生物质成型燃料设备的模块化设计与陶瓷耐磨材料的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化石能源日渐匮乏、能源形势日益紧张的今天,人类寻找替代或辅助能源并提高能源利用效率的要求显得愈加迫切。我国是一个农业大国,有丰富的农业生物质资源,生物质能源以其数量巨大,可再生、再转换、可运输、可储存的特点,是目前最具有发展前景的可再生新能源之一。生物质成型燃料是以农林剩余物为原料,挤压成型后的形成的一种洁净低碳的生物质可再生能源,由于能量密度高、燃烧特性好、燃烧后对环境危害小等优势而被广泛关注。
     我国在70年代末引进挤压型生物质成型机,早期技术发展和产品研究较为缓慢。到20世纪未,随着国际油价的高涨以及我国能源需要的急剧攀升,生物质能源得到飞速发展。近年来随着国家不继制订和出台拉动生物质成型燃料发展的政策,生物质成型燃料产业也在不断发展壮大。
     但生物质成型燃料在发展过程中也遇到一些瓶颈和障碍,由于生物质秸秆内含有较高的Si、Ca、Cl、K、Mg等矿质元素,以及在秸秆收集过程中带入的许多泥沙(SiO2),造成了在生物质挤压成型过程中对生物质成型设备的快速磨损,致使目前生产成型设备平均使用修复周期不超过300h,个别生产厂家采用45号钢不做任何热处理,其使用时间甚至不超过50h。生物质成型设备的快速磨损问题已成为制约其发展的一个瓶颈。
     围绕上述问题,本文主要做了如下研究和工作:
     1.对生物质成型设备的磨损机理进行了理论分析和研究;
     2.在理论分析的基础上,对活塞冲压式和平模式生物质成型设备进行了模块化设计;
     3.对适用于生物质成型设备上的耐磨材料进行了选择分析与研究;
     4.将耐磨材料应用于模块化设计的生物质成型设备,并进行了试验研究。
     通过上述研究与实验,取得如下研究成果:
     1.通过对生物质成型设备的磨损及受力分析可知,生物质成型设备的磨损主要属于磨料磨损,受微观切削机理控制。通过设备运行参数的改变,可以有效减小磨损。对于螺旋挤压式成型设备,减小螺旋杆的旋转速度能有效地减少磨损,对于模压式成型设备,同样也可以有效地减少磨损。
     2.对成型设备模块化设计,是解决磨损问题的重要方法之一。将成型机分做若干个功能化模块,对于易损部件模块采用统一标准,可以极大地提高成型设备的可维护性,延长整体设备的生产使用寿命。
     3.非金属材料应用是解决磨损问题的重要选择,陶瓷材料是以离子键、共价键为主的结合键,使得其具有高熔点、高硬度、低摩擦系数等许多有利于防止磨损的性能。
     4.通过陶瓷耐磨材料在生物质成型设备上的应用实验,证明氧化铝陶瓷耐磨材料在生物质成型设备上的应用是成功的。尽管氧化铝陶瓷管在生物质成型过程中,出现了裂纹和部分碎裂现象,但并没有破坏其自身完整性以及成型效果,用氧化铝陶瓷作为生物质成型设备的主要磨损部件材料,可以大大延长生物质成型设备的维修使用周期,具有积极的经济价值。
Today, with the fossil energy increasingly scarce and energy situation is becomingincreasingly tense, There are more and more urgent requirements for searching supplementary andimprove energy utilization efficiency. China is a large agricultural country, which has richagricultural biomass resources, biomass energy is one of the most promising renewable energywith its large number, characteristics, transport renewable conversion and storage. Biomassbriquette fuel uses the agriculture and forestry residues as raw material, a clean, low carbonformed by extrusion molding of biomass renewable energy,which has been widely concerned dueto the high energy density, good combustion characteristic, and has less harmful after burning toenvironment.
     China imported extrusion type biomass briquetting machine in the late70's, early technologydevelopment and product research more slowly. To twentieth Century, as rising international oilprices and rising sharply China's energy needs, the development of biomass energy was rapid. Inrecent years, along with the national continue developing and introducing the biomass formingfuel development policy, biomass briquette industry has continued to develop.
     But the development process in the biomass briquette also encountered a number ofbottlenecks and obstacles, because the biomass straw contains higher Si, Ca, Cl, K, Mg and othermineral elements, as well as in many sediment (SiO2)into the straw collection process, resulting inthe biomass extrusion molding process of biomass briquetting equipment fast wear, resulting inthe production of molding equipment using the average repair period of not more than300h,individual manufacturers use45steel without any heat treatment, the use of time and not morethan50h. Rapid wear of biomass molding equipment has become a bottleneck restricting thedevelopment.Around the above problems, this paper made the following research:
     1. Analyzed and studied the wear mechanism of biomass briquetting equipment.
     2. Simple modular design the impact piston type peace mode biomass briquetting equipment.
     3. Analyzed and selected the suitable for biomass molding equipment on the wear-resistantmaterials.
     4. Carried out on modular design with biomass molding equipment, the application of ceramicwear-resistant material in biomass briquetting equipment wear part of experiments.
     Through the above research, the main achievements as follows:
     1. Through the analysis of wear and stress on biomass molding equipment, wear biomassmolding equipment is mainly abrasive wear, controlled by micro cutting mechanism. Theequipment operating parameters change, which can effectively reduce the wear. The extrusionmolding equipment screw and rotating speed of screw rod can reduce the wear effectively, thecompression molding equipment also can reduce the abrasion effectively.
     2. The module of molding equipment design is one of the important method for wear problems.The molding machine into several functional modules, the vulnerable part module accordingto the unified standards, greatly improve the molding equipment maintenance, production andprolong the service life of the whole device.
     3. Non-Application of metallic materials is very important to choice of wear. Ceramic materialsare bond to the ionic bond, covalent bond, so that it is high melting point, high hardness, lowfriction coefficient and many other helps preventing abrasion performance.
     4. The wear-resistant ceramic materials in biomass briquetting equipment on the application experiment, that the application of wear-resistant materials alumina ceramics in biomassbriquetting equipment is successful. Although appeared crack and fragmentation the in theprocess, did not damage its own integrity and the molding effect.Alumina ceramic wear partsas main materials of biomass molding equipment can greatly extend the biomass briquettingequipment repair cycle, has a positive economic value.
引文
1.朱亚杰,孙兴文.能源世界之窗[M].北京:清华大学出版社,2001:119-122.
    2.吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003,5.
    3.中国农业部/美国能源部项目专家组.中国生物质资源可获得性评价[M].北京:中国环境科学出版社,1998.
    4.清华大学核能与新能源技术研究院《中国能源展望》编写组.中国能源展望2004[M].北京:清华大学出版社,2004,9.
    5.辛欣.未来全球能源的新亮点——生物质能[N].国际资料信息,2005(12):9-11
    6.“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究[M].北京:化学工业出版社,2004,9.
    7.邓可蕴.21世纪我国生物质能发展战略[J].中国电力,2000,33(9),p82-84.
    8.王革华.农村能源基础知识[M].北京:中国农业大学出版社.1999.
    9.雷群.生物质燃料成型机的技术问题探讨[J].木材加工机械.1997(1),p35-37.
    10.吴创之,周肇秋,阴秀丽,等.中国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    11.张百良,樊峰鸣,李保谦.生物质成型燃料技术及产业化前景分析[J].河南农业大学学报,2005,39(1)
    12.张百良.生物质成型燃料技术与工程化[M].北京:科学出版社.2012:5-7.
    13.姚向君,田宜水.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2005.
    14.邓可蕴等.中国农村能源综合建设理论与实践[M].北京:中国环境科学出版社,2001.
    15.张百良.农村能源工程学[M].北京:中国农业出版社,1999.
    16.《可再生能源中长期发展规划》.国家发展和改革委员会.2007,9
    17.林维纪,张大雷.生物质固化成型技术的几个问题[J].农村能源,1998(6):16-17
    18.李星.德国可再生能源和应用的新进展[J].全球科技经济隙望,2004(7):60
    19. Ndiema, C.K.W; Manga,P.N and Ruttoh,C.R. Influence of die pressure on relaxationcharacteristics of briquetted biomass[J]. Energy Conversion&Management.Nov2002, Vol.43Issue16, p2157-2161.
    20.丛璐,徐有宁,韩作斌.生物质能及应用技术[J].沈阳工程学院学报(自然科学版),2009,5(l):9-13
    21. Granada, E; López González, L.M; Míguez, J.L and Moran, J. Fuel lignocellulosicbriquettes, die design and products study[J]. Renewable Energy: Dec2002, Vol.27Issue4, p561-573.
    22. K.Tripathi; P.V.R.lyre and T.C.Kandpal. A questionnaire based survey of biomassbriquetting in India[J]. The International Journal of Ambient Energy.2000,21(1), p31-40.
    23. Wayne Coates. Using cotton plant residue to produce briquettes[J].Biomass&Bioenergy.2000,18(3),p201-208.
    24.林维纪,张大雷.生物质固化成型技术的几个问题[J].农村能源,1998(6):16-17
    25.岸本定吉.木质系压缩成形燃料[J].木材工业,1983, Vol.38, No.433:p168-174.
    26.阮景星.新型废材能源-压块[J].林产工业,1989(3), p38-39.
    27. Filip J,文津.制材锯屑压块生产线[J].林产工业,1991(5), p41-43.
    28.蒋剑春.国外木质成型燃料[J].林产化学与工业,1986(6), p17-22.
    29. Husain, Z; Zainac, Z and Abdullah, Z. Briquetting of palm fibre and shell fromthe processing of palm nuts to palm oil[J]. Biomass&Bioenergy; Jun2002, Vol.22Issue6, p505-509.
    30.盛奎川,AhmedEl-Behery,HassanGomaa.棉秆切碎及压缩成型的试验研究[J].农业工程学报,1999, Vol.15(4), p221-225.
    31. Filiz Karaosmanoglu. Biobriquetting of Rapeseed Cake[J].Energy Sources;Apr2000, Vol.22Issue3, p257-267.
    32. Suarez, Jose Antonio; Beaton, Pedro Anibal; Luengo, Carlos Alberto; and Felfli,Felix Fonseca. Coffee Husk Briquettes: A New Renewable Energy Source[J]. EnergySources. Oct2003, Vol.25Issue10, p961-967.
    33.蒋成球,盛奎川.生物质压缩成型燃料技术研究综述[J].能源工程,1996(3), p8-11
    34.刘圣勇,陈开碇,张百良.国内外生物质成型燃料及燃烧设备研究与开发现状[J].可再生能源,2002,104(4), p14-15.
    35. Hee-Jon Kim; Guo-Qing Lu; Ichiru Naruse; Jianwei Yuan and Kazutomo Ohtake.Modeling on Combustion Characteristics of Biocoal briquettes[J]. Journal ofEnergy Resources Technology; Mar2001,Vol.123Issue1:p27-31.
    36.赵建,李春梅.欧盟发展生物燃料的有关政策及其启示[J].中外能源,2006,1(4):101-103.
    37. Fung, P.Y.H.; Kirschbaum, M.U.F.; Raison, R.J. and Stucley, C.The potential forbioenergy production from Australian forests, its contribution to nationalgreenhouse targets and recent developments in conversion processes[J]. Biomass&Bioenergy; Apr2002, Vol.22Issue4:p223-236.
    38.钱能志,尹国平,陈卓梅.欧洲生物质能源开发利用现状和经验[J].中外能源,2007,12(3):10-14.
    39.张永宁,陈磊.英国发展生物能源的政策及启示[J].北学工业,2007,25(6):12-15.
    40.郭康权,江崎春雄,佐竹隆显.日本木材废料压缩成型加工企业调研[C].新型燃料技术开发研讨会文集,1992:37-43.
    41.张希良,岳立,柴麒敏等.国外生物质能开发利用政策[J].农业工程学报,2006,22(10):4-7.
    42.林维纪,张大雷.生物质固化成型技术及其展望[J].新能源,1999,4(2):39-42.
    43.樊峰鸣,张百良,李保谦,刘圣勇.大粒径生物质成型燃料物理特性研究[J].农业环境科学学报,2005,24(2).
    44.盛奎川,吴杰等.切碎棉杆高密度压缩成型的试验研究[J].浙江大学学报(农业与生命科学版),2003,29(2):p139-142.
    45.张百良,李保谦.HPB-I型生物质成型机的试验研究[J].农业工程学报,1999,15(3):p133-136.
    46.张百良,李保谦. HPB-Ⅰ型生物质成型机的应用研究[J].太阳能学报,1999,20(3):p234-238.
    47.李保谦,张百良.PB-I型活塞式生物质成型机的研制[J].河南农业大学学报,1997,31(2):p112-117.
    48.赵西城.美国向植物要柴油[N].中国经济导报,2005,5,3.
    49. Finell,Michael;Nilsson,Calle; Olsson, Rolf; Agnemo, Roland and Svensson,Stefan.Briquetting of fractionated reed canary-grass for pulp production[J].Industrial Crops&Products.Nov2002,Vol.16Issue3,p185-192.
    50.刘石彩,蒋剑春.专用颗粒成型燃料民用炉灶技术研究[J].林产化工通讯,2000,34(1):p10-12
    51.邱凌.生物质能的固化技术与开发前景[J].太阳能,1990,2:p10-11.
    52.雷群.生物质燃料成型机套筒寿命问题的探讨[J].农村能源,1997,75(5):p21-22.
    53. Lucy Wamukonya and Bryan Jenkins. Durability and relaxation of sawdust andwheat-straw briquettes as possible fuels for Kenya[J]. Biomass&Bioenergy.1995,8(3): p175-179.
    54.邱凌,甘雪锋.生物质能利用现状与固化技术应用前景[J].山东能源,1990(2):p7-10.
    55.张百良,杨世关,马孝琴.中国生物质能技术应用与农业生态环境研究[J].中国生态农业学报,2003,11(3):p178-179.
    56.胡东南.农林废弃物生物质压块燃料[J].广西科学院学报,1994,Vol.10,No.2: p68-70.
    57.李保谦,马孝琴等.秸秆成型与燃烧技术的产业化分析[J].河南农业大学学报,2001,35(1):p78-80.
    58.张大雷,黄明权.林产加工废弃物的综合利用技术:应用"生物质固化型成型机组"生产木炭[J].林产工业,1998,25(6):p22-24.
    59.邱凌.生物质致密成型研究进展[J].能源技术,1998(3):p57-61.
    60.何元斌.生物质压缩成型燃料及成型技术[J].农村能源,1995,63(5):p12-14.
    61.蒋剑春,徐建华.林业剩余物制造颗粒成型燃料技术研究[J].林产化学与工业,1999,19(3):p25-30.
    62.盛奎川,Gomaa H.棉秆切碎及压缩成型的试验研究[J].农业工程学报,1999,15(4):p221-225.
    63.杨军太,朱柏林.柱塞式压块机压块成形理论分析与试验研究[J].农业机械学报,1995,26(3):p51-57.
    64.周平安;磨损失效分析及耐磨材料的现状和展望[J].铸造,2000,49(1):23-42.
    65.孔雪浑.生物质固化成型环模磨损实验研究及数值模拟[D].沈阳:东北林业大学,2010.
    66.吴国清,张晓峰,方亮,等.两体磨料磨损的三维动态模拟[J].摩擦学学报,2000,20(5):360-364.
    67.刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:100-105.
    68.肖汉宁,谭伟,易雯雯.高耐磨氧化铝陶瓷的材料设计与性能研究[J].陶瓷学报,2004,25(2):81-84.
    69.张长涛,谢敬佩,卢洪波,等.金属陶瓷-锰钢复合材料的制备及磨损机理[J].材料研究与应用,2011,5(1):21-23.
    70.王民,郭康权等.秸秆制作成型燃料的试验研究[J].农业工程学报,1993,9(1):p99-104.
    71.黄明权,张大雷.影响生物质固化成型因素的研究[J].农村能源,1999,1:p17-18.
    72.杨军太,朱柏林等.6YK-65型压块机试验研究[J].农业机械学报,1996,27(2):p87-90.
    73.赵东,郭康权等.玉米秆粉粒体压制成型模型的研究[J].西北农业大学学报,1998,26(5):p44-47.
    74.杨明韶,王春光.牧草压缩工程中几个主要问题分析[J].农业工程学报,1997,Vol.13(S1):p134-138.
    75.赵东,黄文彬.玉米秆粉粒体塑性压缩成型过程的有限元分析[J].力学与实践,2001,Vol.23, No.2:p48-51.
    76.杨明韶,张永,李旭英.粗纤维物料压缩过程的一般流变规律的探讨[J].农业工程学报,2002,Vol.18,No.1:p135-137.
    77.刘庆权,聂春宵.秸秆压块技术的研究[J].饲料工业,2000,21(1):p11-13.
    78.杨德川,虞国忠等.牧草压块机组的研究及应用[J].草业科学,2002,19(8):p73-76.
    79.赵东,陈元春,郭康权.模具结构对玉米秆粉粒杯形件成型的影响[J].木材工业,2002,Vol.16,No.6:p22-24.
    80.林维纪,张大雷.生物质固化成型技术及其展望[J].新能源,1999,4(2):p39-42.
    81.林维纪,张大雷.生物质固化成型技术的几个问题[J].农村能源,1998(6):p16-17.
    82. O’Dogherty, M.J.. A Review of the mechanical behavior of straw when compressedto high densities[J]. Journal of Energy Resources Technology, Mar2001,Vol.44Issue1:p241-265
    83. Baldwin CY, Clark KB.Managinginan Age of Modularity[J].Harvard Business Review,1997,75(5):84-93.
    84. Paul G, Beitz W. Engineering Design[M].London,U.K.:SPringer-Verlag,1996.
    85. Buenstorf G.Sequential Produetion, Modularity and Teehoological Change[J].Structural Changeand Eeonomie Dynamies,2005,16(2):221-241.
    86. Hoetker G.Do Modular Produets Lead to Modular Organizations[J].Strategie Management Joumal,2006,27:501-518.
    87. Frigant V, Talbot D. Teehnological Determinismand Modularity: Lessons from aComparison Between Aircraft and Auto Industries in Europe[J].Industry andInnovation,2005,12(3):337-355.
    88.贾延林.模块化设计[M].北京:机械工业出版社,1993.
    89.王海军.面向大规模定制的产品模块化若干设计方法研究[D].大连:大连理工大学,2005.
    90.童时中.模块化设计原理、方法及应用[M].北京:中国标准出版社,2000.
    91.马孝琴.生物质(秸秆)成型燃料燃烧动力学特性及液压秸秆成型机改进设计研究[D].郑州:河南农业大学,2002.
    92.盛奎川.秸秆切碎、压缩以及成型块燃烧特性的研究[D],沈阳:沈阳农业大学,2002.
    93.刘圣勇.生物质(秸秆)成型燃料燃烧设备研制及试验研究[D],郑州:河南农业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700