_4C-TiB_2-W_2B_5复合材料研究.材料科学进展,1993,15(6):517-520
    93. A. G. Evans. Perspective on the development of high toughness ceramics, Journal of the American Ceramic Society, 1990, (2): 187-195
    94. R. W. Steinbrech. Toughening mechanisms for ceramic materials. Journal of the European Ceramic Society, 1992, (10): 131-142
    95. M. Taya, S. Hayashi, A. S. Kobayashi. Toughening of a particulate-reinforced ceramic matrix composite by thermal residual stress. Journal of the American Ceramic Society, 1990, (5): 1382-1391
    96. B. Lin, T. Iseki. Effect of thermal residual stress on mechanical properties of SiC/TiC composites. British Ceramic Transactions. 1992, (91): 1-5
    97. Jianxin Deng, Jun Zhou, Yihua Feng, Zeliang Ding. Microstructure and mechancal properties of hot-press B_4C/(W, Ti)C ceramic composites. Ceramics International, 2002, (28): 425-430
    98.张立德,牟秀美.纳米材料和纳米结构.北京:机械工业出版社,2001
    99. M. Wakuda, Y. Yamauchi, S. Kanzaki. Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. Precision Engineering, 2002, (26): 193-198
    100. Byeong-Eun Lee, et al. Computation study of solid particle erosion for a single tube in cross flow. Wear, 2000, (240): 95-99
    101. R. J. K. Wood. The sand erosion performance of coatings. Materials and design. 1999, (20): 179-191
    102. A. G. Evans. Abrasive wear in ceramics: an assessment. The Science of Ceramic Machining and Surface Finishing Ⅱ, 1979, (1): 225-232
    103. Irina Hussainova, Jakob Kubarsepp, Juri Pirso. Mechanical properties and features of erosion of cermets. Wear, 2001, (250): 818-825
    104. G. P. Tilly, W. Sage. The interaction of particle and material behaviour in erosion processes. Wear, 1970, (16): 117-165
    105. E. Belloy, A. sayah, M. A. M Gijs. Powder blasting for three-dimensional microstructuring of glass. Sensors and Actuators, 2000, (86): 231-237
    106. J. H. Neilson, A. Gilchrise. Erosion by a stream of solid particles. Wear, 1968, (11): 111-122
    107. O. P. Modi, R. P. Yadav, et al. Three-body abrasion of a cast zinc-aluminium alloy: influence of Al_2O_3 dispersoid and abrasive medium. Wear, 2001, (249): 792-799
    108.邓建新,冯益华,丁泽良,史佩伟.陶瓷喷砂嘴的冲蚀磨损机理研究.硅酸盐学报,2003,31(5):494-497
    109. S. Malkin, J. E. Ritter. Grinding mechanisms and strength degradation for ceramica. J. Eng. Ind., Trans. ASME, 1989,(2): 167-174
    110. L. Kahlman, S. Karlsson, et al. Wear and machining of engineering ceramics by abrasive waterjets. Am. Ceram. Soc. Bull. 1993, 72(8): 93-98
    111. Gulden ME. Solid particle erosion of Si_3N_4 materials. Wear, 1981, (69): 115-129
    112. M. Papini, J. K. Spelt. The Plowing erosion of organic coatings by spherical particles. Wear, 1998, (222): 38-48
    113. S. Wada, N. Watanabe. Solid particle erosion of brittle materials—Part 4: the erosion wear of thirteen kinds of commercial A1203 ceramics. J. Ceram. Soc. Jpn, 1987, (95): 835-840
    114.郭大展,王良建,李汾兰.氮化硅陶瓷冲蚀磨损特性研究.硅酸盐通报,1995,14(2):22-26
    115.牟军,毛志远.增韧陶瓷沖蚀研究的最新进展.材料导报,1994,11(6):34-36
    116.冯益华,邓建新,史佩伟.陶瓷材料冲蚀磨损的研究.陶瓷学报,2002,23(3):169-173
    117. S. Wada, N. Watanabe. Solid particle erosion of brittle materials(Part 5), Yogyo Kyokaishi, 1987, (95): 573-578
    118.关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2002:81
    119. Sommerfeld M. The importance of inter-particle collision in horizontal gas-solid channel flows. Gas-particle Flow, 1995, (228): 335-345
    120.徐进,葛满初.气固两相流动的数值计算.工程热物理学报,1998,(2):233-234
    121.顾墦,许晋源.气固两相流场的湍流颗粒浓度理论模型.应用力学学报,1994,(4):11-18
    122. Tanaka T., Tsuji Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision. ASME Fed, 1991, (121): 123-128
    123. Lun C K., Savage S B. A simple kinetic theory granular flow of rough, inelastic, spherical particles. J. Applied Meth., 1997, (54): 47-53
    124.陈越南,张树道.气固两相射流的数值研究.水动力学研究与进展,1993,8(4):369-376
    125. Sinclair J L., Jackson R. Gas-solid flow in a vertical pipe with particle-particle interaction. AlCHE Journal, 1989, (35): 1473-1487
    126.张健.周力行.气固两相流中颗粒轨道运动方程的一组分析解.燃烧科学与技术,2000,6(3):226-229
    127. Ding J, Gidspow. A bubbing fluidization model using kinetic theory of granular flow. AlCHE Journal, 1990, (36): 523-538
    128.张夏,周力行.考虑壁面粗糙度的双流体颗粒-壁面碰撞模型.燃烧科学与技术,2000,8(2):140-144
    129.刘大有.两相流动力学.北京:高等教育出版社,1993
    130.孙平,樊建人等.计及颗粒间碰撞的湍流气固两相流模型及验证.自然科学进展,1998,8(5):572-580
    131.陆慧林,赵广播等.管内气固两相流动的实验和模拟计算.工程热物理学报,1999,20(5):627-631
    132.陆慧林,刘文铁,赵广播.管内稠密气固两相流数值模拟计算:颗粒动力学法.化工学报,2000,50(1):31-37
    133.韩旭,李士杰等.等直径喷嘴中气粉两相流粉粒速度的实验研究.东北大学学报,1995,16(1):92-96
    134.岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990:475-477
    135.契尔米诺夫著 潘文泉译.流体工程简明手册.北京:宇航出版社,1989
    136.彭一川,肖泽强.等截面管道中气固两相流的颗粒速度的理论计算.东北工学院学报,1985,6(3):55-60
    137.彭一川,韩挺.等截面倾斜管道中气粉流的数学模型.东北大学学报,1997,18(4):356-360
    138. Clift R, Grace j R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978
    139. Wallis G B. One-Dimension Two-Phase Flow. New York: MoGraw-Hill Book Company, 1969
    140. J. G. A. Bitter. A study of erosion phenomena, Part 1. Wear, 1963, (6): 5-21
    141. M. Mantyla. Introduction to Solid Modeling. Rockvolle: Computer Science Press, 1988
    142.张国瑞.有限元法.北京:机械工业出版社,1991
    143.甘舜仙.有限元技术与程序.北京:北京理工大学出版社,1988
    144.杨荣柏.机械结构分析的有限元法.武汉:华中理工大学出版社,1989
    145.张圣坤等译.有限单元法—基本方法与实施.北京:国防工业出版社,1979
    146.王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,1999
    147. Hatch, Michael R. Vibration simulation using MATLAB and ANSYS. Boca Raton: Chapman & Hall/CRC, 2001
    148.刘国庆,杨庆东.ANSYS工程应用教程—机械篇.北京:中国铁道出版社,2003
    149.嘉木工作室编著.ANSYS 5.7有限元实例分析教程.北京:机械工业出版社,2002
    150.洪庆章,刘清吉等.ANSYS教学范例.北京:中国铁道出版社,2002
    151.史佩伟.陶瓷喷砂嘴冲蚀磨损机理研究.硕士学位论文,济南:山东大学,2001
    152.周军.陶瓷喷嘴的开发与应用.硕士学位论文,济南:山东大学,2000
    153. A. Ball, Z. Feng. The erosion of four materials using seven erodents-toward an understanding. Wear, 1999, (233-235): 168-173
    154.王良建.脆性材料的固体粒子冲蚀磨损.博士学位论文,西安:西安交通大学,1988
    155. U. Beste, L. Hammerstrom, et al. Particle erosionof cementdt carbides with low Co content. Wear, 2001, (250): 809-817
    156. D. E. Alman, J. H. Tylczak, et al. Solid panicle erosion behavior of an Si_3N_4-MoSi_2 composite at room and elevated temperatures. Materials Science and Engineering, 1999, (A261): 245-251
    157.林福严.冲蚀磨损机理研究.博士学位论文,北京:中国矿业大学北京研究生部,1987
    158. Meng HC, Ludema KC. Wear models and predictive equation: their form and content. Wear, 1995, (181-183): 443-457
    159. E, Belloy, A. Sayah, M. A. M. Gijs. Oblique powder blasting for three-dimensional micromachining of brittle materials. Sensor and Actuator, 2001, (A92): 358-363
    160.付恒升.面心立方体材料冲蚀磨损机理研究和数学物理模型.博士学位论文,北京:中国矿业大学北京研究生部,1988
    161.马向东.耐磨胶粘涂层与其冲蚀磨损机理的研究.博士学位论文,北京:中国矿业大学北京研究生部.1989
    162. A. G. Evans, M. E. Gulden, M. Rosenblatt. Impact damage in brittle materials in the elastic-plastic response regime. Proc. R. Soc. London, Ser. A, 1978, (361): 343-365
    163. J. Lemaitre. Micro-mechanics of crack initiation. Int. J. Fract., 1990, (42): 87-99
    164.魏建军,薛群基.陶瓷摩擦学研究的现状.摩擦学学报,1993,(13):268-275
    165. M. Dundar, O. T. Inal, J. Stringer. The effect of particle size on the erosion of a ductile material at the low particle size limit. Wear, 1999, (233-235): 727-736
    166.徐利华.多元系复相陶瓷力学性能及冲蚀磨损机理.博士学位论文,杭州:浙江大学,1994
    167. M. Buijs. Erosion of glass as modeled by indentation theory. J. Am. Ceram. Soc., 1994, (77): 1676-1678
    168. P. J. Slikkerveer, P. C. P. Bouten, et al. Erosion and damage by sharp particles. Wear, 1998, (217): 237-250
    169.冯益华,邓建新,丁泽良.陶瓷喷砂嘴冲蚀磨损特性研究,稀有金属材料与工程.2002,31(增刊1):178-183
    170.徐利华,沈志坚,方中华,丁子上.耐沖蚀磨损的陶瓷材料复相设计与评估.材料导报,1994,(3):35-37
    171. Deng Jianxin, Feng Yihua, Ding Zeliang and Shi Peiwei. Wear Behaviors of the Ceramic nozzles in Sand Blasting Treatment. Journal of the Euroepan Ceramic Society, 2003, 23(2): 323-329
    172.李诗卓,董祥林.材料的冲蚀磨损与微动磨损.北京:机械工业出版社,1987
    173. Feng Yihua, Deng Jianxin, Ding Zeliang. Erosion Wear of the Ceramic Nozzle in Sand Blasting Treatment. The 6~(th) International Conference on Progress of Machining Technology, (ICPMT), Xi'an, 2002: 378-382
    174. G. P. Tilly. Erosion caused by impact of solid particles. In: Treaties on materials Science and technology. New York: Academic Press, 1979, (13): 287-319
    175. A. W. Momber. The erosion of cement paste, mortar and concrete by gritblasting. Wear, 2000, (246): 46-54
    176.冯益华,邓建新,史佩伟.喷砂嘴冲蚀寿命与磨料关系的研究.表面技术,2002,31(1):58-60
    177. S. Wada, N. Watanabe, T. Tani. Solid particle erosion of brittle materials—Part 6: the erosion wear of Al_2O_3/SiC composites. J. Ceram. Soc. Jpn, 1988, (96): 111-118
    178. A. J. Sparks. Hutchings, I. M.. Transitions in the erosion wear behavior of a glass ceramic. Wear, 1991, (149): 99-110
    179.薛群基,刘惠文.陶瓷摩擦学,Ⅰ.陶瓷的摩擦与磨损.摩擦学学报,1995,15(4):376-38
    180. Mukhopadhyay A K, Mai Y M. Grain size effect on abrasive wear mechanisms in alumina ceramics. Wear, 1993, (162-164): 258-268
    181. He C, Wang Y S, et al. Effect of microstructure on the wear transition of zirconia-toughened alumina. Wear, 1993, (162-164): 314-321
    182. B. Wallis. Influence of the microstructure of ceramic materials on their wear behavior in mechanical seals. Lub. Eng., 1994, (50): 789-799
    183. Zutshi A, Haber R A, et al. Processing, microstructure and wear behavior os silicon nitride hot pressed with alumina and yttria. J. Am. Ceram. Soc., 1994, (77): 883-890
    184.茅东升,郭绍义等.SiC陶瓷的冲蚀磨损耐磨性.材料研究学报,1998,12(4):411-414
    185.王东方,郦剑,毛志远.碳化硅晶须增韧氮化硅瓷的冲蚀磨损研究.浙江大学学报,1996,30(1):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700