三维复杂槽型铣刀片槽型优化原理与优化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属切削加工是机械工业中的基本工艺方法,刀具是金属切削加工中的主要工具,刀具在很大程度上影响着机械产品的质量与可靠性。随着刀片材料及其制造技术的发展,具有复杂槽型的新型硬质合金铣刀片不断出现,三维复杂槽型铣刀刀片的应用日益广泛。目前国内外研制的铣刀片槽型多是以经验加试验的方法定型的,缺乏理论研究基础,槽型的优劣没有统一的判断依据。因此,进行三维复杂槽型铣刀片槽型优化原理与优化技术的研究,以解决自动化生产中刀具破损这一关键技术问题,保证FMS、CIMS等先进制造系统的正常运行。
     因此,本课题从提高三维复杂槽型铣刀片的切削性能和可靠性出发,建立三维复杂槽型铣刀片表面受力、受热密度函数数学模型;以表面受力、受热密度函数为边界条件进行三维复杂槽型铣刀片应力场、温度场及其耦合物理场的有限元分析,并对三维应力场和温度场及其耦合场进行模糊数学评判;在实验的基础上,进行三维复杂槽型铣刀片冲击破损和粘结破损的试验研究;以最小刀具破损为目标进行优化目标函数的建立,为建立三维复杂槽型铣刀片槽型优化CAD系统打下基础。
     首先,在已建立的三维复杂槽型铣刀片铣削力数学模型基础上,进行大量、系统的切削实验,建立铣削力的实验式以及刀-屑接触长度与接触宽度的实验式,从而建立三维复杂槽型波形刃铣刀片的表面受力密度函数数学模型,并进行定量计算对其分布规律进行分析,为三维应力场的分析研究奠定基础。
     其次,在已建立的三维复杂槽型铣刀片表面受力密度函数数学模型基础上,对平前刀面铣刀片和波形刃铣刀片进行了三维应力场有限元分析,并对有限元分析结果进行模糊数学综合评判。根据波形刃铣刀片表面受力密度函数分布规律及在铣削周期内的受力分析,应用弹性力学方法,采用双调和方程进行三维复杂槽型铣刀片切入过程应力状态分析。
     第三,针对不同的槽型及刀片材质进行铣刀片冲击破损实验,对比分析几种槽型铣刀片破损形貌。采用数理统计的方法建立几种铣刀片冲击破损寿命累积分布函数数学模型,进行冲击破损寿命比较分析,从而对铣刀片三维应力场有限元分析的结果进行检验。
     第四,在已建立的三维复杂槽型铣刀片铣削温度数学模型基础上,采用人工热电偶法测量刀-屑接触面的铣削温度,建立前刀面刀-屑接触区的平均温度与时间之间的实验方程式,从而建立铣刀片表面受热密度函数与温度场数学模型。以受热密度函数为边界条件,进行波形刃铣刀片和平前刀面铣刀片三维温度场有限元分析,并对有限元分析结果进行模糊数学综合评判。进行三维复杂槽型铣刀片粘结破损量化数学模型的研究,建立前刀面刀-屑接触区铣削温度与最大粘结破损深度的关系,从而可以根据铣刀片前刀面上的最高温度,预测其粘结破损情况。
     最后,对平前刀面铣刀片和波形刃铣刀片的温度场和应力场进行热-应力耦合场分析,探讨耦合情况下等效应力的分布规律和受力变形状况,并对平前刀面铣刀片和波形刃铣刀片的耦合场进行模糊数学综合评判。以最小冲击破损和粘结破损为目标,建立应力场模糊综合评判结果与背吃刀量之间的目标函数关系和温度场模糊综合评判结果与背吃刀量之间的目标函数关系,运用优化理论对目标函数进行优化,为设计和开发新槽型提供理论依据。
Metal cutting machining is the basic technical method in mechanical industry, and the cutter is the primary tool in the metal cutting machining. The cutter affects the quality and reliability of the mechanical products to a large extent. Along with the development of the insert material and its manufacturing technology, new hard alloy milling inserts with complex grooves come forth continually, and the milling inserts with complex three-dimension (3D) grooves are increasingly applied widely. At present, the grooves of milling inserts developed by domestic and oversea manufacturer are mostly finalized the design with the experiential and experimental methods and shortage of theoretic study basis. The groove has no uniform judgement basis. Thus, in order to solve the cutter disrepair that is the key technical problem in automatization production, and ensure that the advanced manufacturing systems run normally, such as FMS, CIMS, study on groove optimization principle and technology of complex 3D grooves milling insert should be done. The study work has very important theory significance and practical value.
     In order to improve the cutting capability and reliability of complex 3D grooves milling insert, the force and heat density function mathematical models are built. The force and heat density functions are looked as the boundary conditions and the stress fields, temperature fields and their coupling fields of complex 3D grooves milling inserts are analyzed with the finite element analysis (FEA) method and judged with blurry mathematical theory. The impact disrepair and adhering disrepair of complex 3D grooves milling insert are studied based on experiments. Aimed at the minimal disrepair, the optimization object functions are built. So to provide the basis for the groove optimization CAD system of complex 3D grooves milling insert.
     Firstly, based on the milling force mathematical model of complex 3D grooves milling insert, the experimental formulas of milling force and contact length and width of cutter-chip are built with a plentiful systemic cutting experiments. Then the force density function mathematical model is built, and is calculated quantificationally to analyse its distributing principle. The studies poivide a basis for the 3D stress field analysis.
     Secondly, based on the force density function mathematical model of complex 3D grooves milling insert, the stress fields of the waved-edge milling insert and flat rake face milling insert are analyzed with FEA method and judged with blurry mathematical theory. According to the distributing principle of the waved-edge milling insert and force analysis in the cutting periods, the double unison equation is introduced to analyse the stress state of cut-in course with the elasticity mechanics method.
     Thirdly, the impact disrepair experiments with different grooves and insert materials have been done, the disrepair shapes are compared among the several types of grooves milling inserts. The impact disrepair life cumulating distribution function mathematical models of them are built by the mathematics statistic method and the contrast analysis of the impact disrepair average lives bave been done among them. So to verify the FEA results of the 3D stress field of the milling inserts.
     Fourthly, based on the milling temperature mathematical model of complex 3D grooves milling insert, the milling temperature of the cutter-chip contact interface is tested by the manual thermocouple method. The experimental formulas are built, which are the average temperatures of the cutter-chip contact area on rake face to time. The heat density function and temperature field mathematical models are built. The heat density functions are looked as the boundary conditions and the 3D temperature fields of the waved-edge milling insert and flat rake face milling insert are analyzed with FEA method and judged with blurry mathematical theory. The mathematical model of the adhering disrepair is studied for complex 3D grooves milling insert. The relations between milling temperature of cutter-chip contact area on the rake face and the maximal adhering disrepair depth are built. According to the maximal temperature on the rake face, the adhering disrepair could be forecasted.
     Lastly, the heat-stress coupling field between the stress field and temperature field of the waved-edge milling insert and flat rake face milling insert is analyzed to discuss the distributing principle of equivalent stress and its distortion under the coupling condition. Aimed at the minimal impact disrepair and adhering disrepair, the function relations between the blurry judgement results of stress field and the cutting depth, and the function relations between the blurry judgement results of temperature field and the cutting depth are built. The object function is optimized by the optimization theory to provide theoretic basis for designing and developing new grooves.
引文
[1]陈立兰.浅析当前硬质合金及其工具技术的发展[J].世界有色金属, 1999, (11): 29-30.
    [2]孙金海.硬质合金刀片焊接与刃磨产生裂纹的原因分析及对策[J].煤矿机械, 2005, (12): 91-92.
    [3] Li Zhou. Machining chip-breaking prediction with grooved inserts in steel turning. Degree of Doctor Paper of Worcester Polytechnic Institute[D]. 2002:1-10.
    [4]吴克忠.可转位刀片三维断屑槽的研究及设计[D].华中科技大学, 2005: 2-6.
    [5] Huiping Zhang, Zhenjia Li. Study on chip breaking behavior of 3-D complex groove insert in machining carbon steel at high cutting speed[J]. Key Engineering Materials, 2007, 13(5): 423-435.
    [6]王贵成.切削加工中的切屑控制技术.组合机床与自动化加工技术[J], 1989(4): 42-45.
    [7] Fang N, Wu Q. Impulsive chip breaking in metal machining: A proof-of-concept study[J]. Machining Science and Technology, 2006, 10(2): 251-262.
    [8] Henri Paris, Grégoire Peigné. Influence of the cutting tool geometrical defects on the dynamic behaviour of machining[J]. International Journal on Interactive Design and Manufacturing, 2007, 1(1): 41-49.
    [9]沈壮行.工具工业面临的严重挑战和发展对策.工具展望[J]. 1995, (4): 1-8.
    [10]沈壮行.中国工具工业的发展为什么赶不上制造业的需要——发展状况、问题浅谈和改进建议[J].机械工人, 2002, (9): 9-10.
    [11]程伟.切削加工和刀具技术的现状与发展.工具展望[J]. 2002, 36(123): 3-6.
    [12]孙宇.数控铣刀的分类及应用的研究[J].硅谷, 2008, (01): 42.
    [13] Y.C. Tsai, J.M. Hsieh. An analysis of cutting-edge curves and machining performance in the Inconel 718 machining process[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(3): 248-261.
    [14] N. Suresh Kumar Reddy, P. Venkateswara Rao. Selection of optimum toolgeometry and cutting conditions using a surface roughness prediction model for end milling[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(11): 1202-1210.
    [15] V. N. Lyul’ko. A Method of Surface Geometrical Simulation for Milling Cutters for Making Spiral Surfaces[J]. Chemical and Petroleum Engineering, 2005, 41(3): 225-228.
    [16] A. A. Akimov. Patent searches in cutter design[J]. Russian Engineering Research, 2008, 28(5): 495-497.
    [17] K. F. Ehmann, R. E. DeVor, S. G. Kapoor and J. Cao. Design and Analysis of Micro/Meso-scale Machine Tools[M]. Smart Devices and Machines for Advanced Manufacturing, Springer London, 2008: 283-318.
    [18] Yi Lu, Yoshimi Takeuchi, Ichiro Takahashi, Masahiro Anzai. An integrated system development for ball end mill design, creation and evaluation[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(7): 628-646.
    [19]龙新延.刀具槽型结构及表面涂层对切削过程影响的仿真研究[D].四川大学, 2007:3-12.
    [20]李军辉,谭建平,徐建华,等.硬质合金可转位刀片槽型有限元分析及研究[J].硬质合金, 2003, 20(1): 20-24.
    [21] Ye Li, Matthew C. Frank. Machinability Analysis for 3-Axis Flat End Milling[J]. Journal of Manufacturing Science and Engineering, 2006, 2 (128): 454-464.
    [22] Machine Tools and Manufacturing Equipment[M]. Mechanical Engineering Series. Springer New York, 2006: 125-279.
    [23] Altintas, Y., I. Yellowley, J. Tlusty. The Detection of Tool Breakage in Milling Operations[J].ASME Journal of Engineering for Industry, 1988, (110): 271-277.
    [24] Sang Won Lee, Rhett Mayor, Jun Ni. Dynamic Analysis of a Mesoscale Machine Tool[J]. Journal of Manufacturing Science and Engineering. 2006, 1 (128): 194-203.
    [25] Leading Edge Group. Machine Tool Markets Analyzed. Cutting Tool Engineering[J]. Industry News, 1996, 48(5): 2-4.
    [26]孙玉静,谭光宇,孙宝军,等.面铣刀铣削过程粘结破损机理的研究[J].哈尔滨理工大学学报, 2005, 10(6): 88-91.
    [27] Fenglian Sun. Adhering Wear Mechanism of Cemented Carbide Cutter in the Intervallic Cutting of Stainless Steel[J]. Wear, 1998, (214): 79-82.
    [28]恩宝贵.形势要求机床工具工业必须加快增长方式的转型[J].制造技术与机床, 2006, (3): 30-34.
    [29]沈壮行.中国工具工业的历史和现状[J].世界制造技术与装备市场, 2006, (4): 27-28.
    [30] Ger Chwang Wang, Kuang Hwa Fuh, Biing Hwa Yan. Geometry design model of a precise form-milling cutter based on the machining characteristics[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(11): 1072-1087.
    [31] H.Z. Li and X.P. Li. A numerical study of the effects of cutter runout on milling process geometry based on true tooth trajectory[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(3): 435-443.
    [32] Hongtao Li, Xinmin Lai, Chengfeng Li, Zhongqin Lin. Development of meso-scale milling machine tool and its performance analysis[J]. Frontiers of Mechanical Engineering in China, 2008, 3(1): 59-65.
    [33] V. N. Zharinov, V. L. Zinov, R. G. Kudoyarov and E. M. Durko. Developing new multipurpose machine tools for the manufacture of complex parts[J]. Russian Engineering Research, 2008, 28(1): 79-82.
    [34]王虹.我国数控刀具的发展探讨.中国刀协第一届先进切削技术高层论坛讲稿[R], 2003.
    [35]于成廷.当前机床工具行业形势及发展策略[J]. CMET.锻压装备与制造技术, 2003, (1): 7-8.
    [36]俞剑平,曹竞,王坚平.世界机床工具生产与出口分析[J].机床与液压, 2000, (2): 5-6.
    [37]赵炳桢.切削技术与刀具工业的新时代[J].工具技术, 2004, 38(9): 24-26.
    [38] M. J. Jackson, L. J. Hyde, W. Ahmed, H. Sein, R. P. Flaxman. Diamond-coated cutting tools for biomedical applications[J]. Journal of Materials Engineering and Performance, 2004, 13(4): 421-430.
    [39] Berend Denkena, David Boehnke, Roland Meyer. Reduction of wear induced surface zone effects during hard turning by means of new toolgeometries[J]. Production Engineering, 2008, 2(2): 123-132.
    [40] Noordin MY, Venkatesh VC, Sharif S. Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools[J]. J Mater Process Technol, 2006, (185): 83-90.
    [41] Jiang W, Malshe AP, Goforth RC. Cubic boron nitride (CBN) based nanocomposite coatings on cutting inserts with chip breakers for hard turning applications[J]. Surf Coat Technol, (200):1849-1854.
    [42] M. J. Jackson, G. M. Robinson. Machining of depleted uranium using coated cutting tools[J]. Journal of Materials Engineering and Performance, 2006, 15(2): 161-171.
    [43] C. E. Bauer, A. Inspektor, E. J. Oles. Comparative machining study of diamond-coated tools made by plasma torch, microwave, and hot filament techniques[J]. Sadhana, 2003, 28(5): 933-944.
    [44] A. Q. Biddut, M. Rahman, K. S. Neo, K. M. Rezaur Rahman, M. Sawa, Y. Maeda. Performance of single crystal diamond tools with different rake angles during micro-grooving on electroless nickel plated die materials[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(9): 891-899.
    [45]达世亮.汽车工业切削与刀具技术现状[J].工具技术, 2004, 38(9): 38-42.
    [46] J. E. Klemberg-Sapieha, P. Jedrzejowski, L. Martinu. Mechanical and optical characteristics of superhard nanocomposite TiN/a-Si3N4 and TiCN/a-SiCN coatings produced by PECVD[J]. Journal of Superhard Materials, 2007, 29(3): 147-152.
    [47] M. J. Jackson, L. J. Hyde, W. Ahmed, H. Sein, R. P. Flaxman. Diamond-coated cutting tools for biomedical applications[J]. Journal of Materials Engineering and Performance, 2004, 13(4): 421-430.
    [48] B. Sahoo, A. K. Chattopadhyay, A. B. Chattopadhyay. Development of diamond coated tool and its performance in machining Al-11% Si alloy[J]. Bulletin of Materials Science, 2002, 25(6): 487-491.
    [49] Eberhard Abele, Burkhard Schramm. Using PCD for machining CGI with a CO2 coolant system[J]. Production Engineering, 2008, 2(2): 165-169.
    [50] Mark J. Jackson. Diamond Microcutting Tools[M]. Micro and Nanomanufacturing, Springer US, 2007: 323-386.
    [51] W. F. Sales, L. A. Costa, S. C. Santos, A. E. Diniz, J. Bonney, E. O. Ezugwu. Performance of coated, cemented carbide, mixed-ceramic and PCBN-H tools when turning W320 steel[J]. The International Journal of Advanced Manufacturing Technology, 2008, 1433-3015 (Online).
    [52] A. Braghini Jr, R.T. Coelho. An Investigation of the Wear Mechanisms of Polycrystalline Cubic Boron Nitride (PCBN) Tools when End Milling Hardened Steels at Low/Medium Cutting Speeds[J]. The International Journal of Advanced Manufacturing Technology, 2001 17(4): 244-251.
    [53] P.S. Sreejith. Tool wear of binderless PCBN tool during machining of particulate reinforced MMC[J]. Tribology Letters, 2006,22(3): 265-269.
    [54] W.Y.H. Liew, S. Yuan, B.K.A. Ngoi. Evaluation of machining performance of STAVAX with PCBN tools[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(1): 11-19.
    [55]沈壮行.入世之后我国工具企业面临的真正挑战及其对策[J].工具技术, 2002, 36(1): 6-8.
    [56]刘洁华,杨雁.金属切削刀具技术现状及其发展趋势展望[J].中国机械工程, 2001, 12(7): 835-838.
    [57]尹洁华编译.正前角刀片推动铣削生产率的提高[J].工具技术. 1995, (8): 14-16.
    [58] R. Werheim, A. Satron, A. Ber. Modifications of the Cutting Edge Geometry and Chip Formation in Milling[J]. Annals of the CIRP, 1994, 43(1): 63-68.
    [59] T. Hoshi. Development of High-performance Machining Technologies. International Conference on Machining Technology in Asian & Pacific Regions[C]. Guangzhou, 1993: 24-30.
    [60]机械电子工业部机械自动化研究所编. CAD/CAM技术及其在机械加工业中的应用[M].北京:兵器工业出版社, 1989: 1-18.
    [61]王辅基译.机械加工新技术[M].北京:科学文献出版社, 1985: 1-14.
    [62]戴同. CAD/CAPP/CAM基本教程[M].北京:机械工业出版社, 1997: 1-25.
    [63]曹志奎.机械CAD技术基础[M].上海:上海交通大学出版社, 1996: 1-16.
    [64]杨岳. CAM技术与应用[M].北京:机械工业出版社, 1996: 1-24.
    [65]孔庆复.计算机辅助设计与制造[M].哈尔滨:哈尔滨工业大学出版社,1994: 1-12.
    [66] Bernard Nadel. Machining Software & Controls Supplement: Seats Knowledge[J]. Cutting Tool Engineering. 1997, 49(5): 52-56.
    [67] R. S. Lee, J. N. Lee. A New Tool-Path Generation Method Using a Cylindrical End Mill for 5-Axis Machining of a Spatial Cam with a Conical Meshing[J]. The International Journal of Advanced Manufacturing Technology, 2001, 18(9): 615-623.
    [68] J.-M. Redonnet, W. Rubio, F. Monies, G. Dessein. Optimising Tool Positioning for End-Mill Machining of Free-Form Surfaces on 5-Axis Machines for both Semi-Finishing and Finishing[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(6): 383-391.
    [69] S. Ding, M.A. Mannan, A.N. Poo, D.C.H. Yang, Z. Han. The implementation of adaptive isoplanar tool path generation for the machining of free-form surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(7): 852-860.
    [70] Emir Mutapcic, Pio Iovenitti, Jason P. Hayes. A prototyping and microfabrication CAD/CAM tool for the excimer laser micromachining process[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(11): 1076-1083.
    [71] Y.F. Sun, K.S. Lee, A.Y.C. Nee. Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(9): 715-726.
    [72]郭强,董丽华,李振加.不同槽型铣刀片的切削温度场分析[J].工具技术, 2000, 34(9): 3-5.
    [73]方刚,曾攀.切削加工过程数值模拟的研究进展[J].力学进展, 2001, 31(3): 394-404.
    [74]刘战强,黄传真,万熠,等.切削温度测量方法综述[J].工具技术, 2002, 36(3): 3-6.
    [75] Xiwen Li, Mingjin Yang, Shouyong Xie, Shuzi Yang. Cutting force model for a small-diameter helical milling cutter[J]. Frontiers of Mechanical Engineering in China, 2007, 2(3): 272-277.
    [76] M. Wan, W.H. Zhang. Calculations of chip thickness and cutting forces inflexible end milling[J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(7): 637-647.
    [77] D. Roth, F. Ismail, S. Bedi. Mechanistic modelling of the milling process using complex tool geometry[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(1): 140-144.
    [78] Y. K. Potdar, A. T. Zehnder. Temperature and deformation measurements in transient metal cutting[J]. Experimental Mechanics, 2004, 44(1): 1-9.
    [79] Yanming Quan, Zhenwei He, Yong Dou. Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method[J]. Frontiers of Mechanical Engineering in China, 2008, 3(2): 175-179.
    [80] Ik Soo Kang, Jeong Suk Kim, Yong Wie Seo. Cutting force model considering tool edge geometry for micro end milling process[J]. Journal of Mechanical Science and Technology, 2008, 22(2): 293-299.
    [81] S.G.Kapoor, R.E.Devor, H.J.Fu.A. Mechanistic Model for the Prediction of the Force System in Face Milling Operations[J]. Journal of Engineering for Industry, 1984, 106(2): 93-101.
    [82] B. Ghahramani, Z. Y. Wang, C. Sahay, K. P. Rajurkar. Analysis of Initial Contact and Tool Fracture in the Milling Process[J]. Machining Science and Technology, 1999, 3(1): 9-23.
    [83]马万太,林志航,陈康宁.刚性的球头铣刀切削力模型[J].机械科学与技术, 1998, 3(17): 422-424.
    [84] P. Lee, Y. Altintas. Prediction of Ball-end Milling Forces From Orthogonal Cutting Data[J]. Int. J. Mach. Tools & Manufact, 1996, 36(9): 1269-1290.
    [85] H. Q. Zheng et al. Theoretical modeling and simulation of cutting forces in face milling with cutter runout[J]. Int. J. Mach. Tools & Manufact, 1999, (39): 2003-2018.
    [86] Kuan-Ming Li, Y. Liang. Modeling of Cutting Temperature in Near Dry Machining[J]. Journal of Manufacturing Science and Engineering. 2006, 2 (128): 416-424.
    [87]徐超辉,阎兵.一种螺旋刃球头铣刀的高速加工铣削力模型[J].工具技术, 2007, (41): 34-38.
    [88]卞化梅.球头铣刀加工曲面的切削力解析建模[J].煤矿机械, 2007, 28(12): 61-63.
    [89] Yang Minyang, Park Heeduck. The prediction of cutting force in ball -end milling[J].International Journal of Machine Tools & Manufacture, 1991, 31(1): 45-54.
    [90]石莉,孙玉龙,贾春德.高速铣削力测量与研究分析[J].新技术新工艺, 2006, (10): 13-15.
    [91] A Lamikiz, L N Lopez de Lacalle, J A Sanchez, MA Salgado. Cutting force estimation in sculptured surface milling[J]. International Journal of Machine Tool Manufacture, 2004, (44): 1511-1526.
    [92] H.S.Kim, K.F.Ehmann. A Cutting Force Model for Face Milling Operations[J]. Int.J.Mach.Tools Manufact, 1993, 33(5): 651-673.
    [93] J.Heikkala. Determining of Cutting Force Components in Face Milling[J]. Journal of Materials Processing Technology, 1995: 1-8.
    [94]杜全兴,周汝忠,张继仪.不等齿距可转位端铣刀的试验研究[J].西南交通大学学报, 1988, (1): 71-79.
    [95]陈明,袁人炜,薛秉源,等.铝合金高速铣削中切削温度动态变化规律的试验研究[J].工具技术, 2000, 34(5): 7-10.
    [96] Z.J. Li, G.Y. Tan, Y.B. Wang, Y.M. Rong. A Rise in Temperature by Moving Planar Sources of Heat on the Rake Face for the Waved-edge Milling Inserts[J]. Key Engineering Materials, 2004, (259): 342-346.
    [97] J. Xu, J. H. He, E. Ma. Effect of milling temperature on mechanical alloying in the immiscible Cu-Ta system[J]. Metallurgical and Materials Transactions A, 1997, 28(7): 1569-1580.
    [98]全燕鸣,乐有树.采用自然热电偶法测量铣削温度[J].工具技术, 2007, (41): 80-82.
    [99]井原透,白坚高洋,臼井英治.断续切削における切れ刃欠损の解析的予测に关する研究[J].精密机械, 1982, 48(6): 71-77.
    [100] G. E. D'errico. A Systems theory approach to modelling of cutting temperature with experimental identification[J]. Int. J. Mach. Tools Manufact., 1997, 37(2): 149-158.
    [101]陶福春,云志新,梁庭柱,等.硬质合金刀具断续切削切出破损原因的探讨[J].哈尔滨理工大学学报, 1999, 4(2): 5-8.
    [102] M.K.Alam, R.L.Goetz, S.L.Semiain. Modeling of Thermal Stresses and Thermal Cracking During Heating of Large Lngots[J]. Journal ofManufacturing Science and Engineering, 1999, l(3):218-235.
    [103] V. I. Kozlov. Influence of relative oscillation of the cutting tool and blank on the tool wear[J]. Russian Engineering Research, 2008, 28(4): 370-374.
    [104] CheolWon Song, Hideki Aoyama. Development of CAM system to Estimate Tool Wear of ball-end-milling[M]. Springer London, 2008: 409-412.
    [105] Yong Huang, Steven Y. Liang. Modeling of Cutting Forces Under Hard Turning Conditions Considering Tool Wear Effect. Journal of Manufacturing Science and Engineering[J]. 2005, 2 (127): 262-270.
    [106] M.Kronenberg. Initial Contact of Milling Cutter and Work-piece[C].MACHINERY, 1945:149-156.
    [107] M.Kronenberg. Analysis of Initial contact of Milling Cutter and Work in Relation to Tool Life[C]. ASME, 1946: 217-228.
    [108] Opitz H, Beckhaus H. Influence of Initial Contact on Tool Life When Face Milling High Strength Materials[C]. CIRP, 1970, 30(2): 50-62.
    [109] S. S. Cho, K. Komvopoulos. Wear Mechanisms of Multi-Layer Coated Cemented Carbide Cutting Tools[J]. Journal of Tribology. 1997, 1(119): 8-17.
    [110]竹山秀彦,山田皓一.炭素钢S50Cの超硬正面フィス削リ[M].精密机械, 1981, 26(11): 51-60.
    [111]竹山,山田.合金钢SNCM8 (热处理)の超硬正面フィス削リ[M].精密机械, 1983, 29(6): 83-102.
    [112]竹山,山田.オ一ステナィナト不锈钢(SUS27)の超硬正面フィス削リ[M].精密机械, 1982, 30(2): 65-90.
    [113] T. Radhakrishnan, Uday Nandan. Milling force prediction using regression and neural networks[J]. Journal of Intelligent Manufacturing, 2005, 16(1): 93-102.
    [114] W.S. Yun, D.W. Cho. An Improved Method for the Determination of 3D Cutting Force Coefficients and Runout Parameters in End Milling[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(12): 851-858.
    [115]蒲俊,吉家锋,伊良忠. MATLAB6.0数学手册[M].上海:浦东电子出版社, 2002: 76-84.
    [116]洪庆章,刘清吉,郭嘉源. ANSYS7.0教学范例[M].北京:中国铁道出版社, 2003: 7-24.
    [117]陈明,袁人炜,凡孝勇,等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报, 2002, 38(7): 76-79.
    [118]李运通,胡江碧.模糊评判的数据模型及其参数估计[J].北京工业大学学报, 2001, 27(1): 112-115.
    [119]刘永强,陈璐,黄寅浩.模糊综合评判法在施工方案评价中的应用[J].水运工程, 2002, 343(8): 8-11.
    [120]高丹,王英刚,崔文.模糊综合法在城市环境质量评价中的应用[J].有色矿冶, 2002, 18(4): 46-49.
    [121] R. A. Khrunyk. Contact Fatigue of Carburized Steels under Impact or Impact-Abrasive Loading[J]. Materials Science, 2000, 36(6): 916-921.
    [122]刘献礼,陈波,孟安.具有温度补偿的自然热电偶法测量切削温度的原理及计算方法[J].工具技术, 1998, 32(10): 36-38.
    [123]宋龙,田红兵,詹天军. K型热电偶数字转换器MAX6675及其在铝液液位温度测量仪中的应用[J].甘肃科技, 2004, 20(6): 25-28.
    [124]盛义平,孙蓟泉,路义平.传热学[M].哈尔滨:东北林业大学出版社, 1995: 12-30.
    [125]侯镇冰,何绍杰,李恕先.固体热传导[M].上海:上海科学技术出版社, 1984: 67-75.
    [126]孙宝军,谭光宇,吴明阳,等.波形刃铣刀片温度场和应力场的耦合分析[J].哈尔滨理工大学学报, 2006, 11(1): 150-153.
    [127]孙全颖,赖一楠,白顺清.机械优化设计[M].哈尔滨:哈尔滨工业大学出版社, 2007: 47-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700