镍基高温合金高速切削刀具磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍基高温合金具有较高的高温强度、塑性、耐腐蚀性和良好的工艺性,广泛地应用于制造航空发动机、各类燃气轮机热端部件;同时它也是最难加工的材料之一,加工时切削温度高,加工硬化严重,刀具磨损严重,生产效率低。为实现镍基高温合金的高速高效切削,本文在国家科技支撑计划(2008BAF32B09)等项目的资助下,以镍基高温合金的高速切削过程为主要研究对象,以刀具磨损机理研究为主线,采用理论分析、数值模拟和加工试验相结合的方法,重点研究了影响刀具磨损的诸多因素和切削机理。主要研究工作如下:
     1、以传热理论和能量法为基础,设计了基于量热法和温度补偿技术的高速铣削切削热试验方法。该方法辅以热量损失补偿技术,精确计算了高速铣削时的切削热及其分配。基于该方法,研究了陶瓷刀具高速切削镍基高温合金时的切削温度、切削热及其分配,并分析了切削速度、刀具磨损等对切削功率、切削温度、切削热量分配等的影响。研究分析了镍基高温合金切削热分配与碳钢切削热分配的差异,及其对切削温度和刀具磨损的影响。通过有限元仿真模拟了二维正交切削的温度场分布,通过解析法计算出了切削热在切屑、刀具和工件的分配,并与试验结果进行了对比。
     2、研究了硬质合金刀具、陶瓷刀具、PCBN刀具等在不同条件下高速切削镍基高温合金时的刀具耐用度和刀具磨损情况,分析了刀具材料、切削条件、工件材料等对刀具耐用度的影响,并通过扫描电镜、能谱仪等对刀具的磨损形态进行了观测与分析,探讨高速切削镍基高温合金时刀具的磨损机理,并提出了基于切削力的刀具磨损监测方法。
     3、基于对高速切削镍基高温合金时的切屑形貌和切屑变形机理分析,研究切屑毛边冲击对刀具沟槽磨损产生的影响。建立了切屑毛边对刀具沟槽磨损部位的冲击模型,测量了沟槽磨损的实际位置,计算了切屑毛边的冲击压强和冲击频率,揭示了刀具的沟槽磨损机理主要是由切屑毛边和切削毛刺的冲击造成的。
     4、通过陶瓷材料的冲击疲劳特性和切削毛刺、切屑毛边对刀具沟槽磨损部位的冲击分析,建立了锯齿状切屑毛边和侧向切削毛刺高速高温高频连续冲击的沟槽磨损模型。基于该模型,提出沟槽磨损的主要原因是由于侧向切削毛刺和锯齿状切屑毛边的冲击作用所造成的刀具疲劳损伤。同时,通过切削毛刺单独冲击试验,验证了切削毛刺的连续冲击可以产生沟槽磨损。通过自行设计的去毛刺试验台,进行了去毛刺切削试验,验证了沟槽磨损模型的正确性,并提出了在切削加工中抑制沟槽磨损的方法。
Nickel-based superalloy is widely used as aircraft engine parts, chemical processing, pressure vessels, steam turbine power plants etc. Its properties such as creep and corrosion resistance, as well as the abilities to maintain high strength-to-weight ratio, are vital for the economic exploitation of aerospace engines. But due to peculiar characteristics such as lower thermal conductivity,work hardening, presence of abrasive carbide particles,hardness, affinity to react with tool material etc makes it difficult to machine. In order to realize high speed and high efficient cutting of nickel-based superalloy, the tool wear mechanism on the cutting process is studied emphasizedly. Theoretical analysis, numerical simulation and experimental verification are applied in this research. The major research works are included as follows:
     1.Based on heat transfer theory and energy method, calorimetric method and temperature compensation were designed based on high-speed milling cutting heat test. The temperature variations of the water and the surroundings during the closed high-speed milling were then measured, and the cutting heat in the chip was calculated and compensated. The cutting temperature, cutting heat, cutting heat in the chip were calculated, and the effect of cutting speed,feed rate and tool wear on the power of chip and the cutting force,cutting heat distribution and the cutting temperature etc were studied. The cutting heat distribution of nickel-based superalloy was compared to carbon steel. The temperature distribution of in orthogonal cutting was simulated by FEM simulation. Based on the FEM simulation and the analytical method, the heat distribution in chip,workpiece and tool in different cutting speeds was investigated. The result of FEM simulation and analytical method accorded with the experimental results.
     2. The tool life and tool wear mechanism of carbide tools, ceramic tools and PCBN during high speed cutting nickel-based superalloy were studied. The effect of tool material, cutting conditions, workpiece material etc on tool life were investigated, and the empirical formula of tool life on high speed turning and milling GH4169 were established. The tool wear morphology and wear mechanism were studied by SEM, EDS and x-ray diffraction analysis on the tool rake face, flank face,chip and notch wear location. A method was proposed to monitor tool wear based on the cutting force.
     3.The chip morphology and chip deformation mechanism of high speed cutting nickel-based superalloy were studied. A cantilever chip edge shock model was established to calculate the impact force, impact pressure and impact frequency of chip edge on tool edge. Their effect on notch wear formation was studied. The measurement of the actual position of notch wear proved that only serrated chip edge and cutting burr can effect the notch wear position.
     4. Based on the above analysis and experimental basis, the impact fatigue characteristics of ceramic materials was analyzed and the temperature pulse calculation in the notch wear location was calculated. On the basis of theoretical analyses and calculations of high speed continuous impact force and tool notch surface temperature acted upon by burr and serrated chip edge, a notch wear model of low stress value and temperature impact fatigue was established. Saw-tooth-shaped burr and fin-shaped chip edge continuously impact the flank face and rake face at high speed and high frequency, which results in a V-shaped notch wear. The role of bonding is to change the direction of the impact stress, and accelerate the micro-crack initiating and propagating. The impact test of separate cutting burr was carried to investigate whether side cutting burr could create notch. A new cutting test-bed was devised to deburr and a lot of experiments were done in deburring cutting and normal cutting. The results of the experiments proved the correctness of the notch wear model. The method to suppress notch wear was proposed too.
引文
[1]艾兴等编著.高速切削加工技术.北京:国防工业出版社.2003.10
    [2]李企芳主编.难加工材料的加工技术.北京:科学技术出版社.1992
    [3]列兹尼科夫等主编.高强度钢高温合金和钛合金的切削加工.北京:机械工业出版社. 1980
    [4] (美)西姆斯著,赵杰译.高温合金.大连:大连理工大学出版社.1991
    [5]朱日彰,卢亚轩主编.耐热钢和高温合金.北京:化工工业出版社.1996
    [6]朱日彰,何业东.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社.1995
    [7]董建新. Inconel 718高温合金的发展.兵器材料科学与工程. 1996,19(2): 46~50
    [8]王志刚.难加工材料的高速切削:[学位论文].南京:南京航空航天大学. 2001
    [9]刘战强,艾兴.高速切削刀具磨损寿命的研究.工具技术. 2001,35(2):3~7
    [10] Tundermann J H. Nickel-Based Alloy Sheet Alloys Used in Aerospace Applications. Acta Metallurgica Sinica (English letters).1996,9(6) :423~432
    [11]宋志伟.高硬度镍基高温合金Inconel 718的切削加工.工具技术. 2000,3(9):23~25
    [12]胡华南,徐大源等.高温合金切削加工现状与展望.安徽工学院学报.1990,9(4):47~54
    [13]刘战强,王兆辉,刘逢时.先进切削加工技术综述.工具技术.2003,37(5):3~7
    [14]吴玉华主编.金属切削加工技术.北京:机械工业出版社,1998.10
    [15]刘战强.高速切削技术的研究与应用.山东大学.博士后出站报告.2001
    [16] Slavko D, Borivoj S, etal. Wear mechanisms of cutting tools in high-speed cutting processes. Wear.2001,250 (1):349~356
    [17]朱有为.高速切削技术的应用分析.长沙大学学报.2003,17(4):74~78
    [18]席俊杰,徐颖.高速切削技术的发展及应用.制造业自动化.2005(12):26~30
    [19] Kahles J F, Field M, Harvey S M. High speed machining possibilities and needs. Annals of the CIRP. l978, 27(2):511~558
    [20]艾兴,刘战强,黄传真等.高速切削综合技术.航空制造技术.2002 (3):20~23
    [21]张伯霖,黄晓明,李志英.高速加工中心及其应用.机电工程技术.2001,30(5):11~14
    [22]满忠雷.基于绿色制造的钛合金高速铣削技术研究:[学位论文].南京:南京航空航天大学. 2003
    [23]Dominguez H,Alvarez R, etal. Development of a high speed machining CNC, Proceedings of the 2001 IEEE International Conference on Control Applications, 2002:244~249
    [24]Balkrishna R, Shin Y C. Analysis on high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutter. Machine Tools & Manufacture. 2001, 41(1):1763~1781
    [25] Schulz H, Moriwaki T. High Speed Machining. Annals of the CIRP. 1992, 41(2): 637~642
    [26]张伯霖主编.高速切削技术及应用.北京:机械工业出版社. 2002
    [27]李鹏南,胡忠举等.超高速铣削应用的关键技术.机床与液压.2008,36(5): 268~271
    [28]张伯霖,谢影明,肖曙红.超高速切削的原理与应用.中国机械工程.1995(6):l4~17
    [29] Toh C K. Cutter path strategies in high speed rough milling of hardened steel. Materials and Design.2006,27(2):107~114
    [30]Dai G L,Jung D S, etal. Design and Manfacture of Composite High Speed Machine Tool Structures. Composites Science and Technology. 2004(640):1523~1530
    [31]周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术.机床与液压. 2000(6):53~ 56
    [32]张伯霖,夏红梅,黄晓明.高速主轴设计制造中若干问题的探讨.制造技术与机床.2001(7):12~14.
    [33]梁锡昌等.超高速铣削的理论研究.机械工程学报. 2001,37 (3):102~109
    [34] Ashley S. High speed machining goes main stream. Mechanical Engineering.1995(5):56~61
    [35]陈明主编.机械制造技术.北京:北京航空航天大学出版社.2001.7
    [36]陈明,袁人炜等.推动我国高速切削工艺发展若干问题的探讨.中国机械工程. 1999(10):1296~1299
    [37]冶军主编.美国镍基高温合金.北京:科学出版社.1978
    [38]颜鸣皋.中国航空材料手册(第二版).第二卷,高温合金.北京:中国标准出版社.2002
    [39]荀志锋. K424高温合金切削性能试验研究:[学位论文].大连:大连理工大学. 2003
    [40]《航空制造工程手册》总编委会主编.航空制造工程手册.金属材料切削加工. 1994
    [41]Choudhury I A, El-Baradie M A. Machinability of nickel-base super alloys: a general review. Journal of Materials Processing Technology. 1998(77): 278~284
    [42] Alauddin M, Mazid M A, etal. Cutting forces in the end milling of Inconel 718. Materials Processing Technology. 1998 (77) :153~159
    [43] Ezugwu E O, Wang Z M, Machado A R. The machinability of nickel-based alloys: a review. Journal of Materials Processing Technology.1999(86):1~16
    [44] Smith S, Tlusty J. Current trends in high-speed machining. Transactions of the ASME. Journal of Manufacturing Science and Engineering. 1997(119): 664~666
    [45] Su Y, He N, etal. An experimental investigation of effects of cooling/ lubrication conditionson tool wear in high-speed end milling of Ti-6Al-4V. Wear. 2006(01):1~7
    [46]何宁.高速切削应用技术.金属加工:冷加工.2009(22): 25~28
    [47]韩荣第,于启勋.难加工材料切削加工.北京:机械工业出版社.1996
    [48] Warburton P. Problems of Machining Nickel-Based Alloys. Iron and Steel Institute. 1967:151-160.
    [49]Thomas C, Katsuhiro M et al. Metal Machining Theory and Applications. London: British Library Cataloguing in Publication Data. 2000
    [50]Salomon C J. Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools. German Patent.1931(04):523~594.
    [51]Longbottom J M, Lanham J D,A review of research related to Salomon’s hypothesis on cutting speeds and temperatures,Machine Tools & Manufacture,2006(466):1740~1747
    [52] Altin A, Nalbant M. The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Materials and Design. 2006(28): 1~5
    [53] Elbestawi M A, El-Wardany T I. Performance of whisker-reinforced ceramic tools in milling nickel-based alloy.Annals of CIRP. 1993,42 (1): 99~102.
    [54] Coelho R T, Silva L R. Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718 at high speeds. Journal of Materials Processing Technology. 2004(148):147~153
    [55] Lopez L N, Perez J. Advanced cutting conditions for the milling of aeronautical alloys. Journal of Materials Processing Technology. 2000(100):1~11.
    [56] Ezugwu E O, Tang S H. Surface abuse when machining cast iron (G-17) and nickel-base superalloy (Inconel 718) with ceramic tools. Journal of Materials Processing Technology. 1995 (55) :63~69.
    [57] Kitagawa T, Kubo A. Temperature and wear of cutting tools in high speed machining of Inconel and Ti-6Al-6V-2Sn. Wear. 1997 (202):142~148.
    [58] El-Wardany T I, Mohammed E, Elbestawi M A. Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials, International Journal of Machine Tools and Manufacture. 1996, 36(5):611~634.
    [59] Deng J X, Liu L L ,etal.Failure mechanisms of TiB2 particle and SiC whisker reinforced A12O3 ceramic cutting tools when machining nickel-based alloys. International Journal of Machine Tools&Manufacture. 2005(45):1393~1401
    [60] Zhao J, Deng J X,et al. Failure mechanisms of a whisker-reinforced ceramic tool when machining nickel-based alloys. Wear. 1997(208):220~225
    [61]黄传真,艾兴.加工镍基高温合金时的切削力和切削温度的特点.工具技术.1995(29):35~37
    [62]Thakur D G, Ramamoorthy B, Vijayaraghavan L. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials and Design. 2009 (30): 1718~1725
    [63] Ng E G, Lee D W,etal. High Speed Ball Nose End milling of Inconel718. CIRP Annals- Manufacturing Technology. 2001,49(1):41~46
    [64] Gatto A, Iuliano L. Advanced coated ceramic tools for machining superalloys. International Journal of Machine Tools and Manufacture. 1997,37 (5): 591~605
    [65] Adrian S, Richard C. Tool life when high speed ball nose end milling Inconel 718. Journal of Materials Processing Technology. 2001(118):29~35
    [66] Sharman A, Dewes R C, Aspinwall D K. Tool life when high speed ball nose end milling Inconel 718. Materials Processing Technology. 1997(63):199~204
    [67] Derrien S, Vigneau J. High speed machining of difficult to machine alloys. Proceedings of the 1st French and German Conference on High Speed Machining, edited by Molinan A, Schulz H. University of Metz-France.1997
    [68] Schlauer C, Peng R L. Residual stresses in a nickel-based superalloy introduced by turning. Materials Science Forμm. 2002 (404~407) :173~178.
    [69] Taricco F. Effect of machining and shot peening on the residual stresses of superalloy turbine discs. Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition. Houston. 1995(5~8):1~6.
    [70] Li L, He N. High speed cutting of Inconel 718 with coated carbide and ceramic inserts. Journal of Materials Processing Technology. 2002 (129): 127~130.
    [71] Narutaki N, Yamane Y. High speed machining of Inconel 718 with ceramic tools. Annals of CIRP .1993,42 (1) :103~106.
    [72] El-Wardany T I, Elbestawi M A. High speed machining of nickel based superalloys with silicon carbide whisker reinforced ceramics. paper MR 95-160 IN, First International Machining and Grinding Conference. September 1995, Dearborn, USA.
    [73] Ducros C, Benevent V. Characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools. Surface and Coatings Technology. 2003 (163): 681~688.
    [74] Itakura K, Kuroda M. Wear mechanism of coated cemented carbide tool in coated tool in cutting of Inconel 718 superheat resisting alloy. International Journal of Japanese Society for Precision Engineering . 1999,33 (4) :326~333.
    [75] Liao Y S, Shiue R H. Carbide tool wear mechanism in turning of Inconel 718 superalloy. Wear. 1996(193):16~24.
    [76] Prengel H G, Jindal P C. A new class of high performance PVD coatings for carbide cutting tools, Surface and Coatings Technology. 2001(139):25~34.
    [77] Rahman M, Seah W. The machinability of Inconel 718. Journal of Materials ProcessingTechnology. 1997 (63): 199~204.
    [78] Jinal P C, Santhanam A T,etal. Performance of PVD TiN, TiCN and TiAlN coated cemented carbide tools in turning. International Journal of Refractory Metals and Hard Materials.1999(17): 163~170.
    [79]Luca S, Marria G F. Properties and performances of innovative coated tools for turning inconel. International Journal of Machine Tools&Manufacture. 2008(18):815~823
    [80] Ezugwu E O, Bonney J. Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools. Journal of Materials Processing Technology. 2004(162-163): 609~614
    [81]Ezugwu E O, Fadare D A. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools&Manufacture. 2005(45):1375~ 1385
    [82]Wang Z Y, Rajurkar K P. Cryogenic machining of hard-to-cut materials. Wear. 2000(239):168~175.
    [83]刘有荣,刘家浚,朱宝亮.陶瓷刀具切削区温度场的计算机模拟.摩擦学学报.1997,17(1): 81~88
    [84] Palmai Z. Cutting temperatures in intermittent cutting. Perio Polytechnica Mechanica 31(Part 1).1987:61~78
    [85] Sullivan D O, Cotterell M. Workpiece temperature measurement machining. Journal of Engineering in Medicine. 2002(16):135~139
    [86] Ming C,Sun F H,Wang L,et al.Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling. Journal of Materials Processing Technology. 2003(138):468~471
    [87] Abukhshim N A, PMativenga T, Sheikh M A. Investigation of heat partition in high speed turning of high strength alloy steel. International Journal of Machine Tools&Manufacture . 2005 (45):1687~1695
    [88] Tugrul O,Taylan A. Process simulation using finite element method—prediction of cutting forces,tool stresses and temperatures in high-speed flat end milling. International Journal of Machine Tools&Manufacture. 2000(40):713~738
    [89] Ezugwu E O, Lai C J. Failure modes and wear mechanisms of M35 high-speed steel drills when machining inconel 901. Journal of Materials Processing Technology. 1995 (49): 295~312
    [90]平尾正利,寺岛淳雄,朱浩允,等.高速切削にぉけ切削热る举动のに关する研究.精密工学会志.1998,64(7):1067~1071
    [91]全燕鸣,何振威.碳钢高速车削中基于量热法的切削热分配.华南理工大学学报.2006,34(11):1~4
    [92]全燕鸣,何振威.车削碳钢中切削热的分配.中国机械工程. 2006,17(20):2155~2158
    [93]何振威,全燕鸣,乐有树.车削碳钢中切削热的分配.工具技术. 2006,40(3):60~63
    [94]Shaw M C. Metal Cutting PrinciplesNew York: Oxford University Press. 1984.
    [95]杰姆斯·苏赛克.传热学.北京:人民教育出版社. 1980-1982
    [96] Li L, Chang H, Wang M. Temperature Measurement in High Speed Milling Ti6Al4V. Key Engineering Marials . 2004 (259~260):804~808
    [97]周泽华.金属切削理论.北京:机械工业出版社. 1992.
    [98]徐鸿钧,童宪超.刀具工件材料热电特性动态定度方法的研究.南京航空学院科技报告.1982
    [99] Stephenson D A. Tool-work thermocouple temperature measurements—theory and implementation issues. Trans. ASME, J. Eng. Ind. 1993, Vol. 115: 432~437
    [100]赵威.基于绿色切削的钛合金高速切削机理研究:[学位论文].南京:南京航空航天大学. 2006
    [101]沈维善,张孙元.热电偶分度手册.北京:机械工业部仪器仪表工业局标准化研究室出版.1983
    [102]张幼桢.金属切削原理及工具.航空高等院校统编教材.1989
    [103]耿国盛.钛合金高速铣削技术的基础研究:[学位论文].南京:南京航空航天大学. 2006
    [104]陆爱华.高温合金高速铣削温度的研究:[学位论文].南京:南京航空航天大学. 2008
    [105] Xu J H, Geng G S. Experimental Study on the Milling of a Ti Beta 21S. Journal of Materials Processing Technology. 2002(129):190-192
    [106] Nasser S N Guo W G, et al. Dynamic response of conventional and hot isostatically pressed Ti6Al4V alloys: experiments and modeling. Mechanics of Materials. 2001 (33):425~439
    [107]万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究:[学位论文].济南:山东大学. 2006
    [108] Bathia S M, Pandey P C,et al. The Thermal Condition of the Tool Cutting Edge in Intermittent Cutting. Wear. 1986(61):21~30
    [109] Plamai Z. Cutting Temperature in Intermittent Cutting. International Journal of Machine Tools&Manufacture. 1987, 27 (2):261~274
    [110] Smart E F, Trent E M. Temperature Distribution in Tools Used for Cutting Iron, Titanium and Nickel. Int. J. Prod. Res. 1975, 13 (3):265~290
    [111] Chao B T, Li H L, Trigger K J. An Experimental Investigation of Temperature Distribution at Tool-flank Surface. J. Eng. Ind. 1961:496~503
    [112]Lenz E. Temperatures in Metal Cutting. Proc. Int. Conf. Manuf. Technol. 1967(9): 553~567.
    [113] Reichenbach G S. Experimental Measurement of Metal Cutting Temperature Distributions. Trans. ASME. 1958(80):525~546
    [114] Xu J H, Ren K Q. Cutting Forces in High-speed Milling of a Close Alpha Titanium Alloy. Key Engineering Materials. 2004(259~260): 451~455
    [115] Dewes R C, Ng E, Chua K S, et al. Temperature Measurement when High Speed Machining Hardened Mouldl/Die Steel. Journal of Material Processing Technology. 1999 (92~93) 293~301
    [116] Leznaski P, Shaw M C. Tool Face Temperatures in High Speed Milling. Journal of Engineering for industry. 1990(5):112~133
    [117] McGee F J. High speed machining - study: methods for aluminium workpieces. Am. achinist (1979):121~126.
    [118]洛拉得泽.T H著,艾兴等译.切削刀具的强度和耐磨性.北京:机械工业出版社.1988
    [119]Ueda T, Tanaka H, et al. Measurement of Grinding Temperature of Active Grains Using Infrared Radiation Pyrometer with Optical Fiber. Annals of the CIRP. 1993,42(1):405~408
    [120]Takashi U, Masahiko S , et al.The Temperature of a Single Crystal Diamond Tool in Turning. Annals of the CIRP. 1998(47):41~44
    [121] Ueda T, Hosokawa A, et al. Temerperature on Flank Face of Cutting Tool in High Speed Milling. Annals of the CIRP. 2001, 50(1):37~40
    [122]杰姆斯·苏赛克.传热学.北京:人民教育出版社.1980~1982
    [123]Loewen E G, Shaw M C. On the Analisis of Cutting—tool Temperatures.Trans of the ASME. 1954(2):217~231.
    [124]何宁,黄科阳,李一民.生产现场数据分析与刀具耐用度模型的建立.数据采集与处理. 1998,13(4):362~366
    [125]严兴春,肖诗纲.一种新的刀具耐用度快速试验法.重庆大学学报. 1990,13(5):15~21
    [126]张茂,邱亚玲.刀具耐用度的一种快速试验方法.现代机械. 1997(3):40~42
    [127]高允彦主编.正交及回归试验设计方法.北京:冶金工业出版社. 1988
    [128]牛长山,徐通模主编.试验设计与数据处理.西安:西安交通大学出版社. 1988
    [129]吴贵生主编.试验设计与数据处理.北京:冶金工业出版社. 1997
    [130]邱宝贵.高速切削镍基高温合金的试验研究:[学位论文].南京:南京航空航天大学.2006
    [131]杜国臣.PCBN刀具及其在切削加工中的应用.工具技术.2004(12):86~88
    [132]邓建新,艾兴.陶瓷刀具切削加工时的磨损与润滑.工具技术. 2001,35(5): 3~6
    [133]Sbhattacharyya K, Jawaid A, et al. Wear mechanisms of Syalon ceramic tools when machining nickel-based materials. Metals Technology. 1983(10):482~489
    [134]苏宇.新型低温MQL装置的研制与难加工材料低温高速切削机理研究:[学位论文].南京:南京航空航天大学. 2007
    [135] Su Y, He N, Li L,et al. Influence of cold nitrogen gas and oil mist when machining nickel-baseK424 alloy with ceramic cutting tools. Transactions of Nanjing University of Aeronautics&Astronautics. 2007,24(2):118~124.
    [136]刘战强,艾兴.高速切削刀具磨损表面形态研究.摩擦学学报. 2002, 22 (6): 468~471
    [137] Ezugwu E O, Bonney J, Yamane Y. An Overview of the Machinability of Aeroengine Alloys. Journal of Materials Processing Technology. 2003(134):233~253
    [138]郭旭红,曾庭卫等.PCBN刀具干切削淬硬轴承钢时磨损机理的研究.工具技术. 2004,38(6):28~31
    [139]何宁,许洪昌等.难加工材料高速切削.南京航空航天大学学报. 1996,28(4): 230~234
    [140]张幼桢主编.金属切削理论.北京:航空工业出版社. 1988
    [141]邓建新;艾兴等.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究.机械工程学报. 2002(04):40~45
    [142] Wang Z G, Rahman M , Wong Y S. Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys. Wear. 2005(258): 752~758
    [143]胜村祐次,高桥俊行.切削高硬度钢的Al2O3-TiC陶瓷刀具.工具技术.1999(2):7~10
    [144]何宁.难加工材料高效切削理论和应用研究:[学位论文].南京:南京航空航天大学. 1996
    [145]Xiao M H,He N, et al. Wear Mechanisms of Ceramic Inserts in Machining Nickel-based Superalloy . Journal of Southwest Jiaotong University(English Edition).2010(1):59~64
    [146] Casto S,王士德.陶瓷刀具的磨损机理.国外材料科学与工程. 1995(3):44~49
    [147]Rice R W. Micro mechanics of micro structural aspects of ceramic wear. 10th Annual Conference on Advanced Ceramic. Florida,1986
    [148]Brandt G. Wear mechanisms of ceramic cutting tools when machining ferrous and non ferrous alloys. Journal of European Ceramic Society. 1990(6)
    [149]邓建新,艾兴. Al2O3/TiB2/SiCw陶瓷刀具加工镍基高温合金时的磨损机理研究.硅酸盐学报. 1997(4):192~195
    [150] Bhattacharyya S K, Jawaid A, et al. Wear Mechanisms of Sialon Ceramic Tools when Machining Nickel-based Materials. Metals Technolgy.Vol. 10, DeC. 1983
    [151] Casto S L, Valvo E L, Lucchini E. Ceramic Materials Wear Mechanisms when Cutting Nickel-based Alloys. Wear. 1999( 225~229):227~233
    [152]Rabinowicz E. Impact wear of ductile metals. Proceedings of. the JSLE International Tribology Conference, II (1985) :263~268
    [153] Rice S L. Formation of subsurface zones in impact wear. ASLE Transactions.(1981).2
    [154]薛峰. AZ91D镁合金在干态及去离子水介质下的冲击磨损特性研究:[学位论文].成都:西南交通大学. 2008
    [155] Choudhury S K, Eswar K, Ghosh A.A scheme of adaptive turning operations. Journal of Materials Processing Technology. 1999,87 (1~3) :119~127
    [156]宋书善.基于切削参数的端面加工切削力模型.常州信息职业技术学院学报. 2005,4(2):25~27
    [157] Molinari A, Musquar C, Sutter G. Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. International Journal of Plasticity. 2002, 18(4): 443~459
    [158]肖茂华,何宁,李亮等.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究.中国机械工程. 2008, 19 (10):1188~1192
    [159]Lee M, Flom D G. Metallurgical Aspects of the Chip Formation Process at Very High Cutting Speed. Proc. of 9th NAMRC. 1981
    [160] Shaw M C, Thurman A L , et al. A plasticity Problem Involving Plane Strain and Plane Stress Simultaneously: groove Formation in the Machining if High~Temperature Alloys. Trans. ASME, Ser.B, 1966
    [161]赵军,艾兴等.加工镍基高温合金时晶须增韧陶瓷刀具的寿命及损坏机理研究.中国高校金切研究会第五届年会论文集. 1995.11
    [162] Tan M T. Groove Wear of Tools in NC Turning of Pure Nickel, Annals of the CIRP. 1986,35(1)
    [163]金宗哲,杨宏.陶瓷的高温疲劳失效破坏准则.硅酸盐学报.1992,20(5):431~435
    [164]周洋,詹国栋.陶瓷材料疲劳特性的研究进展.机械强度.1996,16(2):58~62
    [165]徐根应,刘宁等.环条件对金属陶瓷热冲击疲劳的影响.硬质合金. 1998,15(1):12~15
    [166]甘莉,曾庆梅.40%Ni~Ti(C,N)金属陶瓷热冲击疲劳的研究.热加工工艺.1999( 4):43~45
    [167]邓增杰等编著.工程材料的断裂与疲劳.北京:机械工业出版社.1995
    [168]王贵成.金属切削毛刺分类体系的研究及其应用.中国机械工程.1996,6(6):40~42
    [169]樊曙天.精密加工中切削参数对毛刺尺寸的影响.机械设计与制造工程.1999,28(5):46~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700