热管铣刀设计制备及其散热性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代高生产率工艺往往通过提高切削速度和进给量来增加材料的去除率,其切削过热现象尤为突出,加速切削热的消散一直是急需解决的重要课题。浇注冷却是金属切削加工的主要冷却方式,其切削液的补偿、调度、后处理及环境成本很高。近年,对先进冷却技术的研究取得了许多成果,诸如绿色切削液、准干切削和硬切削。准干切削技术仍需要施加外来的流动介质实现对切削区域的冷却,并且存在自身缺陷。不使用任何介质,基于高性能的机床和刀具来实现的硬切削技术应该是理想的切削方法,但是在机床技术和刀具技术还没有取得质的突破前,切削过热的问题仍然存在。
     通过刀具/刀柄散热是一种全新的冷却概念,近年国外对在刀具中嵌入高效导热元件——热管来加速散热的冷却方法进行了初步研究,结果显示这种冷却方法可以降低刀柄和刀头的温度,减少刀具的热膨胀量和磨损率。受铣刀难以直接测温和热管铣刀结构复杂等因素的制约,以往热管刀具的研究主要集中于车刀,对旋转类刀具(铣刀和磨削)的研究仅限于通过仿真技术和模拟方法来探索该类热管刀具的有效性,基于这样的现状本文设计、制作出热管立铣刀,对热管铣刀的散热问题进行了较深入的理论研究和技术探讨:
     (1)提出用热电势信号无线输出方式替代传统的有线式传输,实现对旋转刀具或工件的温度测量,传输过程不会产生附加电势。设计并制作出应用于高速旋转刀具测温的热电偶测温无线传输系统,基于热电势信号采集与发射模块集合结构优化模型和对Protel软件的二次开发,对系统结构进行了全面优化,使之能实现对高速旋转刀具多点温度的同步、准确和实时采集。基于使采集和发射模块尽量简化以利于旋转动平衡的思路,把一般由下位机硬件实现的滤波、放大功能由上位机软件处理,把信号并联处理的方式改为串联处理大大简化了下位机硬件电路。基于数据库和热电阻的参比端温度比较实现了对热电偶参比端温度的动态准确补偿;基于增量变化的人工智能滑动加权平均滤波法对具有温度剧变特征的高速旋转刀具温度信号实现了有效滤波。
     (2)建立了铣刀体三维非稳态温度场有限差分仿真模型,基于测温点i的温度函数T_(F,i)(t)与流入切削刃的热流载荷相关性,把铣削测温实验获得的温度函数T_i(t)与不同载荷的温度函数T_(F,i)(t)进行拟合,确定铣削测温实验切削过程流入铣刀体的热流密度,以该载荷进行三维非稳态温度场有限差分仿真,得到铣削实验工艺条件下的三维温度场。
     (3)考虑铣床主轴、刀柄结构的限制,设计出热管立铣刀的基本散热结构,基于铣刀三维温度场进行热管铣刀散热基本结构的优化。建立热管铣刀热阻的一维简化函数,得到热管铣刀的总热阻。通过系列基本结构的优化降低热管铣刀总热阻:采用内嵌铜底结构提高热管的吸热能力;铣刀内孔设计成台阶结构以防止热流从热管回流到铣刀;采用翅片散热器有效提高散热面积;采用涡轮风扇以提高散热器与空气的对流换热系数;在刀轴上开口并结合涡轮风扇把封闭在刀轴内的热量快速传导到大气。
     (4)对热管铣刀散热功能结构参数进行了分析,得出优化的主要结构参数包括:热管的参数(铣刀内孔壁与热管蒸发端外表面的接触长度l、热管蒸发端外表面与翅片内孔的接触长度l_1、热管表面光洁度Ra_g、热管蒸发端与铣刀内孔的配合间隙H_1、热管冷凝端与散热器内孔的配合间隙H_2);翅片的参数(翅片的直径r、翅片的厚度h_2、翅片的宽度h_1、翅片表面光洁度Ra_c);涡轮的参数(涡轮内外径差Δ r、涡轮内径与翅片之间间隙Δ r_1、涡轮扇片的偏角α、涡轮扇片的数量x、涡轮扇片的表面光洁度Rα w)。通过正交实验和理论分析,得到结构参数对热管铣刀散热能力影响的判断:热管的五个关键因素对散热能力影响,按显著程度由大到小为:l_1、H_1、l、H_2、 Ra;翅片四个关键参数对散热能力影响,按显著程度由大到小为: r、h_1和h_2、Ra_c;涡轮五个关键参数对散热能力影响,按显著程度由大到小为:α、 Δ r、x、Δ r_1、Rα_w。
     最后,通过铣削测温实验和温度场仿真,并结合切削区温度反求,发现相比普通铣刀,散热结构优化的热管铣刀能有效降低切削区的温度达50(℃)以上。
Increasing the material removal rate is usually by improving the cutting and feedingspeed in the modern high productivity process, but the cutting overheating phenomenon isparticularly prominent when using this cutting process, therefore, how to improve thedissipation speed of cutting heat becomes an important issue. Pouring cooling liquid is still amain cooling way when cutting metal, but processing cutting fluid is very expensive, andcutting fluid damages the environment seriously. In recent years, the researches on theadvanced cooling technology made a lot of achievements: green cutting fluid, dry cutting(which needs auxiliary equipment), and hard cutting (without using of any medium). Amongthese results, dry cutting technology has many defects that cannot be overcome. Hard cuttingtechnology should be the ideal cutting method, but unless machine and cutting-toolstechnology make a breakthrough, the cutting overheating problems still exist.
     Cooling cutting process through tool/tool-holder is a new concept. In recent years,researchers investigated this technology by inserting a heat pipe into cutter to improve coolingspeed. Results show that the method can decrease the temperature of handle and head ofcutter, reduce the amount of tool’s thermal expansion and wear rate. However, because thetemperature of the milling cutter is difficult to measure directly and the structure of heat pipemilling cutter is very complex, researches mostly focus on the heat pipe cutter and mainly usesimulation when study of rotating heat pipe cutter. Therefore, this thesis has studied therelevant theory on how to improve the cooling speed of heat pipe milling cutter. The mainconclusions are as follows:
     (1)The thermocouple wireless temperature measuring system is established to measurethe temperature of high speed rotating milling. In this system, thermal potential signals areconveyed to the static equipment via wireless module, the thermocouple temperature ofreference end can be accurately compensated, and the geometric structure of thermoelectricpotential signal acquisition and transmission module is optimized. The filtering techniqueused in the situation of large temperature gradient is established.The system is proved to beaccurate through experiments.
     (2) The three-dimensional simulation model of unsteady temperature field of millingcutter entity is established by using the finite difference method. The study finds that thetime-temperature function of temperature measuring point is related to the heat flow densityflowing into the cutter. In order to simulate the milling temperature field, heat flux is loadedinto the cutter entity through the welding DC power. By measuring the cutting zone temperature, a series of time-temperature function of milling cutter are obtained, withdifferent loaded heat flow density. Time-temperature curve obtained through cuttingtemperature measurement experiment are fitted with time-temperature curve obtained throughsimulation method. There is a curve that is the most closed with the time-temperature curvegetting from temperature measurement experiment, in the entire time-temperature curveobtained through simulation method. The simulation curve corresponds with the curve ofmilling temperature experiment. The cutting zone temperature can be got according of thethree-dimensional unsteady temperature field;
     (3)Based on the3D temperature field of milling cutter, the basic structure, which isused to transfer heat, of milling cutter had been optimized. The one-dimensional model ofmilling cutter Thermal resistance has been established. The thermal resistance has beenreduced through optimization the basic structure of milling cutter, and then the radiatingeffect will be increased. These optimization results are proved to be reasonable through aseries of experiments. The experimental results are as follows: The cooling effect can beobviously improved if the cutter head is embedded a copper bottom structure; Embeddingcopper bottom in milling cutter, the temperature of measuring point will be reduced6(℃),Compared with the through-hole structure; The heat dissipation capability of heat pipecutter can be improved, reaming a hole in the end of milling cutter; The temperature will bereduced more than3(℃), compared with no reaming milling cutter structure; The numbers ofthe ridge sheet structure are limited with the diameter of heat pipe, compared with the finstructure; The fin structure has better heat radiating effect than the sun flower ridge structure;The convective heat transfer coefficient will be increased because a strong wind will beformed on the surface of the radiator if a turbo fan is installed around the finned radiator oronly using a ridge structure radiator; Heat pipe cutter by the comprehensive optimization hasa better heat radiating performance than ordinary milling cutter; The temperature intemperature measurement point of heat pipe cutter reduce16(℃), the cutting zonetemperature reduce46(℃).
     (4)These parameters need to be optimized are determined after analyzing the heatdissipation structure of heat pipe cutter: the parameters of heat pipe is l、l_1、Ra_g、H_1、H_2;the parameters of fin is r、h_2、h_1、Ra_c;the parameters of turbine is Δ r、Δ r_1、α、 x、Rα w.The experimental results are consistent with the results of theoretical calculations: Fivekey factors of heat pipe influencing the cooling capacity, ranking from high to low according to the significant degree, isl_1、H_1、l、H_2、Ra.Their optimal values are50(mm),70(mm),0.4(um),0.02(mm),0.04(mm); Four key parameters of fin radiator is r, h_1, h_2andRac.Their optimal values are50(mm)、0.7(mm)、0.8(mm)、6.3(um);Four key parameters ofturbine is α、 Δr、 x、Δ r_1、Rα_w,Their optimal values are40°、50(mm)、12(pieces)and0(mm);Experimental results showed that surface roughness of turbine fan blad does notaffect t heat dissipation capability.
     Finally, comparing with common cutter, we founded that the temperature of heat pipecutter on cutting zone can reduce50(℃), after milling temperature measurement experimentand temperature field simulation experiment.
引文
[1] Balaji AK, Sreeram G, Jawahir IS, Lenz E. The effect of cutting tool thermal conductivityon tool–chip contact length and cyclic chip formation in machining with grooved tools.Annals CIRP48(1999):33-38
    [2]Trent, E.M.,1984. Metal Cutting,2nd Edition. Butterworths and Co.Ltd., London
    [3]Chung-Shin Chang. Prediction of the cutting temperatures of stainless steel with chamferedmain cutting edge tools. Journal of Materials Pr℃essing Technology190(2007)332–341
    [4]F. Kl℃k,G..Eisenbatter,Dry Cutting,Annals of CIRP,46(1997):519-526
    [5]V.S.Sharma, M. Dogra, N.M. Suri, Cooling techniques for improved productivity inturning, International Journal of Machine Tools&Manufacture49(2009)435-453
    [6]K.Weinert, I. Inasaki, J. W. Sutherland, T. Wakabayashi, Dry Machining and MinimumQuantity Lubrication, CIRP Annual Manufacturing Technology53(2)(2004)511-537
    [8] Liu Zhijun, Quan Yanming. A wireless system for cutting temperature measurement.Advanced Materials Research.188(2011):475-480
    [9]全燕鸣,刘志军.应用于旋转体多点温度测量的装置,实用新型,专利号:201120022943.6[P].2011.1.
    [10]陈战等,新型环保水基切削液的研制及应用[J],润滑与密封,2001,6:55-56
    [11]胡献国,HW-5型高水基金属加工合成切削液的研制[J],现代化工,1999,6:28-29
    [12]葛泉江等,保型合成切削液的研制及其作用机理分析[J],化学工程师,2000,2:12-22
    [13]张洪笙,IP6金属缓蚀剂及切削液[J],机械工人,2002,5:15
    [14]刘俊岩,水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究,博士学位论文,哈尔滨工业大学,2005
    [15]张伯霖,夏红梅,黄晓明.新世纪的干切削技术,制造技术与机床,2001,10:5-7。
    [16]马祖军,代颖.干切削加工及其措施,制造技术与机床,2001,1:41-43。
    [17]李新龙,何宁,李亮.绿色切削中的MQL技术.航空精密制造技术.2005,41(2):24-35.
    [18]张春燕,裴宏杰,张巍巍,王贵成,MQL加工技术的研究与进展,机械设计与制造2(2002)
    [19]F. Itoigawa, T.H.C. Childs, T. Nakamura, et al. Effects and mechanisms in minimalquantity lubrication machining of an aluminum alloy, Wear,2006,260(3):339-344
    [20]中村隆,松原十三生,系鱼川文広,等.环境を重视した微量油膜付水滴加工液の研究,1999年度日本精密工学会春季大会学术讲演会讲演论文集,东京,1999
    [21]A. Attanasio, M. Gelfi, C. Giardini, et al. Minimal quantity lubrication in turning: Effecton tool wear, Wear,2006,260(3):333-338
    [22]L.N. Lopez de Lacalle, C. Angulo, A. Lamikiz, et al. Experimental and numericalinvestigation of the effect of spray cutting fluids in high speed milling, Journal of MaterialsPr℃essing Technology,2006,172(1):11-15
    [23]A. Hassan, Z.Q. Yao. Minimum lubrication milling of titanium alloys, Materials ScienceForum,2004,471-472:87-91
    [24]Y. Kamata, T. Obikawa, J. Shinozuka. Analysis of mist flow in MQL cutting, KeyEngineering Materials,2004,257-258:339-344
    [25]H.A. Kishawy, M. Dumitrescu, E.G. Ng, et al. Effect of coolant strategy on toolperformance, chip morphology and surface quality during high-speed machining of A356aluminum alloy, International Journal of Machine Tools&Manufacture,2005,45(2):219-227
    [26]H. Hanyu, S. Kamiya, Y. Murakami, et al. Dry and semi-dry machining using finelycrystallized diamond coating cutting tools, Surface and Coatings Technology,2003,173-174:992-995
    [27]N.R. Dhar, M. Kamruzzaman, M. Ahmed. Effect of minimum quantity lubrication (MQL)on tool wear and surface roughness in turning AISI-4340steel, Journal of Materials Pr℃essing Technology,2006,172(2):299-304
    [28]N.R. Dhar, M.W. Islam, S. Islam, et al. The influence of minimum quantity of lubrication(MQL) on cutting temperature, chip and dimensional accuracy, Journal of Materials Pr℃essing Technology,2006,171(1):93-99
    [29]满忠雷.基于绿色制造的钛合金高速铣削技术研究,[博士学位论文],南京,南京航空航天大学,2003
    [30]王爱玲,魏源迁,祝锡晶,等.油膜水滴加工液的磨削性能,机械工程学报,2005,41(1):208-211
    [31]魏源迁,钱怡,王爱玲,等.微量油膜附水滴切削液的研究,中国机械工程,2004,15(4):295-296
    [32]魏源迁,钱怡,王爱玲,等.微量油膜附水滴磨削液的研究,中国机械工程,2004,15(8):675-678
    [33]F Itoigawa, THC Childs, T Nakamura, etal. Effects and mechanisms in minimal quantitylubrication machining of an aluminum alloy. Wear.260(2006):339-344
    [34]R Heinemann, S Hinduja, GBarrow, etal. Effect of MQL on the tool life of small twistdrills in deep2hole drilling. International Journal of Machine Tools&Manufacture,46(2006):1-6.
    [35]Hsieh C.C., Yao S.C. Evaporative Heat Transfer Characteristics of a Water Spray onMicro-Structured Silicon Surfaces [J]. International Journal of Heat and Mass Transfer,2006(49):962–974
    [36]Yao W., Zhang H.X., Miao J.Y. et al. Analysis and Design of a Spray Cooling ThermalControl System for Spacecraft High Power Density Components [J].AIAA,57th InternationalAstronautical Congress, IAC-06-C2,2006:5711-5714
    [37]Fabbri M., Jiang S.J., Dhir V.K. Comparative Study of Spray and Multiple Micro JetsCooling for High Power Density Electronic Applications [J].2003ASME IMECE,2003:1-9
    [38]姚伟,范含林.未来航天器高功率密度载荷的热控制技术[J].航天器工程,2005,Vol.14(3):21-25
    [39]安珍彩,雷树业,何玮菁等.雾化喷射下的波动液膜的电测量[J].工程热物理学报,2004,Vol.25:121-123
    [40]芦秋敏,雷树业.雾化喷射冷却的机理及模型研究[J].工程热物理学报.2005,26(5):817-819.
    [41]郑可可,雷树业,陈建平.无沸腾喷雾冷却中流量和喷头高度对换热性能的影响[J].工业加热,2002,(5):8-11
    [42]D.C. Chen, Y. Suzuki, K.Sakai, A study of turning operation by oil-water combined mistlubrication machining method, Key engineering Materials202-203(2001):47-52
    [43]陈德成,铃木康夫,加进茂,冷风切削加工对不锈钢加工表面的效果,机械工程学报4(1999):93-95
    [44]陈德成,铃木康夫,酒井克彦,复合喷雾加工法在切削加工过程中的冷却和润滑效果,中国机械工程,9(2000):1035~1038
    [45]刘存祥,胡荣生,切削区的喷雾冷却,工具技术,4(1996):2-4
    [46]X.P. Li, K.H.W. Seah. A pressured air jet approach to tool wear minimization in cutting ofmetal matrix composites, Wear,2003,255:1352-1358
    [47]D. Barnett-Ritcey, M.A. Elbestawi. Tool performance in high speed finish milling ofTi6Al4V, Pr℃eedings of IMECE2002ASME international mechanical engineeringcongress&exposition November
    [48]O. Cakir, M. Kiyak, E. Altan. Comparison of gases applications to wet and dry cuttings inturning, Journal of Materials Pr℃essing technology,2004:153-154;35-41
    [49]E.O. Ezugwu, R.B. Dasilva, J. Bonney, et al. The effect of argon-enriched environment inhigh-speed machining of titanium alloy, Tribology Transactions,2005(48):18-23
    [50张昌义,童明伟.干式、半干式和低温冷风切削加工技术,机械工人(冷加工),2003,9:34-35
    [51]Yasuo Yamane, Norihiko Narutaki, Katsura Hayashi. Suppression of tool wear by usingan insert gas in face milling, Journal of Materials Pr℃essing technology,1996,62(4):380-38
    [52]任家隆.切削中绿色射流冷却工艺的研究,中国机械工程,2000,11(7):738-740
    [53]任家隆,邱炎保,王波等.车削加工中射流冷却机理的探讨,华东船舶工业学院学报,1999,13(4):49-52
    [54]赵威.基于绿色切削的钛合金高速切削机理研究[博士学位论文],南京,南京航空航天大学,2006:34-125
    [55]陈德成,铃木康夫,加进茂,冷风切削加工对不锈钢加工表面的效果,机械工程学报,1999(4):93-95
    [56]陈德成,铃木康夫,酒井克彦,复合喷雾加工法在切削加工过程中的冷却和润滑效果,中国机械工程
    [57]横川和彦,横川宗彦.環境にやさしい冷风加工技术,机械と工具,1998,7:46-56
    [58]Takao Yamazaki, Kazutaka Miki, Unkai Sato, et al. Cooling air cutting of Ti-6Al-4Valloy,Journal of Japan Institute of Light Metals,2003,53(10):416-420
    [59]M. Rahman, A. Senthil Kumar, Manzoor-Ul-Salam, et al. Effect of chilled air onmachining performance in end milling, International Journal of Advanced ManufacturingTechnology,2003,21:787-795
    [60]T. Nguyen, L.C. Zhang. An assessment of the applicability of cold air and oil mist insurface grinding, Journal of Materials Pr℃essing Technology,2003,140:224-230
    [61]陈德成,铃木康夫,加茂进.冷风切削加工对不锈钢加工表面的效果,机械工程学报,1999,35(4):93-95
    [62]陈德成,铃木康夫,酒井克彦.微量润滑油润滑和冷风冷却加工法对高硅铝合金切削面的影响,机械工程学报,2000,36(11):70-74
    [63]S.W. Kim, D.W. Lee, M.C. Kang, et al. Evaluation of machinability by cuttingenvironments in high-speed milling of difficult-to-cut materials, Journal of Materials Pr℃essing Technology,2001,111:256-260
    [64]Shang Y. Hong. Advancement of Economical Cryogenic Machining Technology. Pr℃eedings of3rd International Conference onManufac2turing,1995.12
    [65]S. Paul and A. B. Chattopadhyay. Determination and Control of Grinding ZoneTemperature under Cryogenic Cooling. Int. J.Mach. ToolsManufact.,Vol.36,No.4,1996:23-29
    [66]横川和彦,横川宗彦.冷风切削研削技术.机械技术,1997,8:143-146
    [67]韩荣第,过热水蒸汽作冷却润滑剂的绿色切削技术研究,2008中国绿色制造新年论坛论文集,p31-42
    [68]刘俊岩,水蒸汽作绿色冷却润滑剂的作用机理及切削试验研究,博士学位论文,哈尔滨工业大学,2005
    [69]Junyan Liu, Rongdi Han, Li Zhang, Hongbin Guo. Study on lubricating characteristic andtool wear with water vapor as coolant and lubricant in green cutting. Wear262(2007):442–452
    [70]Singh Dilbag, P. V. Rao, Performance improvement of hard turning with solid lubricants,International Journal of Advanced Manufacturing Technology38(2008):529–535
    [71] P. Vamsi Krishna, D. Nageswara Rao, Performance evaluation of solid lubricants in termsof machining parameters in turning, International Journal of Machine Tools&Manufacture48(2008):1131-1137
    [72]F.Klocke, G.Eisenblaetter. Dry Cutting. Annals of CIRP.1997,46(2):1-8.
    [73]Bert P., Erdel. New Dimensions in Manufacturing. Hanser Gardner Publications. U.S.A.Cincinnati,1998:231-236
    [74]H. K. T nshoff, B. Karpuschewski, New Machine Techniques for High Speed Machining,Pr℃essings of CIRP International Seminar on Improving Machine Tool Performance, Spain,1998,7:65-76.
    [75]刘菊东.干切削机床的结构特点.江苏机械制造与自动化.2001(4):106-110
    [76]F. Kl℃ke, T. Krieg, Coated tools for metal cutting features and applications. Annals ofCIRP.48(2),1999:515-525
    [77]Tibor, Cselle, Tools and Coating for dry Machining, Global Powertrain Congress,Germany,1999:5-7.
    [78]全燕鸣,赵婧,何振威等.切削温度测量信号的获取与处理.中国机械工程第。2009,Vol.20:573-576
    [79]全燕鸣,何振威,豆勇.碳钢高速车削中基于量热法的切削热分配.华南理工大学学报(自然科学版).2006,Vol.34:1-4
    [80]全燕鸣,林金萍,王成勇.高速立铣加工中切削温度的测量.Transactions of NanjingUniversity of Aeronautics&Astronautics.2005, Vol.22:47-52
    [81]全燕鸣,乐有树.采用自然热电偶法测量铣削温度.工具技术.2006,Vol.41:80-82
    [82]Liu Zhijun, Quan Yanming. A wireless system for cutting temperature measurement.Advanced Materials Research.188(2011):475-480
    [83]陈明,袁人炜,薛秉源等,铝合金高速铣削中切削温度动态变化规律的试验研究,工具技术,34(2000):7-10
    [84]全燕鸣,乐有树.采用自然热电偶法测量铣削温度.工具技术.2006,Vol.41:80-82
    [85]全燕鸣,林金萍,王成勇.高速立铣加工中切削温度的测量.Transactions of NanjingUniversity of Aeronautics&Astronautics.2005, Vol.22:47-52
    [86]何振威,全燕鸣,乐有树.基于有限元模拟的高速切削中切削热的研究.工具技术.2006,Vol.40:60-63
    [87]全燕鸣,何振威.车削碳钢中切削热的分配.中国机械工程.2006,Vol.17:2155-2158
    [88]Chen Ming,Sun Fanghong,Wang Haili,Yuan Renwei,Qu Zhenghong. Experimentalresearch on the dynamic characteristics of the cutting temperature in the pr℃ess ofHigh-speed milling. Journal of Materials Pr℃essing Technology2003(138):468-471
    [89]张士军,刘战强.基于对流换热原理的刀具热量和温度研究.武汉理工大学学报.2009(31):130-133
    [90]W. Grzesik. Experimental investigation of the cutting temperature when turning withcoated indexable inserts. International Journal of Machine Tools&Manufacture,1999,39:355-369
    [91]W. Grzesik.An integrated approach to evaluating the tribo-contact for coated cuttinginserts. Wear,2000(240):9-18
    [92]J. Rech. A multiview approach to the tribological characterisation of cutting tool coatingsfor steels in high-speed dry turning. Int. J. Machining and Machinability of Materials,2006(1):27-44
    [93]G. Sutter, L. Faure, A. Molinari, N. Ranc, V. Pina. An Experimental Technique for theMeasurement of Temperature Fields for the Orthogonal Cutting in High SpeedMachining.International Journal of Machine Tools&Manufacture43(2003):671-678
    [94]N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh. Investigation of heat partition in highspeed turning of high strength alloy steel. International Journal of Machine Tools&Manufacture,2005(45):1687-1695
    [95]S.R. Carvalho, S.M.M. Lima e Silva, A.R. Machado, G. Guimaraes. Temperaturedetermination at the chip–tool interface using an inverse thermal model considering the tooland tool holder. Journal of Materials Pr℃essing Technology,2006(179):97-104
    [96]D.A. Stephenson, An inverse method of investigation deformation zone temperature inmetal cutting, Journal of Engineer&Industry,1991(113):129–136.
    [97]P. Kwon, T. Schiemann, R. Kountanya, An Inverse Estimation Scheme to MeasureSteady-state Tool-chip Interface Temperature Using an Infrared Camera, International Journalof Machine Tools&Manufacture41(2001)1015–1030
    [98]D. O’Sullivan, M. Cotterell, Temperature measurement in single point turning, Journal ofMaterials Pr℃essing Technology,2001(118):301-308
    [99]C. Dinc, I. Lazoglu, A Serpenguzel, Analysis of thermal fields in orthogonal machiningwith infrared imaging, Journal of materials pr℃essing technology,2008(198):147-154
    [100]Sarat, Babu, Singamneni, A mixed solution for the three-dimensional temperaturedistribution in turning inserts using finite and boundary element techniques, Journal ofMaterials Pr℃essing Technology,2005(166):98-106
    [101]L. Filice, F. Micari, S. Rizzuti, D. Umbrello, A critical analysis on the friction modelingin orthogonal machining, International Journal of Machine Tools&Manufacture,2007(47):709-714
    [102]D. Ulutan, I. Lazoglu, C. Dinc, Three-dimensional temperature predictions in machiningprocesses using finite difference method, journal of materials pr℃essing technology209(2009)1111-1121
    [103]陶汉中,热管式大功率电子模块散热器的研究与开发,南京工业大学硕士学位论文,2003
    [104]陆龙生,汤勇,袁东,蒋乐伦,微热管的灌注抽真空制造技术,机械工程学报,2009(45):122-127
    [105]Gaugler R.S., Heat Transfer Device, US Patent, No.235048, Appl.21December1942,Published6June1944
    [106]Baiton K. F., Experimental heat pipe AERE-M1610, Harwell, Berks. Atomic EnergyEstablishment, Appl. Physics Dib, June1965:621-624
    [107]http://news.mydrivers.com/1/170/170839.htm
    [108]Troll M, et al., Thermal Control of Electronic Equipment by Heat Pipes, Rev. Gen.Therm.,37,1998.323-352
    [109]Dunn P. D.and Reay D. A., Heat Pipes, fourth edition, Pergamon, Oxford,1994.Introduction; Chapter1:Historic Development; Chapter5: Special Types of Heat Pipe;Chapter6: The Variable Conductance Heat Pipe
    [110]闵桂荣、郭舜,《航天器热控制》(第二版),科学出版社,北京,1998。第二章:航大器的被动热控技术;第四章:航天器的主动热控技术
    [111]Vasiliev L. L,Heat Pipes in Modern Heat Exchangers, Applied Thermal Engineering.25(1),2005:1-19
    [112]Maydanik Yu. F., Loop Heat Pipes, Applied Thermal Engineering,25(5-6),2005.635-657
    [113]任川,环路热管主芯中多过程辐合传热现象的理论模型和数值研究.中国科技大学博士论文.2007:1-25
    [114] R. L. Judd, H. S. MacKenzie and M. A. Elbestawi. An investigation of a heat pipeCooling System for Use in Turning on a Lathe. International Journal of AdvancedManufacturing Technology,10(1995):357-366
    [115] Richard Y. Chiou. Lin Lu.Jim S. J. Chen. Mark T. North, Investigation of drymachining with embedded heat pipe cooling by finite element analysis and experiments. Int JAdv Manuf Technol31(2007):905–914
    [116]Chiou RY, Chen JSJ, Lu L, North MT. The effect of an embedded heat pipe in a cuttingtool on temperature and wear. Pr℃eedings of ASME Conference on Mechanical Engineering,(2003):1–8
    [117]Chiou RY, Chen JSJ, Lu L, Cole I, Prediction of heat transfer behavior of carbide insertswith embedded heat pipes for dry machining, Pr℃eedings of the2002ASME InternationalMechanical Engineering Congress&Exposition (2002):17–22
    [118] A. Noorul Haq. T. Tamizharasan. Investigation of the effects of cooling in hard turningoperations. International Journal of Advanced Manufacturing Technology,30(2006):808–816
    [119]T.C. Jen, G. Gutierrez, S. Eapen, G. Barber, H. Zhao, P.S. Szuba, J. Labataille, J.Manjunathaiah, Investigation of heat pipe cooling in drilling applications. Part I: preliminarynumerical analysis and verification, International Journal of Machine Tools&Manufacture42(2002):643–652
    [120] Y. Kevin Chou, Jie Liu, CVD diamond tool performance in metal matrix compositemachining, Surface&Coatings Technology200(2005):1872–1878
    [121]Liang Liang; Yanming Quan; Zhiyong Ke. Investigation of tool-chip interfacetemperature in dry turning assisted by heat pipe cooling. International Journal of AdvancedManufacturing Technology.2011(54):35-43.
    [122]Lin Zhu, Tien-Chien Jen, Yi-Hsin Yen,et al. Improved Tool life in Heat-pipe AssistedEnd Milling Operations[J]. Pr℃eedings of the ASME2011International MechanicalEngineering Congress&Exposition.IMECE2011,2011:11-17.
    [123]苏宏华,马可.环形热管砂轮强化磨削弧区换热研究[J].南京航空航天大学学报.2012,44:132-239.
    [124]张冰峰,傅玉灿.基于FLUENT的热管砂轮换热能力仿真分析[J].机械制造与自动化.2011,40:124~127.
    [125]马可,傅玉灿,徐鸿钧.热管砂轮传热性能的数学分析.工具技术.2011,45:32-35.
    [126]梁良,面向绿色切削的热管刀具散热性能研究,博士学位论文,华南理工业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700