大型筒节零件高效切削及刀具技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型筒节毛坯为自由锻造而成,其直径最大可达7m以上,最大高度达6.4m,单件重达200多吨。大型筒节毛坯锻件表面加工条件非常恶劣,其荒加工过程中材料去除量高达50%,切削深度ap更是达到30mm,其材料采用高温高强度钢2.25Cr-1Mo-0.25V,切削过程中不同切削参数会产生刚度极高且形态各异的大型切屑,切屑的折断需要很大的机械载荷。因此,切屑的每次折断均会给刀片造成机械冲击。切削过程中由工件表面的锻造缺陷和大型切屑折断瞬间所引起的冲击载荷以及工件表面的金属硬化物等均会引起硬质合金车刀发生冲击破损(冲击断裂和疲劳断裂)以及高温力学性能失稳现象的发生。
     针对大型锯齿形切屑生成特点,通过应用有限元仿真及切削实验研究相结合的方法,深入分析重型切削特点及大型切屑形式与卷曲过程,借助扫描电镜观察,揭示大型切屑形成机理;通过应用有限元仿真分析大型切屑卷曲过程,明确其折断位置范围,建立大型切屑折断载荷力学模型,定量描述其折断载荷大小及分析影响模型精确度的相关因素,并通过切削实验验证模型的准确性及可靠性。
     针对重型切削过程中硬质合金车刀易产生冲击断裂的问题,应用机械冲击理论从冲击载荷角度分析重型硬质合金车刀冲击断裂产生的原因,并确立其产生冲击断裂的临界条件;采用数值描述结合有限元仿真的方法,分析研究重型硬质合金车刀冲击断裂产生机理及破损形式,并通过冲击实验揭示硬质合金抗冲击强度的尺度特性。
     针对重型硬质合金车刀发生疲劳失效现象。通过疲劳实验,提出动态载荷下硬质合金疲劳断裂产生机制;通过断续切削实验,研究分析导致硬质合金车刀疲劳行为产生的本质原因,提出预防硬质合金车刀过早出现疲劳的措施。
     针对重型切削过程中由高温引起的硬质合金车刀力学性能失稳问题。对重型车削过程中的切削热产生与影响进行研究。通过有限元仿真分析,揭示重型切削过程切削热产生机制;采用温升实验方法,对硬质合金硬度与温变的关系进行分析,研究硬质合金车刀硬度的温变规律:通过热冲击和热膨胀实验,研究热冲击对硬质合金车刀力学性能的影响,并明确重型切削最高温度范围。
     提出一种基于图像处理技术的大型筒节毛坯锻件荒加工:过程车刀切削行程计算和冲击寿命评价方法,并明确该方法的限定条件:综合分析筒节荒加工过程特点,提出实现大型筒节高效加工的技术措施。
     本文采用硬质合金车刀,以重型筒节材料高温高强度钢2.25Cr-1Mo-0.25V钢的切削过程为研究对象,通过理论分析、数值计算模拟以及高温性能实验、切削实验相结合的方法,在大型切屑折断力学、硬质合金车刀冲击断裂、疲劳断裂、高温力学特性以及车刀寿命评价等方面进行研究。研究可为重型切削加工的生产增效以及重型切削刀具开发技术的推广提供理论指导和技术支撑。
The large shell blank is made by free forging, with the maximum diameter of above7m, the maximum height of6.4m and weight of over200tons. The processing condition of its forging surface is so worse. During its hogging machining, the material removal amount reaches50%and the cutting depth ap even reaches30mm. The high-temperature and high-strength steel2.25Cr-1Mo-0.25V is adopted as its material. During the cutting process, different cutting parameters will generate large chips with extremely high rigidity and various shapes. The fracture of the chips requires great mechanical load. Therefore, the fracture of the chips for each time will give rise to mechanical impact for the cutters. During the cutting process, the impact load (resulting from the forging defect and large chip fracture) and the hardened metal material of the work piece surface lead the hard alloy turning tool to generate impact breakage (impact fracture and fatigue fracture) and the occurrence of instability of mechanical properties under high temperature.
     Aiming at the generation feature of large saw-tooth chip, by the means of the integration of finite element simulation and cutting experiment study, it makes deep analysis on the features of heavy cutting, forms of large chip, and curling process, and reveals the generation mechanism of large chip by virtue of SEM observation; by the means of applying finite element simulation to analyze the curling process of large chip, it clarifies the scope of its fracture position, establishes a mechanical model of large chip fracture load, makes quantitative description towards its fracture load magnitude, analyzes the relevant factors influencing the accuracy of the model, and tests the accuracy and reliability of the model through cutting experiment.
     Aiming at the problem that the hard alloy turning tool easily generates impact fracture during the cutting, it applies mechanical impact theory, analyzes the causes of the impact fracture generation of the heavy hard alloy turning tool from the respective of impact load, and determines the critical condition for generating impact fracture; it adopts the method of integrating numeric description with the finite element simulation, analyzes and researches the generation mechanism and impact fracture form of the heavy hard alloy turning tool, and reveals the axial dimension rule of hard alloy shock strength through impact experiment.
     Aiming at the fatigue failure of heavy hard alloy turning tool, through fatigue experiment, it puts forward the generation mechanism of hard alloy fatigue fracture under dynamic load; through interrupted cutting experiment, it analyzes and researches the essential causes for the occurrence of fatigue behavior of hard alloy turning tool, and puts forward measures of preventing the early occurrence of fatigue.
     Aiming at the problem about the instability of mechanical properties of hard alloy turning tool resulting from high temperature during the heavy cutting process, it makes research on the generation and influence of the cutting heat. Through finite element simulative analysis, it reveals the generation mechanism of cutting heat during the heavy cutting process; through adopting temperature rise experiment, it analyzes the relation between the hard alloy hardness and the temperature variation, and makes research on the temperature variation effect of the hardness; through thermal shock and thermal expansion experiment, it makes research on the influence of thermal shock on the mechanical properties of hard alloy turning tool, and clarifies the maximum temperature range of the heavy cutting.
     It puts forward the cutting stroke calculation and impact lifespan evaluation method of the hogging machining procedure of large shell blank on the basis of image processing techniques, and clarifies the limit conditions of such method; it makes comprehensive analysis on the features of hogging machining of the shell, and puts forward the technological measures to realizing high-efficiency processing of the large shell.
     This paper adopts the hard alloy turning tool, and takes the cutting process of high-temperature and high-strength steel2.25Cr-1Mo-0.25V of heavy shell material as the research object. Through the methods of integrating theoretical analysis, numerical computational simulation with high-temperature performance test and cutting experiment, it makes research on the mechanics of large chip breaking, impact fracture, fatigue fracture, high-temperature mechanic features and lifespan evaluation of the hard alloy turning tool, etc. This research will provide theoretical guidance and technical support for the production synergy of the heavy cutting processing and the popularization of heavy turnin tool development technologies.
引文
[1]李振加,顾祖慰,阎永兴,等.可转位重型卧式刀片合理槽型的试验研究[J].哈尔滨科学技术大学学报,1981,(1):11-16.
    [2]程程,顾玉萍,赵桂梅,等.大型轴类锻件切削性及粗加工增效措施研究[J].工具技术,2010,44(11):67-70.
    [3]HE G H, LIU X L, YAN F G, et al. Research on the Application and Design of Special Tools of the Hydrogenated CylindTical shell [J]. Advanced Materials Research,2011,188:450-453.
    [4]LESSARD J, MORIN J, WEHRUNG J, et al. High Yield Conversion of Residual Pentoses into Furfural via Zeolite Catalysis and Catalytic Hydrogenation of Furfural to 2-Methylfuran[J]. Topics in Catalysis,2010, 53(15-18):1231-1232.
    [5]SILLER H R, VILA C, Rodr C A. Study of Face Milling of Hardened AISI D3 Steel with A Special Design of Carbide Tools [J]. The International Journal of Advanced Manufacturing Technology,2009,40(1-2):12-13.
    [6]吕祥.2.25Cr-1Mo-0.25V筒节材料断续车削及刀具失效机理研究[D].山东:山东大学,2011:1-3.
    [7]KRONENBERG M. Analysis of Initial Contact of Milling Cutter and Work in Relation to Tool Life [J]. Transactions of the ASME,2010, (68):77-92.
    [8]GRIGOROV G I, GRIGOROV K G, STOYANOVA, et al. Aluminium Diffusion in Titanium Nitride Films. Efficiency of Tin Barrier Layers [J]. Applied Physics A:Materials Science & Processing,2008,57(25): 195-196.
    [9]IVANOV V V, TOLKACHEV K A. Selecting A Hard Alloy for Machining Gray Iron [J]. Topics in Catalysis,2010,30(5):510-515.
    [10]HOSHI T. Optimum Diameter and Positions of a Fly Cutter for Milling Steel at Light Cuts [J]. Trans. ASME,2009,87:442-446.
    [11]SUMIYA H S, OKUSHIMA K. Mechanical Properties of High Purity Poly crystalline CBN Synthesized by Direct Conversion Sintering Method [J]. Journal of Materials Science,2000,35(5):1181-1182.
    [12]WU X Q, KATADA Y, KIM S. Hydrogen-Involved Tensile and Cyclic Deformation Behavior of Low-Alloy Pressure Vessel Steel [J]. Metallurgical and Materials Transactions A,2011,35(5):1477-1478.
    [13]HALPIN T, BYRNE G, BARRY J. The Performance of PCBN in Hard Turning [J]. Industrial diamond review,2005,4:52-60.
    [14]LIU C R, MITTAL S. Single-Step Superfinish Hard Machining [J]. Feasibility and Feasible Cutting Conditions. Robotics & Computer-Integrated Manufacturing,1996,12(1):15-27.
    [15]TONSHOFF H K, ARENDT C, BEN R A. Cutting of Hardened Steel [J]. Annals of the CIRP,2000,49(2):547-566.
    [16]GERARD P. Hard Turning:Chip Formation Mechanisms and Metallurgical Aspects [J]. Journal Of Manufacturing Science And Engineering,2000,122: 406-412.
    [17]李振加,黎志仁,伊兵,等.铣削过程刀具破损原因的探讨[J].机械工程学报,1993,29(4):93-95.
    [18]PEKELHARING, SCHROEDER T A. On Shear Instability In Machining A Nickel Iron Base Super-Alloy [J]. ENGINEERING FOR Industry, ASME, 1986,108(2):93-100.
    [19]BURNS T J, Davies M A. On Repeated Adiabatic Shear Band Formation During High-Speed Machining [J]. International Journal of Plasticity; 2009, (48):488-499.
    [20]SONG H C, FENG X M, TENG H C, et al. Analyse on Tool Fracture Mechanism in Cr12 Milling with Coated Carbide Tools [J]. Chemical and Petroleum Engineering,2010,38(20):468-480.
    [21]GORCHAKOVA S A. Influence of Carbon on the Phase Composition, Structure and Properties of Type R6M5 Powder Metallurgy High-Speed Steel [J]. Metal Science and Heat Treatment,2008,26(3):217-222.
    [22]高希正,刘德忠.理论切削学[M].北京:国防工业出版社,2007:6-8.
    [23]师汉民.金属切削理论及其应用新探[M].武汉:华中科技大学出版社,2005:11-12.
    [24]郑文虑.难切削材料加工技术[M].北京:国防工业出版社,2008:3-4.
    [25]VORONTSOV A L, SULTAN Z, YU A, et al. Development of a New Theory of Thermal Cutting Processes 10. Analysis Of The Basic Thermophysical Theories Of Cutting [J]. Russian Engineering Research, 2010,30(10):1032-1035.
    [26]李振加,郑敏利,徐亦红,等.切屑折断过程研究[M].北京:机械工业出版社,1996:22-24.
    [27]ZHOU L, RONG Y M, LI Z J, et al. Development of Web-Based Machining Chip Breaking Prediction Systems [J]. The International Journal of Advanced Manufacturing Technology,2003,22(5-6):336-343.
    [28]CHOI J P, LEE S J. Efficient Chip Breaker Design by Predicting the Chip Breaking Performance [J]. The International Journal of Advanced Manufacturing Technology,2001,17(7):489-497.
    [29]KIM J D, LEE E S. A Study on the Phenomenon of Chip Breaking by Computer Analysis [J]. Journal of Materials Engineering and Performance, 2009,2(1):113-118.
    [30]JAWAHIR I S, FANG X D. A Knowledge-Based Approach for Designing Effective Grooved Chip Breakers-2D and 3D Chip Flow, Chip Curl and Chip Breaking [J]. The International Journal of Advanced Manufacturing Technology,2005,10(4):225-239.
    [31]KAILG. Turning and Chip-breaking Technology [M]. American:Cutting Tool Technology Press Ltd,2008:33-86.
    [32]BOSTON O W. A Research into the Elements of Metal Cutting [J]. Trans ASME,2006:749-750.
    [33]HUMPHRIES J R. Energing Technologies and Recent Advances in Multi-functional Groove/Turn Systems [J]. AustraliaInt:Conf. on Industrial Tooling, Shirley Press Ltd,1979:65-85.
    [34]林立芬.切屑卷曲和折断过程的虚拟现实[D].哈尔滨:哈尔滨理工大学,2005:11-17.
    [35]PETRUSHIN S I, PROSKOKOV A V. Theory of Constrained Cutting:Chip Formation with A Developed Plastic-Deformation Zone [J]. Russian Engineering Research,2010,30(1):45-50.
    [36]郑敏利,李振加,韦银利,等.形成切屑上向弯曲非折断插1入区的理论研究[J].机械工程学报,2001,37(8):106-109.
    [37]李振加.切屑折断界限的实验研究[J].哈尔滨科学技术大学学报,1986,(2): 1-5.
    [38]张中民,李振加,郑敏利,等.切屑折断界限的理论研究[J].机械工程学报,2002,38(8):74-79.
    [39]CUI X B, ZHAO J, TIAN X H. Cutting Forces, Chip Formation, and Tool Wear In High-Speed Face Milling of AISI H13 Steel with CBN Tools [J]. The International Journal of Advanced Manufacturing Technology,2012,21(7): 667-670.
    [40]BASIM A, BASHIR M, ADEEL H, et al. Investigating the Influence of Approach Angle for Ceramic Cutting Tools on Chip Formation During Turning [J]. Arabian Journal for Science and Engineering,2012,37(3): 793-802.
    [41]刘培德,胡荣生,孙宝元,等.切削力学新篇[M].大连:大连理工大学出版社,1991:70-72.
    [42]LEE J H, LEE S J. Recognition Of Chip Forms During The Metal Cutting Process [J]. KSME Journal,1993,7(4):364-371.
    [43]BASIM A, BASIM M. Study Of Cutting Speed On Surface Roughness And Chip Formation When Machining Nickel-Based Alloy [J]. Journal of Mechanical Science and Technology,2010,24(5):1053-1059.
    [44]LIU K, LI X P, LIANG S Y. The Mechanism Of Ductile Chip Formation In Cutting Of Brittle Materials [J]. The International Journal of Advanced Manufacturing Technology,2007,33(9-10):875-884.
    [45]张慧萍,李振加,刘二亮,等.高速切削切屑折断界限变化规律[J].机械工程学报,2008,44(5):124-127.
    [46]AI X, LI Z Q. Characteristics of Ceramic Tool Facture [J]. Key Eng Maters, 1994,96:165-196.
    [47]谭岱红,冯高头,杜邦和.刀具破损的原因分析及解决方法[J].现代零部件,2005,(9):80-84.
    [48]JOHNSON R. Fracture Toughness of AiSi M2 and AISi M7 High-Speed Steels [J]. Metallurgical Transactions A,1977, (8A):891-897.
    [49]CAMPOS, FARAH I, LOPEZ M, et al. Valuation of the Tool Life and Fracture Toughness of Cutting Tools Boronized by the Paste Boriding Process [J]. Applied Surface Science,2008,254(10):2968-2974.
    [50]LIU Z F, YAO G W, ZHANG X Y. A Damage Accumulating Modeling of Failure Waves in Metal under High Velocity Impact [J]. Applied Mathematics and Mechanics,2001,22(9):1090-1095.
    [51]LIU Y X, LIAW B. Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates [J]. Applied Composite Materials,2010,17(1):43-62.
    [52]BENJAMIN D, CRAIG. Material Failure Modes, Part II:A Brief Tutorial On Impact, Spalling, Wear, Brinelling, Thermal Shock, And Radiation Damage [J]. Journal of Failure Analysis and Prevention,2005,5(6):7-12.
    [53]TAKEO Y. Discussions To T. Yokobori:Brittle Fracture With Interaction Between Elastic Crack And Near-By Slip Band [J]. International Journal of Fracture Mechanics,2008,4(2):206.
    [54]李智慧,师俊平,汤安民.金属材料脆性断裂机理的实验研究[J].应用力学学报,2012,29(1):48-50.
    [55]MARTIN A, MARTINEZ J M, SEVILLANO J. Dual-Tip Elastic Indentation:A New Technique for Controlled Crack Growth and Brittle Fracture Toughness Determination [J]. International Journal of Fracture, 2001,110(2):15-22.
    [56]陈大年,吴善幸,王焕然.冲击载荷下延性材料的动态本构关系与动态断裂[J].兵工学报,2010,31(6):725-2727.
    [57]ROMANOVA V A, BALOKHONOV R R, MAKAROV P V. Three_Dimensional Simulation of Fracture Behavior of Elastic-Brittle Material with Initial Crack Pattern [J]. International Journal of Fracture, 2006,139(2):537-544.
    [58]龚江宏.脆性固体断裂力学[M].北京:高等教育出版社,2010:2-4.
    [59]Yokobori T, Kamei A, Kounosu S. A Concept Of Combined Micro And Macro Fracture Mechanics To Brittle Fracture [J]. International Journal of Fracture,1984,26(4):352-354.
    [60]HE G H, LIU X L, YAN F G. Research on the Dynamic Mechanical Characteristics of the Tool Life in the Excessively Heavy-Duty Cutting Process [J]. Advanced Materials Research,2012,500:13-19.
    [61]PEI H J, SHEN Y J, SONG W, et al. Fracture of Brazed Cemented Carbide Tool in High Speed Machining [C].4th International Seminar on Modern Cutting and Measurement Engineering, Beijing,2011,500:13-19.
    [62]SAMPATH W S, LEE Y M. Tool Fracture Probability under Steady State Cutting Conditions [J]. Journal of engineering for industry,1984,106(2): 161-167.
    [63]PEKELHARING A J. The Exit Failure in Interrupted Cutting [J]. Annals of CIRP,1978,27(1):5.
    [64]敖晓春.难加工材料3Cr-MO-1/4V钢的切削及刀具破损机理的研究[D].哈尔滨:哈尔滨理工大学,2005:20-28.
    [65]程耀楠,严复钢,高军,等.高强度钢加工不同槽型铣刀片冲击破损实验研究[J].制造技术与机床,2011,(1):36-39.
    [66]宋海潮,冯晓梅,滕宏春,等.涂层硬质合金刀高速铣削Cr12模具钢的破损失效分析[J].机床与液压,2010,38(20):10-11.
    [67]HUXZ, DUAN K. Size Effect and Quasi-Brittle Fracture:The Role of FPZ [J]. International Journal of Fracture,2008,154(1-2):3-5.
    [68]程品三.脆性断裂的非局部力学理论[J].力学学报,1992,24(3):329-302.
    [69]OUK S L, SEONG K H. Dynamic Fracture Characteristics of Highly Brittle Materials by Using Instrumented Charpy Impact Test [J]. KSME International Journal,1997,11(5):513-514.
    [70]JIN K K, SANG B C. A Unified Brittle Fracture Criterion For Structures With Sharp V-Notches Under Mixed Mode Loading [J]. Journal of Mechanical Science and Technology,2008,22(7):1269-1272.
    [71]KENJI O, TOSHIHUMI N. Study on the Fracture Characteristics of Ceramic Cutting Tools (First Report) [J]. Wear,1996,154(2):361-370.
    [72]XU C H, HUANG C Z, AI X. Cutting Behavior and Related Cracks in Wear and Fracture of Ceramic Tool Materials [J]. The International Journal of Advanced Manufacturing Technology,2006,32(11-12):1083-1089.
    [73]STEVEN W F, BULJAN S T. Role of Thermal Shock on Tool Life of Selected Ceramic Cutting Tool Materials [J]. Journal of the American Ceramic Society,1989,72(5):754-760.
    [74]谭美田.金属切削微观研究[M].上海:上海科学技术出版社,1989: 10-11.
    [75]仇启源,庞思勤.现代金属切削技术[M].北京:机械工业出版社,1992:7-8.
    [76]LESHOCK C E, SHIN Y C. Investigation on Cutting Temperature in Turning by A Tooi-Work Thermocoupie Technigue [J]. Journal of Manufacturing Science and Engineering,1997,119:501-507.
    [77]SUVA M B, JAMES W B. Cutting Temperature:Prediction and Measurement Methods-A Review [J]. Journal of Materials Processing Technology,1999,88:194-200.
    [78]刘献礼,袁哲俊,陈波,等.切削温度测量的等效热电偶法[J].计量学报,1999,(3):188-190.
    [79]陈明,刘璨.高速切削加工的温度测量方法探讨[J].装备制造技术,2009,(12):93-94.
    [80]段春争,李园园,李国和,等.高速切削温度场测量技术研究现状[J].机械设计与制造,2008,(4):212-214.
    [81]孟辉.高速切削温度动态有限元建模与数值模拟[D].山东:山东大学,2005:17-19.
    [82]刘献礼,陈波,孟安,等.PCBN刀具切削温度的测量与控制[C].中国高校切削与先进制造技术研究会第六届年会论文集,北京,1999:105-109.
    [83]LIN J, LEE S L, CHENG I W. Estimation of Cutting Temperature in High Speed Machining [J]. Transactions of the ASME, Journal of Engineering Materials and Technology,1992, (7):290-295.
    [84]TAKASHI U, MAHFUDZ A H, KEIJI Y, et al. Temperature Measurement of CBN Tooi in Turning of High Hardness Steel [J]. Annals of the CIRP, 1999,48(1):61-63.
    [85]CHAO B T, TRIGGER K J. The Significance of Thermal Number in Metal Machining [J]. Transactions of ASME,2003,11(2):50-56.
    [86]陆剑中,孙家宁.金属切削原理与刀具[M].北京:机械工业出版社,2011:21-22.
    [87]DAUTZENBERG J H, JASPERS S P, TAMINIAU D A. The Work-piece Material in Machining [J]. The International Journal of Advanced Manufacturing Technology,1999,15(6):383-386.
    [88]EMEL S G, YATSUN E I, REMNEV A I, et al. Chip curling in metal cutting [J]. Russian Engineering Research,2011,31(7):679-683.
    [89]JAMAL Y, SHEIKH A. Mechanics of Chip Formation [J]. Machining of Polymer Composites,2009:63-67.
    [90]李振加.切屑折断界限的理论分析及探讨[J].哈尔滨科学技术大学学报,1985,(2):1-8.
    [91]严鲁涛,袁松梅,刘强.绿色切削高强度钢的刀具磨损及切屑形态木[J].机械工程学报,2010,46(9):187-189.
    [92]陈永洁,黄威武.切屑三维卷曲的运动学分析[J].中国机械工程,2000,11(5):513-51 5.
    [93]WILLIAMS J G. The Fracture Mechanics of Surface Layer Removal [J]. International Journal of Fracture,2011,170(1):37-48.
    [94]叶贵根,薛世峰,仝兴华,等.材料强化因素对切削过程中尺寸效应的影响[J].中国机械工程,2012,23(5):603-605.
    [95]ANURAG S, GUO Y B. Predictive Model to Decouple the Contributions of Friction and Plastic Deformation to Machined Surface Temperatures and Residual Stress Patterns in Finish Dry Cutting [J]. Frontiers of Mechanical Engineering in China,2010,5(3):247-255.
    [96]YU N P, KRAINEV D V, NORCHENKO PA, et al. Improved Cutting of Steels by Means of Preceding Plastic Deformation [J]. Russian Engineering Research,2011,31(1):82-84.
    [97]BARBER J R. Intermediate Mechanics of Materials [J]. Solid Mechanics and Its Applications,2011,175:148-150.
    [98]何耿煌.大型加氢筒节粗加工刀具设计与切削性能研究[D].哈尔滨:哈尔滨理工大学,2011:45-47.
    [99]田林海,朱晓东,唐宾,等.Cr-N硬质镀层的断裂韧性和冲击疲劳特性研究[J].稀有金属材料与工程,2010,39(z1):35-37.
    [100]Chigrinova N M. Theoretical Model of the Engineering of Metal Surfaces by Microplazmaspark Alloying with the Alternative Intensity of the Mechanical Impact [J]. Surface Engineering and Applied Electrochemistry,2010,46(1): 21-26.
    [101]HE G H, LIU X L, YAN F G. Research on the Dynamic Mechanical Characteristics and Turning Tool Life under the Conditions of Excessively Heavy-Duty Turning [J]. Front. Mech. Eng.,2012,7(3):329-334.
    [102]HE G H, LIU X L, YAN F G, et al. Research on the Fracture and Breakage of Heavy-Duty Turning Tool for Rough Machining Hydrogenated Cylindrical Shell [J]. Solid State Phenomena,2011,175:305-310.
    [103]YAN F G, HEGH, LIU XL, et al. Research on the Tools'Strength in the Condition of Uncommonly Dynamic Heavy-Duty Loads [J]. Advanced Materials Research,2012,500:563-568.
    [104]程耀楠,刘献礼,李振加,等.极端重载切削条件下的刀-屑粘结失效[J].机械工程学报,2012,48(19):169-176.
    [105]孙雅洲,刘海涛,卢泽生.基于热力耦合模型的切削加工残余应力的模拟及试验研究[J].机械工程学报,2011,47(1):187-189.
    [106]QIN M Y, YE BY, JIA X, et al. Experimental Investigation of Residual Stress Distribution in Pre-Stress Cutting [J]. The International Journal of Advanced Manufacturing Technology,2012,17:117-119.
    [107]WU J H, LIU Z Q. Modeling of Flow Stress in Orthogonal Micro-Cutting Process Based on Strain Gradient Plasticity Theory [J]. The International Journal of Advanced Manufacturing Technology,2010,46(1-4):143-149.
    [108]GLANDUS J C, TAI Q. Mechanical Fatigue of Cutting Tool [J]. Journal of Materials Science,2009,26(17):4667-4669.
    [109]杨俊茹,李兆前.确定硬质合金刀具可靠度的理论研究[J].山东大学学报,2003,3(3):235-236.
    [110]NOSENKO S M, OMEL'CHENKO V G. Effect of the Temperature of Workpieces on the Cutting Power of Rotary Shears [J]. Metallurgist,2007, 11(2):104-105.
    [111]刘战强,黄传真,万熠,等.切削温度测量方法综述[J].工具技术,2002,36(3):3-5.
    [112]张金,黄筱调,彭琪,等.铣齿断续切削机理的研究[J].机械工程学报,2011,47(13):186-189.
    [113]STEPHENSON D A. Tool Temperatures in Interrupted Metal Cutting [J]. Journal of Engineering for Industry-Transactions of the ASME,2002, (5):116-117.
    [114]王世杰,闫明,佟玲,等.循环载荷下热疲劳裂纹的应力强度因子[J].机械工程学报,2010,46(10):64-67.
    [115]AGAPIOU J S. Optimization of Machining Operations Based on A Combined Criterion, Part 1:The Use of Combined Objectives in Single Pass Operations [J]. Transactions of the ASME,1992,114(4):77-79.
    [116]JIANG H, DOMENICOU, RAJIV S. Investigation of Cutting Conditions and Cutting Edge Preparations for Enhanced Compressive Subsurface Residual Stress in the Hard Turning of Bearing Steel [J]. Journal of Materials Processing Technology,2006,117(2):88-89.
    [117]LIU M, TAKAGI J I, TSUKUDA A. Effect of Tool Nose Radius and Tool Wear on Residual Distribution in Hard Turning of Bearing Steel [J]. Journal of Materials Processing Technology,2004,150(3):73-75.
    [118]VORONTSOV A L, SULTAN N M, ALBDGACHIEV A Y, et al. Development of a New Theory of Thermal Cutting Processes 3. Influence of Cutter's Front Angle on the Cutting Temperature and Influence of Preheating of the Blank on the Cutting Force [J]. Russian Engineering Research,2010,30(3):274-275.
    [119]KONMEEVA V M, KOMEEV S S. Measurement of Cutting Temperature When Investigating the Thermal Characteristics of Ultrahigh-Speed Edge Machining of Metals [J]. Measurement Techniques,2003,46(7):654-655.
    [120]XU C H, HUANG C Z, AI X. Cutting Behavior and Related Cracks in Wear and Fracture of Ceramic Tool Materials [J]. The International Journal of Advanced Manufacturing Technology,2007,32(11-12):1083-1084.
    [121]XU C H, HUANG C Z, AI X. Mechanical Property and Cutting Performance of Yttrium-Reinforced Al2O3/Ti(C,N) Composite Ceramic Tool Material [J]. Journal of Materials Engineering and Performance,2001, 10(1):102-107.
    [122]KOLYANO Y M, KHOROL V M. Temperature Stresses in Cut-off and Straight-Through Cutting Tools with Heat Transfer [J]. Soviet Materials Science,1971,7(5):567-566.
    [123]DENKENA B, LEON L D, KOHLER J. Influence of Scaled Undeformed Sections of Cut on Strain Rate, Cutting Force and Temperature [J]. Production Engineering,2010,4(5):457-464.
    [124]张士军.涂层刀具切削温度及其测试技术研究[D].山东:山东大学,2009:17-18.
    [125]陈元春,艾兴,黄传真.新型陶瓷涂层硬质合金刀具的涂层机理和切削性能[J].机械工程学报,2000,36(11):44-45.
    [126]REZNIKOV A N, BASOV V V. Distribution of Heat Flux Intensity and Temperature on Contact Surfaces of Moving Bodies (As Applied to Cutting of Metals) [J]. Journal Of Engineering Physics,2008,9(5):363-364.
    [127]全燕鸣,何振威,豆勇.碳钢高速车削中基于量热法的切削热分配[J].华南理工大学学报,2006,34(11):1-3.
    [128]ZHILIN V A, DRUZHININ V M. Effect of Heating Temperature on Properties of Hard-Alloy Cutting Plates [J]. Soviet Powder Metallurgy and Metal Ceramics,2006,7(6):488-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700