淬硬钢GCr15精密切削过程的建模与加工表面完整性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬态切削技术是近20年来迅速发展起来的先进制造技术,由于其具有加工效率高、加工柔性好、能耗低、污染小等优势,因而在淬硬钢精密加工领域具有广阔的应用前景。然而,对于这一新技术,在其理论研究尤其是硬态切削过程的建模与表面完整性预测方面缺少系统、全面地研究,使得有效预测和控制硬态切削加工表面完整性的理论基础尤显不足,严重阻碍了其在实际生产中的推广和应用。
     本文以PCBN刀具精密车削淬硬钢GCr15为研究对象,通过理论分析结合实验研究和数值模拟等方法,进行了精密硬车过程中绝热剪切行为模拟、切削力预测、表面完整性实验及表面完整性预测等方面的研究,为硬态切削加工技术推广应用提供理论依据和技术支撑。
     通过有限元模拟和实验相结合的方法,研究了绝热剪切行为作用下的切削力动态特征、绝热剪切带切削热的分布特征、锯齿形切屑形成过程和切屑的变形特征,以及刀具刃口几何参数和切削参数对切削力、切削温度,切屑形态和工件表层残余应力的影响规律。
     建立了基于刀-屑界面摩擦行为的精密硬车过程切削力模型,其中包括刀-屑摩擦界面切削力和切削负载的经验关系、圆弧切削刃等效变换、直角切削与三维切削变换和切削力系数求解等方面的研究。该模型实现了直角切削向斜角切削、斜角切削向三维切削的变换,使得直角切削模型中各种参数的计算结果可以移植到复杂三维切削计算过程中。
     在系统的切削实验和理论分析基础上,研究了切削用量和刀具几何参数以及各影响因素间相互作用对硬态切削加工表面粗糙度的影响;研究了高速切削条件下,切削力和切削热综合作用下的刀具磨损对表面粗糙度、残余应力的分布特征和白层的产生及其特征的影响规律。结果表明,随着刀具磨损和切削速度的增大,加工表面易产生残余拉应力,但残余压应力层深却随之增大;当切削速度达到200m/min时,即使PCBN刀具后刀面在无磨损状态下,加工表面也存在着白层,且当切削速度提高或刀具后刀面磨损量继续增大时,白层厚度明显增大,呈不均匀状熔附于工件表面上。
     运用反应曲面法建立了多参数条件下硬态切削表面粗糙度预测模型;运用BP人工神经网络方法,以刀具几何参数和切削参数为输入量,以残余应力和白层的特征值为输出量,建立表层残余应力和表面白层预测模型;最后,用Matlab软件开发了PCBN刀具精密硬车表层残余应力、表面白层和表面粗糙度的预测系统,实现了对精密硬车表面完整性较高精度的预测。
Hard turning is one of the advanced manufacturing technologies in the last two decades. It is applied to precision process of hardened steel because of its high machining efficiency, good machining flexibility, low energy consumption and pollution. However, as for the new technology, there is a lack of systematic and thorough study in its theory, especially in the modeling and prediction of hard turning, which makes the theoretical basis insufficient that can predict and control effectively surface integrality of machined workpiece in hard turning, and prevents its popularization and application to practical production.
     In this work, the simulation of adiabatic shear behavior, prediction of cutting force, experiment and prediction of surface integrality are studied by means of combining theoretical analysis, experimental study and numerical simulation in high speed precision cutting of hardened steel GCr15 with PCBN tools, which provides an important theoretical basis and technological support for the further development, popularization and application of hard turning process.
     By using the method of FEM simulation and experiment, under the effect of adiabatic shear behavior, dynamic characteristics of cutting force, distribution characteristics of cutting temperature in adiabatic shear band, formation and deformation characteristics of serrate chip are investigated. The effect of tool edge and cutting parameters on cutting force, cutting temperature, chip morphology and residual stress on workpiece surface is also studied.
     Based on friction behavior on tool-chip interface, the cutting force model of precision hard turning is built, which involves the research into experimental relationship of cutting force and cutting load on tool-chip friction interface, equivalent transformation of radius cutting edge, transformation between orthogonal cutting and 3D cutting, calculation of cutting force coefficient. The model realizes the transformation from orthogonal cutting to oblique cutting, then to 3D cutting, which can make calculation results of all parameters in orthogonal cutting model transplanted into complex 3D cutting.
     Based on systematic cutting experiment and theoretical analysis, the effect of cutting parameters, tool parameters and factor interaction on surface roughness of machined workpiece in hard turning is studied. In addition, the effect of tool wear which is under the joint influence of cutting force and temperature in high-speed cutting, on surface roughness, distribution characteristics of residual stress, formation and characteristics of white layer is also investigated. The results are that with the increase of the tool wear and cutting speed, the surface of the machined workpiece tends to generate tensile residual stresses whose depth increases; when cutting speed reaches to 200m/min, there exists white layer on the surface of machined workpiece even though the flank of PCBN tool is in a fresh state, and with the further increase of cutting speed or flank wear of cutting tool, white layer becomes clearly thicker and uneven on the workpiece surface.
     The prediction model of surface roughness in hard turning of different parameters is built by RSM, and the prediction models of residual stress and white layer on surface are built using BP artificial neural network, which defines tool parameters and cutting parameters as input value, and the values of residual stress and white layer characteristics as output. Finally, MATLAB is used to develop prediction system of the residual stress, surface white layer, and surface roughness in precision hard turning with PCBN tools. The system has realized higher-accuracy prediction of surface integrality in precision hard turning.
引文
[1] Toenshoff H K, Arendt C, Ben A R. Cutting hardened steel[J] . Annals of the CIRP, 2000, 49(2 ):1-19.
    [2] Halpin T, Byrne G, Barry J. The performance of PCBN in hard turning[J]. Industrial diamond review, 2005, 4: 52-60.
    [3] Fleming M, Bossom P K. PCBN performance goals for the 21st century[J]. Industrial Diamond Review,2000(4):259-268.
    [4] Byrne G, Dornfeld D, Denkena B. Advancing cutting technology[J]. Annals of the CIRP, 2003, 52(2 ):483-508.
    [5] Klocke F, Brinksmeier E, Weinert K. Capability profile of hard cutting and grinding processes[J]. Annals of the CIRP, 2005, 54(2 ):552-580.
    [6]刘献礼.硬态干式切削的临界硬度[J].机械工程学报,2000,(3):9-13.
    [7]文东辉.硬态切削机理的研究[D].大连:大连理工大学(博士学位论文),2002.
    [8]庞俊忠,王敏杰.高速切削淬硬钢的研究进展[J].中国机械工程,2006,17(8):421-425.
    [9]文东辉,刘献礼,胡荣生.PCBN刀具的硬态切削加工机理[J].机电工程,2001,18(6):76-79.
    [10]曹永泉,张弘弢.PCBN刀具的硬态切削技术的研究与进展[J].机械制造,2005,43(10):58-60.
    [11]文东辉,刘献礼,肖露,等.硬态切削机理研究的现状与发展[J].工具技术,2002,36(6):3-7.
    [12]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [13]刘献礼,文东辉,等.硬态干式切削机理及技术研究综述[J].中国机械工程,2002,13(11):972-975.
    [14]刘占强,万熠.高速切削刀具材料及其应用[J].机械工程材料,2006,(5):1-8.
    [15] Komanduri R, Brown R. On the mechanics of chip segmentation in machining [J]. Engineering for industry, Trans ASME,1981,130(1):33-51.
    [16] Komanduri R, Schroeder T A. On shear instability in machining a nickel iron base super-alloy[J]. Engineering for industry, ASME, 1986, 108(2):93-100.
    [17] Davies M A, Chou Y, Evans C J. On chip morphology, tool wear and cutting mechanics in finish hard turning[J] . Annals of the CIRP, 1996,45(1):77-82.
    [18] Davies M A, Burns T J, Evans C J. On the dynamics of chip formation in machining hard metals[J]. Annals of the cirp,1997,46(1):25-30.
    [19] Barry J, Byrne G. The mechanisms of chip formation in machining hardened steels[J]. Journal of engineering,2002,124:528-535.
    [20] Shaw M C, Vyas A. Chip formation in the machining of hardened steel[J]. Annals of the CIRP,1993,42(1):29-33.
    [21] Shaw M C, Vyas A. The mechanism of chip formation with hard turning steel[J]. Annals of the CIRP,1998,47(1):77-82.
    [22] Konig W, Berktold A. Turning Versus Grinding– A Comparison of Surface Integrity Aspects and Attainable Accuracies[J]. Annals of the CIRP,1993,42 (1):39-44.
    [23] Poulachon G, Moisan A. Hard turning: chip formation mechanisms and metallurgical aspects[J].Journal of manufacturing science and engineering, 2000, 8(122):406-412.
    [24]王敏杰,段春争,刘洪波.正交切削切屑形成中绝热剪切行为的实验研究[J].中国机械工程,2004,15(2):244-248.
    [25]段春争,王敏杰.切削高强度结构钢形成的绝热剪切带微结构观察[J].大连理工大学学报,2004,15(18):1603-1606.
    [26]段春争.正交切削高强度钢绝热剪切行为的微观机理研究[D].大连:大连理工大学(博士学位论文),2005.
    [27] Matsumoto Y, Hashimoto F, Lahoti G. Surface integrity generated by Precision hard turning [J]. Annals of the CIRP, 1999,48 (1):59 - 62 .
    [28] Thiele J D , Melkote S N. Effect of cutting edge geometry and work-piece hardness on surface generation in the finish hard turning of AISI 52100 steel[J]. Materials process technology,1999,94:216-226.
    [29] Singh D, Rao P V. A surface roughness prediction model for hard turning process[J] .Advanced Manufacturing Technology, 2007,32(5):1115-1124.
    [30] Dahlman P, Gunnberg F, Jacobson M. The influence of rake angle,cutting speed and cutting depth on residual stresses in hard turning[J]. Materials Processing Technology, 2004,147 (2):181 -184.
    [31] Liu M, Takagi J, Tsukuda A. Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel[J]. Materials processing technology, 2004,150:234-241.
    [32] Barbacki A, Kawalec M, Hamrol A. Turning and grinding as a source of micro-structural changes in the surface layer of hardened steel[J]. Materials Processing Technology, 2003,133:21-25.
    [33] Hua J , Rajiv S , Cheng X M ,etal. Effect of feed rate, work-piece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer plus hone cutting edge geometry[J]. Materials science engineering A, 2005,394:238-248.
    [34] Thiele J D, Melkote N. Effect of tool edge geometry on work-piece subsurface deformation and through-thickness residual stresses for hard turning of AISI 52100 steel[J]. Manufacturing processes, 1999,2 (4):270-276.
    [35] Thiele J D, Melkote S H, Peascoe R A ,etal. Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel[J]. Manufacturing science and engineering, 2000,122 (12):642 - 649.
    [36] Barry J, Byrne G. TEM study on the surface white layer in two turned hardened steels[J]. Materials Science and Engineering, A 2002,(325):356-364.
    [37] Liu X L,Yan F G,Li Y F,Wang Y J. Effect of Cutting Parameters on Integrality of Machined Surface in Hard Cutting[J]. Materials Science Forum, 2004,471-472:307-311.
    [38] Guo Y B , Sahni J. A comparative study of hard turned and cylindrically ground white layers[J].Machine tools and manufacture, 2004, 44:135 - 145.
    [39] Agha S R, Liu C R. Experimental study on the performance of super-finish hard turned surfaces in rolling contact[J]. Wear,2000,244(6):52-59.
    [40] Liu C R, Mittal S. Single-step super finishing using hard machining resulting in superior surface integrity[J]. Flexible manufacturing systems, 2001,14(2):129-133.
    [41] Abrao A M,Aspinwall D K. The surface integrity of turned and ground hardened bearing steel[J].Wear,1996,196:279-284.
    [42] Chou Y K, Chris J E .White layers and thermal modeling of hard turned surfaces[J].International journal of machine tools and manufacture, 1999,39:1863-1881.
    [43] Kishawy H A, Elbestawi M A. Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools[J]. Proceedings of the institution of mechanical engineers Part B: engineering manufacture, 2001,215:755-767.
    [44] Poulachon G, Albert A ,Schluraff M, etal. An experimental investigation of work material microstructure effects on whith layer formation in PCBN hard turning[J]. Machine tools and manufacture, 2005, 45:211-218.
    [45] Ramesh A , Melkote S N, Allard L F, etal .Analysis of white layers formed in hard turning of AISI 52100 steel[J]. Materials science and engineering A , 2005,390:88-97.
    [46]张凌飞,张弘弢.硬态车削表面白层厚度的影响因素分析[J].工具技术,2004,38:31-33.
    [47]张凌飞.硬态干式切削材料被加工表面白层的研究[D].大连:大连理工大学(硕士学位论文),2004.
    [48]张雪萍,赵国伟,蒋辉,Liu C R.精密干切削淬硬零件表面完整性实验分析[J].上海交通大学学报,2006,40(6):922-926.
    [49]戴素江,邢彤,文东辉,等.精密硬态切削表面组织形态的研究[J].中国机械工程,2006,17(10):1007-1014.
    [50] Wen Donghui, Zheng Li, Liu Xianli. Effect of work-piece hardness on PCBN tool wear and surface integrity in hard turning[C]. The 6th international conference on frontiers of design and manufacturing, Xi’an, China, June 2004 .
    [51]胡创国,张定华,任军学,等.切削力建模方法综述[J].力学进展,2006,36(4):564-570.
    [52]中山一雄.金属切削加工理论[M].北京:机械工业出版社,1985
    [53]周泽华.金属切削原理[M].上海:上海科学技术出版社,1984.
    [54]张幼祯.金属切削理论[M].北京:航空工业出版社,1988.
    [55] Oxley P L B. Mechanics of Machining[M].Chicester: Ellis Horwood,1989.
    [56] Zhu R, Kappoor S G, Devor R E. Mechanistic force models for chip control tools[J] . Trans ASME: J Manuf Sci and Eng,1999,121:408-416.
    [57] Parkkal G, Zhu R, Kappoor S G, et al. Modeling of turning process cutting forces for grooved tools[J]. International Journal of Machine Tools and Manufacture,2002,42(2):179-191.
    [58] Endres W J ,Devor R E, Kappoor S G. A dual-mechanism approach to the prediction of machining forces, part 1: model development & part 2: calibration and validation[J].J Manuf Sci Eng,1995,117:526-541.
    [59] Manjuna T I, Endres W J. A new model and analysis of orthogonal machining with an edge-radiused tool [J]. Trans ASME: J Manuf Sci and Eng,2000,122:384-390.
    [60] Becze C E, Elbestawi M A. A chip formation based analytic force model for oblique cutting[J]. International Journal of Machine Tools and Manufacture, 2002,42:529–538.
    [61] Huang Y, Liang S Y . Cutting forces modeling considering the effect of tool thermal property-application to CBN hard turning[J].Machine Tools Manufacture ,2003,43(3):307-315
    [62] Huang Y, Liang S Y. Force modeling in shallow cuts with large negative rake angle and large nose radius tools-application to hard turning[J]. Advance manufacture technology,2003,22:626-632.
    [63] Ng E G, Aspinwell D K. Hard part machining AISI H13 (50HRC) using AMBORITE AMB90: a finite element modeling approach[J].International Diamond review,2000,60:305-310 .
    [64] ?zel T. The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools and Manufacture, 2006,46:518-530.
    [65] Guo Y B, Liu C R. 3D FEA modeling of hard turning. Manufacturing science and engineering [J], 2002,124(5):189-199.
    [66] Shi J, Liu C R. On predicting of chip morphology and phase transformation in hard machining[J].Int J Advance Manufacture Tech,2006,27(708):645-654.
    [67] Shi J, Liu C R. On Predicting Softening Effects in Hard Turned Surfaces-Part I: Construction of Material Softening Model[J].Journal of Manufacturing Science and Engineering,2005,127(3):476-483.
    [68] Suresh P V S, Rao P V, Deshmukh SG .A genetic algorithm approach for optimization of surface roughness prediction model[J]. Int J Mach Tools Manuf ,2002,42:675–680.
    [69] Kim B H,Chu C N .Texture Prediction of milled surfaces using texture superposition method[J]. Computer-aided Design,1999,31(8):485-494.
    [70] ?zel T ,Karpat Y .Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. Machine tools and manufacture , 2005(42):467-479.
    [71] Wen Q , Guo Y B , Todd B A . An adapive FEA method to predict Surface Quality in hard machining[J].Materials Processing Technology, 2006,173:21-28.
    [72] Zhang J Y. Process Optimization for Machining of Hardened Steels[D]. Georgia: Georgia Institute of Technology(Doctor dissertation),2005.8.
    [73] Umbrello D, Hua J, Shivpuri R. Hardness based flow stress for numerical modeling of hard machining AISI 52100 bearing steel[J]. Materials Science and Engineering A ,2004, 374:90-100.
    [74]彭锐涛,叶邦彦,唐新姿,等.预应力硬态切削加工表面残余应力的数值模拟与试验研究[J].机床与液压,2008,36(5):140-142.
    [75]叶邦彦,彭锐涛,唐新姿,等.预应力硬态切削的残余应力及表面形态[J].华南理工大学学报,2008,36(4):6-9.
    [76]胡韦华,王秋成,胡晓冬,等.切削加工过程数值模拟的研究进展[J].南京航天航空大学学报,2005,37:194-198.
    [77] Guo Y B, Liu C R. Mechanical properties of hardened AISI 52100 steel in hard machining process[J]. J Manuf Sci Eng ,2002,124(1):1-9.
    [78] Shi J, Liu C R.The influence of material models on finite element simulation of machining[J].Journal of Manufacturing Science and Engineering,2004, 126:849-857.
    [79] Ng E G, Tahany I, Wardany E I, Dumitrescu M, Elbestawi M A. Physics-based simulation of high speed machining[J].Machining Science and Technology,2002,63:301-329.
    [80] Umbrello D, Ambrogio G, Flice L, Shivpuri R. A hybrid finite element method-artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steal[J].Materials and Design,2008,29:873-883.
    [81] ?zel T, Altan T. Determining work-piece flow stress and friction at the chip-tool contact for high speed cutting[J]. Machine Tools Manufacture ,2000, 40(5):133-152.
    [82] Filice L, Micari F, Rizzuti, etal. A critical analysis on the friction modeling in orthogonal machining[J].Journal of Machine tools and manufacture,2007, 47:709-714.
    [83]汪小芳,陶伟明,郭乙木.刀屑摩擦对残余应力分布影响的模拟分析[J].农业机械学报,2005,36(4):128-131.
    [84] Guo Y B, Yen D W. A FEM study on mechanisms of Discontinuous chip formation in hard maching[J] . Materials Processing Technology, 2004,155-156:1350-1356.
    [85] Yen Y C , Sohner J , Weule H , Schmidt J , Altan T. Estimation of tool wear of carbide tool in orthogonal cutting using FEM simulation[J]. Proceedings of the 5th CIRP International Workshop on Modeling of Machining Operations , West Lafayette , USA ,2002 : 149~160.
    [86] Altan T. Process Modeling of High Speed Cutting Using 2D-FEM[C]. Proceedings of the NIST-Machining Conference,Washington,2007,599-602.
    [87] Yen Y C ,Jain A, Altan T. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of materials processing technology , 2004,145:72-81.
    [88] Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation[J]. Journal of materials processing technology, 1999,95:17-26.
    [89]闫洪,夏巨谌.H13淬硬模具钢精车过程的有限元模拟[J].中国机械工程,2006,11(16):985-989.
    [90]赵威,何宁,李亮.强化冷却下正交切削Ti6Al4V合金的有限元分析[J].华南理工大学学报,2006,34(7):40-44.
    [91]黄志刚,何映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(3):317-320.
    [92]黄志刚.航空整体结构件铣削加工变形的有限元模拟理论及方法研究[D].杭州:浙江大学(博士学位论文),2003.
    [93] Liu X L, Pen H M., Chen T. Effect of Different Edge Preparation on High Speed Turning Hardened Steel[J] . Process Materials Science Forum, 2006,532-533: 412-415.
    [94]唐志涛,刘战强,艾兴,等.金属切削加工热弹塑性大变形有限元理论及关键技术研究[J].中国机械工程,2007,18(6):746-750.
    [95]赵军,孟辉,王素玉,等.高速切削锯齿状切屑的有限元模拟[J].工具技术,2005,39(1):29-31.
    [96]邓文君,夏伟,周照耀,等.正交切削高强度耐磨铝青铜的有限元分析[J].机械工程学报,2004,40(3):71-75.
    [97] Xie L J , Schmidt J , Soehner J , Schmidt C , Jain A. 2-D fem estimate of tool wear in milling operation[C]. Proceedings of Luxfem'03 finite element conference , Luxembourg , 2003.
    [98] Zener C, Hollomon J H. Effect of strain rate on plastic flow of steel [J]. J App Phys ,1944,15:22-32.
    [99] MacGregor C W, Fisher J C. Tension tests at constant true strain rates[J]. J App Mech,1954,12:217-227.
    [100] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rate and temperatures[C]. International symposium on ballisties,hauge,netherland,1983,1-7.
    [101] Obikawa T, Usui E. Computational machining of titanium ally-finite element modeling and a few results[J]. Journal of Manufacturing Science and Engineering,1996,118:208-215.
    [102] Umbrello D, Rizzuti S, Outeiro J C, etal. Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel[J]. Journal of materials processing technology,2008,199:64-73.
    [103]肖露.硬态干式切削条件下切削力实验建模与控制的研究[D].哈尔滨:哈尔滨理工大学(硕士学位论文),2002.
    [104]李涛.淬硬模具钢正交切削的力学建模与计算机仿真研究[D].南京:南京航空航天大学(硕士学位论文),2007.
    [105]文东辉,刘献礼,王敏杰,胡荣生.虚拟加工过程中切削力建模和预报[J].大连理工大学学报,2003,43(1):65-69.
    [106] Smithey D W , Kappoor S G, Devorr E. A worn tool force model for three-dimensional cutting operations[J]. International Journal of Machine Tools and Manufacture,2000,40(13):1929-1950.
    [107]王万中.试验的设计与分析[M].北京:高等教育出版社,2004.
    [108]王素玉.高速铣削加工表面质量的研究[D].济南:山东大学(博士学位论文),2006.
    [109]万熠.高速切削航空铝合金变形理论及加工表面形成特征研究[D].济南:山东大学(博士学位论文),2007.
    [110]范胜波,王太勇,汪天津,何慧龙.基于Matlab神经网络的切削力预测.机床与液压,2006(1):4-5,14.
    [111]唐东红,孙厚芳,王洪艳.用BP神经网络预测数控铣削变形.制造技术与机床,2007(8):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700