难加工材料切削刀具磨损的热力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削时,尤其是高速切削钛合金及高温合金等难加工材料时,刀具和工件之间的相互作用导致工件局部产生剧烈的塑性变形,刀具工件间产生剧烈的摩擦,产生大量的切削热,导致刀具磨损过快,换刀频繁,刀具寿命短、消耗量大成为制约高速切削加工技术广泛应用的主要瓶颈之一。高速切削过程是一个局部产生高温、高压、高应变和高应变率的非线性动态随机过程。本文针对难加工材料钛合金和高温合金材料,从热力学的角度系统研究切削加工刀具的磨损机理。
     借助于非平衡态热力学理论,建立高速切削过程的热力学体系。分析该体系的的熵流和熵产生;对高速切削过程的热力学体系的各子过程之间的耦合进行研究,结果表明:虽然按照居里原理,不同张量阶的子过程之间不存在耦合,但通过体系结构和元素的变化仍可产生相互影响。对高速切削过程的热力学体系的刀具和工件之间的相互作用进行分析,分析结果表明扩散、粘结、氧化和塑性变形各因素之间的复杂非线性作用使切削热力学体系具有区别于一般热力学体系的显著特征:高速切削过程热力学体系各因素之间呈复杂非线性作用,而普通的热力学体系各因素之间满足居里原理,即具有不同热力学张量阶的因素间不存在耦合。
     采用DEFORM-3D有限元软件,建立了正交切削加工的仿真模型。采用热力学的本构方程描述材料的流动应力行为,并把刀具视为非刚体,采用单元自适应网格重划分技术与分离准则相结合实现切屑与工件的分离,选用无量纲Cockcroft Latham断裂准则实现材料的断裂,摩擦模型的建立通过划分粘结区和滑动区,分别应用不同的摩擦系数来描述。基于仿真模型预测热力耦合作用下工件、切屑中的非均匀应变场、应力场、温度场以及切削力。设计正交切削实验,验证了模型的正确性。
     基于扩散的热力学原理,研究硬质合金刀具材料的溶解扩散机制并进行计算,分析硬质合金刀具的扩散磨损特点。利用材料学的二元相图用反求法求解一种元素溶入另一种元素中的超额自由能,并利用此法求解碳元素在铝中的超额自由能。研究表明:WC基硬质合金刀具在高速切削铁基高温合金时抗扩散磨损的能力低于TiC、TaC和NbC含量较多的硬质合金刀具。对硬质合金刀具分别与高温合金GH907和钛合金TC4的扩散进行实验研究,实验结果与理论计算一致。
     以发生氧化反应的标准吉布斯自由能为判据,研究高速切削时刀具的氧化磨损。计算硬质合金刀具在不同温度下可能的氧化反应的标准吉布斯自由能,对反应发生的可能性进行排序,分析各个反应的特点,结果表明产物中WO3、CoWO4和Ti02含量较多,证明中间产物Co3O4会继续和WO及氧气发生剧烈的氧化反应,生成CoWO4,并进行实验验证,结论与实验结果一致。同时对PCBN刀具和氧化铝陶瓷刀具的氧化产物进行热力学计算,并分析这两种刀具的氧化磨损特点。
     建立刀具粘结磨损的热力学模型。用白光干涉仪、红外热像仪和SEM-EDS等技术手段研究刀具的粘结磨损,通过分析两种不同的工件材料形成的刀具磨损来研究刀具的磨损形态、磨损机理以及磨损过程规律,分析切削时间和切削速度对粘结磨损的影响。研究表明:高速车削铁基高温合金GH907和钛合金TC4时,刀具的粘结磨损均在切削速度v=200m/min时较为严重,在切削速度v=300m/min时,刀具和工件材料之间的粘结显著减轻,主要原因是材料热软化效应造成的。
     基于热力学理论核心原理—最小能耗原理,证明了一个假设三个约束条件下的切削过程热力学体系的最小熵产生,建立第一变形区剪切变形区和第二变形区刀屑摩擦区的熵产生模型,分析切削参数对熵产生的影响,并用实验验证模型的正确性。结果表明由于切削过程的复杂性和影响因素的多样性使得切削过程的流和力不满足线性关系,变形区的熵产生无最小值,呈发散状态。高速切削过程的热力学机制和理论探索有待于进一步深入研究。
     本课题得到国家重点基础研究发展计划(2009CB724401)、国家自然科学基金项目(50705052)、教育部博士点基金新教师项目资助(20070422032)和高档数控机床与基础制造装备科技重大专项(2009ZX04014-043、2009ZX04014-012、2009ZX04014-031)的资助。
High speed cutting technology has been widely used in industry for its outstanding advantages. However, severe tool-work friction and plastic deformation result in huge heat generation and early tool failure. Short tool life in high speed cutting difficult-to-cut materials, such as titanium alloys and super alloys, is one of the most difficult problems for its further impliation. Frequent tool exchange decreases machining efficiency and cutting tool consumption increases cost. Most phenomena in cutting system relates with thermal or thermodynamic theory. In this research, tool wear in high speed cutting titanium alloy and super alloys have been studied based on thermodynamical theory.
     Thermodynamic system in high speed cutting process was developed based on non-equilibrium thermodynamic theory. Entropy generation and entropy flow were analyzed in this system. The coupling between the microscopic sub-processes of the thermodynamic system were studied. The results showed that mutual effects between different sub-progresses did exit through structure and element changes, while there is no coupling between those progresses with different tensor orders according to curie principle. The interaction between the chip tool and the workpiece were analyzed, the results showed that complicated nonlinear interaction is the remarkebale characteristic of high speed machining thermodynamic system which is different with the general thermodynamic systems whose various factors meet the Curie principle, that is different thermodynamic order tensor coupling does not exist between the factors.
     Orthogonal cutting simulation model was built developed with finite element analysis software DEFORM-3D. The material's flow stress behavior was described with thermodynamical constitutive equation. Separation of chips from workpiece was realized by the combination of adaptive remeshing technique and separation criterion with tool as a non-rigid solid. The material's fracture was defined by adopting Cockcroft and Coulomb friction model and shear friction model. To validate the finite element model, the orthogonal cutting tests were conducted. With this simulation model stresses, strains distribution in the chips and the workpiece can be predicted as well as cutting temperature and cutting force.
     Diffusion and solubility mechanisms of cemented carbide tools were studied and calculations were conducted based on thermodynamics principles. Reverse method was firstly used to calculate the excess free energy of one element dissolving into another element with binary phase diagram. For instance, with this method, the excess free energy of carbon dissolving into aluminum was calculated. Results showed that diffusion wear resistance ability of WC-based cemented carbide tool was poorer than those cemented carbide tool with more TiC、TaC and NbC when high speed cutting iron-based alloy. This analysis was proved with experiments during high speed cuting titanium alloy (Ti6A14V) and super alloy (GH907) with cemented carbide tools.
     The oxidation wear of cutting tool during high speed machining were studied with Gibbs free energy criterion. Oxidation products of carbide tool were calculated based on thermodynamics during high speed machining. The possible oxidation reactions for cemented carbide tool elements at different temperature were calculated with substances Gibbs free energy function method. And the orders of reaction was sorted with reaction degree as well as characteristics of every reaction were analyzed. Theoretical calculation showed that the quantities of reaction products of WO3、CO3O4 and COWO4 were large, especially,the middle reaction product Co3O4 will continue to react with WO and O2 to generate the product CoWO4. Experimental results proved the theoretical calculation. Furthermore, the oxidation products of PCBN and LT55 ceramic tools were also calculated and their wear characteristics were analyzed.
     The thermodynamical model of tool adhesion wear was developed. The adhesion wear was studied by turning experiments and investigated with white light interferometer, infrared imaging, and SEM-EDS and so on. Adhesion wear patterns,, wear mechanism were studied in cutting GH907 and TC4. Adhesive wear was analyzed in different velocity and cutting time. Results showed that the tool adhesion wear was more serious when cutting speed was 200m/min, while the adhesion wear was significantly reduced when cutting speed was 300m/mindue to thermal softening effect.
     The principle of minimum entropy production in cutting thermodynamics system was proved based on minimum energy consumption under the condition of one assumption and three constraints. The entropy generation model of shear zone and tool chip contact zone were deduced and the effects of cutting parameters on entropy generation were analyzed and proved by experiments. The results indicated that there was no minimum value of entropy generation because generalized flow and generalized force of cutting process did not satisfy the linear relationship as the complexity of cutting process and the diversity of the factors. So, the mechanisms and theoretical exploration of the machining friction thermodynamics system need to be further explored.
     This disseratation is supported by National Basic Research Program of China (2009CB724401)、Natural Science Foundation of China (50705052)、Doctorate Fund of the Ministry of Education project funding of new teachers(20070422032) and Major Science and Technology Program for High-End CNC Machine Tools and Basic Manufacturing Equipment(2009ZX04014-043、2009ZX04014-012 2009ZX04014-031).
引文
[1]艾兴编著.高速切削加工技术[M].北京:国防工业出版社,2003:1.
    [2]R.Komanduri, D.G.Flom, M.Lee. Highlights of the Darpa Advanced Machining Research Program[J]. Journal of Engineering for Industry. Tran-sactions of ASME.1985,107(4):325-335.
    [3]R.Komanduri. Status of High-speed Machining[J]. Carbide and Tool Journal. 1986,18(6):6-11.
    [4]梁彦军,高峰.我国高速加工技术现状及发展趋势[J].工具技术,2002,36(1):16-20.
    [5]R.C.Dewes, D.K.Aspinwall. A Review of Ultra High Speed Milling of Hardened Steels [J].Journal of Materials Process Technology.1997,(69):1-17.
    [6]李沪曾,郭重庆,林建平等.高速铣削加工技术在汽车模具制造中的应用[J].机械与电子.2003,(1):26-28.
    [7]郭新贵,汪德才,李从心.高速切削技术及其在模具工业中的应用[J].现代制造工程,2001,(9):31-33.
    [8]Z.N.Farhat. Microstructural Characterization of WC-TiC-Co Cutting Tools during High-speed Machining of P20 Mold Steel[J]. Materials Characterization. 2003,(51):117-130.
    [9]刘战强,艾兴,宋世学.高速切削技术的发展与展望[J].制造技术与机床.2001,(7):5-7.
    [10]S.Ashley. High-speed Machining Goes Mainstream[J]. Mechanical Engineering. 1995,117(5):56-61.
    [11]J.D.Kim, Y.Kang. High-speed Machining of Aluminum Using Diamond EndMills[J]. International Journal of Machine tool & Manufacture.1997, (37):1155-1165.
    [12]J.Tlusty. High-speed Machining[J]. Annals of the CIRP,1993,42(2):733-738.
    [13]N. Narutaki. High-Speed Machining of Titanium Alloy[J]. Annals of the CIRP. 1997,46(1):3-7.
    [14]N.Narutaki, Y.Yamane, K.Hayashi, et al. High-Speed Machining of Inconel 718 with Ceramic Tools[J]. Annals of the CIRP.1993,42(1):103-106.
    [15]T.Kitagawa, A.Kubo, K.Maekawa. Temperature and Wear of Cutting in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn[J]. Wear, 1997,(202):142-148.
    [16]A.Gatto. L.Juliano. Chip Formation Analysis in High Speed Machining of a Nickel BaseSuperalloy with Silicon Carbide Whisker-reinforced Alumina[J]. International Journal of Machine Tool & Manufacture.1994,(34):1147-1161.
    [17]T.I.Ei-Wardany, E.Mohammed,M.A.Elbestawi. Cutting Temperature of Ceramic Tools in High Speed Machining of Difficult-to-cut Materials[J]. International Journal of Machine Tools & Manufacture.1996,(36):611-634.
    [18]E.O.Ezugwu, J.Bonney,Y.Yamane. An Overview of the Machinability of Aeroengine Alloys[J]. Journal of Materials Processing Technology. 2003,(134):233-253.
    [19]L.N.Lopez de lacalle, J.Perez, J.I.Llorente, et al. Advanced Cutting Conditions for the Milling of Aeronautical alloys[J]. Journal of Material Processing Technology.2000,(100):1-11.
    [20]A.Chakraborty, K.K.Ray, S.B.Bhaduri. Comparative Wear Behavior of Ceramic and Carbide Tools during High Speed Machining of Steel[J]. Materials and Manufacturing Processes.2000,15(2):269-300.
    [21]G. Poulachon, A.Moisan. Contribution to the Study of the Cutting Mechanisms during High Speed Machining of Hardened steel[J]. Annals of the CIRP.1998, 47(1):73-76.
    [22]P.Koshy, R.C.Dewes,D,K.Aspinwall. High Speed End Millling of Hardened AISI D2 Tool Steel(-58 HRC) [J]. Journal of Materials Processing Technology. 2002,(127):266-273.
    [23]T.J.Broskea. High Speed Machining of Gray Cast Iron with Polycrystalline Cubic Boron Nitride[J].Carbide and Tool Journal.1987,19(5):17-20.
    [24]C. Ping, K. Toshihiro. High Performance Machining of Austempered Ductile Iron[J]. Journal of the Japan Society of Precision Engineering/Seimitsu Kogaku Kaishi.1995,61(4):542-546.
    [25]L.luliano,L.Settineri,A.Gatto. High-speed Turning Experiments on metal matrix composites[J].Composites Part A.1998,(29):1501-1509.
    [26]S.Smith, J.Tlusty. Current Trends in High-Speed Machining[J]. Journal of Manufacturing Science and Engineering, Transaction of the ASME.1997, 119(11):664-666.
    [27]张伯霖.高速加工技术在美国的最新发展[J].制造技术与机床.1999,(4):5-6.
    [28]M.C. Shaw, A.Vyas. Chip Formation in Machining Hardened Steels[J]. Annals of the CIRP.1993,42(1):77-82.
    [29]M.A. Elbestawi, L. Chen, C.E. Becze, et al, High-speed Milling of Dies and Molds in Their Hardened State[J]. Annals of the CIRP.1997,46(1):57-62.
    [30]艾兴,刘战强,黄传真等.高速切削综合技术[J].航空制造技术.2002,(3):20~23.
    [31]T.J.Burns, M.A.Davies. On Repeated Adiabatic Shear Band Formation during High-speed Machining[J]. International Journal ofPlasticity.2002,(18):487-506.
    [32]A.Molinari, C.Musquar, G.Sutter. Adiabatic Shear Banding in High Speed Machining of Ti-6A1-4V:Experiments and Modeling[J]. International Journal of Plasticity.2002,(18):443-459.
    [33]Y.Ning,M.Rahman,Y.S.Wong. Investigation of Chip Formation in High Speed End Milling [J].Journal of Materials Processing Technology. 2001,(113):360-367.
    [34]梁锡昌,郑小光,徐国斌.超高速铣削的理论研究[J].机械工程学报.2001,37(3):109~112.
    [35]张伯霖,谢影明,肖曙红.超高速切削的原理与应用[J].中国机械工程.1995,(6):14~17.
    [36]虞付进.高速切削机理的研究现状与思考[J].机械工程师.2003,(10):12~15.
    [37]桂贵生.何庆.高速加工机理与关键技术的研究进展[J].农业机械学报.2004,Vo1.35(4):192~195.
    [38]C.K.Toh. Cutter Path Strategies in High Speed Rough Milling of Hardened Steel[J]. Materials and Design 2006,(27):107-114.
    [39]T. P. J. Jr. Specialized Procedures for Efficient High speed machining[D]. Doctorial Dissertation. University of North Carolina at Charlotte.2002.
    [40]I.F.Dagiloke,A.Kaldos.S.Douglas, et al.High-speed Machining:an Approach to Process Analysis [J]. Journal of Materials Processing Technology 1995,(54):82-87.
    [41]A.Kaldos.I.F.Dagiloke A.Boyle.Computer Aided Cutting Process Parameter Selection for High Speed Milling [J]. Journal of Materials Processing Technology.1996,(61):219-224.
    [42]吴国玥译.高速铣削中动态特性对工件质量的影响[J].国外金属加工.2000,(1):31-35.
    [43]X.Yan,K.Shirase,M.Hirao, et al. Evaluation and Improvement of Productivity in High-speed NC Machining [J]. Transactions of ASME.2000, Vol.122(8):556-56.
    [44]黄健求.高速切削加工时工艺系统的动刚度与加工精度的研究[J].东莞理工学院学报.2000,Vo1.7(2):25-28.
    [45]D.A.Axinte,R.C.Dewes. Surface Integrity of Hot Work Tool Steel after High Speed Milling-Experimental Data and Empirical Models [J]. Journal of Materials Processing Technology 2002,(127):325-335.
    [46]L.N.Lopez de Lacalle,A.Lamikiz,J.A.Sanchez, et al. Improving the Surface Finish in High Speed Milling of Stamping Dies [J]. Journal of Materials Processing Technology.2002,(123):292-302.
    [47]D.G.Lee,J. D. Suh, H. S. Kim, et al. Design and Manufacture of Composite High Speed Machine Tool Structures [J]. Composites Science and Technology. 2004,(64):1523-1530.
    [48]张伯霖,黄晓明,李志英.高速加工中心及其应用[J].机电工程技术.2001,Vo1.30(5):11-14.
    [49]周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术[J].机床与液压,2000(6):53-56.
    [50]张伯霖,夏红梅,黄晓明.高速主轴设计制造中若干问题的探讨.制造技术与机床.2001,(7):12-14.
    [51]张伯霖,张志润,肖曙红.超高速加工机床与机床的零传动[J].中国机械工程.1997,(5):37-41.
    [52]S.G.Lee,S.H.Yang. CNC Tool-Path Planning for High-Speed High-Resolution Machining Using a New Tool-Path Calculation Algorithm [J]. The International Journal of Advanced Manufacturing Technology.2002,(20):326-333.
    [53]H. Dominguez, R. Alvarez, J. C.Jauregui. Development of A High Speed Machiniing CNC[C]. Proceedings of the 2001 IEEE International Conference on Control Applications. September 5-7,2001,Mexico City, Mexico.224-229.
    [54]C.S. Chang. A Study of High Efficiency Face Milling Tools [J]. Journal of Materials Processing Technology.2000,(100):12-29.
    [55]G.E.D'Errico,E.Guglielmi,G.Rutelli. A Study of Coatings for End Mills in High Speed Metal Cutting [J]. Journal of Materials Processing Technology. 1999,(92-93):251-256.
    [56]H. Kato, K.Shintani, H. Sumiya. Cutting Performance of A Binder-less Sintered Cubic Boron Nitride Tool in High-speed Milling of Gray Cast I-ron [J]. Journal of Materials Processing Technology.2002,(127):217-221.
    [57]艾兴,刘战强.高速切削刀具材料的进展和未来.制造技术与机床[J].2001,(8):21-25.
    [58]刘战强,艾兴.高速切削刀具的发展现状[J].工具技术.2001,vo1.25(3):3-8.
    [59]赵炳桢.高速铣削刀具安全技术现状[J].工具技术.1999,(33):4-7.
    [60]赵文祥,杨广勇.超高速切削加工的刀具系统[J].水利电力机械.1996,(6):35-39.
    [61]王西彬,师汉民.高速切削刀具的研究[J].机械工艺师.1998,(8):39-41.
    [62]N.M.Renevier, H.Oosterling, U.Konig, et al. Performance and Limitation of Hybrid PECVD(hard coating)-PVD Magnetron Sputtering (MoS2/Ti composite) Coated Inserts Tested for Dry High Speed Milling of Steel and Grey Cast Iron [J]. Surface and Coatings Technology.2003,(163-164):659-667
    [63]M.Arndt, T.Kacsich. Performance of New AlTiN Coatings in Dry and High Speed Cutting [J]. Surface and Coatings Technology.2003,(163-164):674-680.
    [64]刘旺玉,张勇,李静,刘鑫.高速切削热分配的有限元模拟[J].工具技术.2009,43(8):14-17.
    [65]万熠,艾兴,刘战强,宋良煜.高速铣削航空铝合金7050-T7451时刀具的磨损破损[J].机械工程学报.2007.4(43):103-108.
    [66]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002:146
    [67]http://ec.clii.com.cn/News/show.asp?TradeName=%CE%E5%BD%F0&ShowI D=273354[OL].
    [68]王峰丽.高速切削技术和刀具材料发展趋势[J].金属加工.2009,21:50-51.
    [69]解生泽,刘春光,马先贵.切削加工中的润滑技术[J].机床与液压.2007,35(6):249-251
    [70]何宁.高速切削应用技术[J].金属加工.2009,22:25-28
    [71]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2000:33
    [72]M.Zemansky.Heatandthermodynamics[C].5thed.NewYork:McGraw-HillBook Company,1975.
    [73]M.J Moran,H.N.Shpiro.Fundamentals of engineering thermodynamics[C].3rd ed. New York:John Wiley Sons Inc,1995.
    [74]J. B. Jones,Y.Mayhew.Engineering Thermodynamics[M].New Jersey:Prentice Hall Inc,1996.
    [75]G.Rogers,Y.Mayhew. Engineering thermodynamics Work Heat Transfer [C].4th ed. John Wiley Sons Inc, New York,1992.
    [76]王修彦.工程热力学[M].北京:机械工业出版社,2008:219-222.
    [77]欧阳欙,李继坤,赵乘龙,李立国,李汝辉.工程热力学[M].北京:高等教育出版社,1986:432-447.
    [78]严家禄.工程热力学.第二版[M].北京:高等教育出版社,1989:104-123.
    [79]刘宝兴.工程热力学[M].北京:机械工业出版社,2006:329-344.
    [80]冯端,冯步云.熵[M].北京:科学出版社,1992:123.
    [81]罗伯特.熵与能级[M].北京:科学出版社,1973:3.
    [82]张挺芳.熵自由能与功函[M].上海:华东师范大学出版社,1983:38-39.
    [83]王竹溪.热力学[M].北京:高等教育出版社,1955:357.
    [84]胡迪炳.温度与熵[M].北京:国防工业出版社,1998:40.
    [85]陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社,2005:48-49.
    [86]郝士明.材料热力学[M].北京:化学工业出版社,2003:48-62.
    [87]李阳,姜周华,刘杨.Si2Ca2Ba三元合金熔体热力学性质的计算[J].东北大学学报(自然科学版),2007,128(2):229-232.
    [88]T.Obikawa,T.Matsumura,T.Shirakashi, et al.Wear Characteristic of Alumina Coated and Alumina Ceramic tools [J], Journal of Material Processing Technology,1997,63:211-216.
    [89]Z.N.Farhat. Microstructural Characteriazation of WC-TiC-Co Cutting Tools during High-speed Machining of p20 Mold Steel [J]. Materials Characterization, 2003,51(2-3):117-130.
    [90]T.Kitagawa, A,Kubo, K.Maekawa. Temperature and Wear of Cutting Tools in High-speed Machining of Inconel 718 and Ti-6Al-6V-2Sn [J]. Wear,1997,202: 142-148.
    [91]R.C.Dewes, D.K.Aspinwall. A Review of Ultra High Speed Milling of Hardened Steels [J]. Journal of Materials Processing Technology,1997, 69:1-17.
    [92]J.P.Urbanski, P.Kosh, R.C.Dewes, et al. High Speed Machining of Moulds and Dies for Net Shape Manufacture [J]. Materials and Design,2000,21:395-402.
    [93]G.E.D'Errico, E.Guglielmi, G.Rutelli. A Study of Coatings for End Mills in High Speed Metal Cutting [J]. Journal of Materials Processing Tech-nology,1999,(92-93):251-256.
    [94]M.J. Jackson, G.M. Robinson, J.S. Morrell. Machining M42 Tool Steel Using Nanostructured Coated Cutting Tools [J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,23(1):83-86.
    [95]K.Yamamoto, M.Kuroda, H.Omokawa, et al. High-efficiency Cutting of Super-heat-resistant Alloy [J]. Mitsubishi Heavy Industies, Ltd. Technical Re-view,2001,38(1):12-16.
    [96]Y.Kevin Chou, Chris J.Evans. Cubic Boron Nitride Tool Wear in Interrupted Hard Cutting [J]. Wear,1999,(225-229):234-245.
    [97]K.Liu, X.P.Li, M.Rahman, et al. CBN Tool Wear in Ductile Cutting of Tungsten Carbide [J]. Wear,2003,255:1344-1351.
    [98]Z.N.Farhat. Wear Mechanism of CBN Cutting Tool during High-speed Machining of mold steel [J]. Materials Science and Engineering,2003,A361:100-110.
    [99]P.Fallbohmer, C.A.Rodriguez, T.Ozel, et al. High-speed Machining of Cast Iron and Alloy Steels for Die and Mold Manufacturing [J]. Journal of Materials Processing Technology,2000,98:104-115.
    [100]J.Kopac. Influence of Cutting Material and Coating on Tool Quality and Tool Life [J]. Journal of Materials Processing Technology,1998,78:95-103.
    [101]M.C. Kang, I.Park, K.H.Kim. Performance Evaluation of AIP-TiAlN Coated Tool for High Speed Machining [J]. Surface and Coatings Technol-ogy,2003,(163-164):734-738.
    [102]C.Y.H.Lim, S.C.Lim, K.S.Lee. Wear of TiC-coated Carbide Tools in Dry Turning [J]. Wear,1999,(225-229):354-367.
    [103]K.Ramanujachar,S.V.Subramanian. Micromechanisms of Tool Wear in Machining Free Cutting Steels [J]. Wear,1996,197(1-2):45-55.
    [104]A.Sharman, R.C.Dewes, D.K.Aspinwall. Tool Life when High Speed Ball Nose End Milling Inconel 718TM[J]. Journal of Materials Processing Technology,2001,118(1-3):29-35.
    [105]B.M.Kramer,N.P.Suh. Tool Wear by Solution:A Quantitative Understanding [J]. Journal of Engineering for Industry,1980,102(12):303-309.
    [106]F. Nabhani. Wear Mechanisms of Ultra-hard Cutting Tools Materials [J]. Journal of Materials Processing Technology,2001,115:402-412.
    [107]S.Dolinsek, B.Sustarsic, J.Kopac. Wear Mechanisms of Cutting Tools in High-speed Cutting Processes [J]. Wear,2002,250:349-356.
    [108]C.H.Che-Haron. Tool Life and Surface Integrity in Turning Titanium Alloy [J]. Journal of Materials Processing Technology,2001,118:231-237.
    [109]龙震海,王西彬,刘志兵.(Ti,Al)N涂层硬质合金刀具高速铣削30CrNi4MoV钢时的磨损机理[J].北京理工大学学报.2004.21(11):2305-2308.
    [110]S.N.Basu and V.K.Sarin. Oxidation Behavior of WC-Co[J]. Material Science and Engineering.1996,A209:206-212.
    [111]邓建新,丁泽良,赵军等.高温自润滑陶瓷刀具材料及其切削性能的研究[J].机械工程学报,2003.21(8):2305-2308.
    [112]V. A. Lavrenkoa, J. Desmaisonb, A.D. Panasyuka, et al. High-temperature Oxidation of AlN-SiC-TiB2 Ceramics in Air[J]. Journal of the Europe-an Ceramic Society,2005,25(10):1781-1787.
    [113]曹永泉,张弘弢,董海,李嫚.PCBN刀具切削淬硬钢GCrl5的磨损实验研究[J].中国机械工程,2006.21(17):2305-2308.
    [114]M.Uemura. An Analysis of the Catalysis of Fe, Ni or Co on the Wear of Diamonds[J]. Tribology International,2004,37(11-12):887-892.
    [115]程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社,1988:1-2.
    [116]C.Chungchoo, D.Saini. The Total Energy and the Total Entropy of Force Signals-New Parameters for Monitoring Oblique Turning Opera-tions[J]. International Journal of Machine Tools and Manufacture,2000,40:1879-1897
    [117]J.T.Maximov.Optimization Method for Metal-forming Processes[J].Energy, 2002,27:675-701.
    [118]I.Grabec, J. GradiSek, E. Govekar. A New Method for Chatter Detection in Turning[J]. CIRP Annals-Manufacturing Technology,1999,48(1):29-32.
    [119]J.Peklenik, S.DolinSek. The Energy Quanta and the Entropy-New Parametersfor Identification of the Machining Processes[J]. CIRP Annals Manufacturing Technology,1995,44(1):63-68.
    [120]V.A. Lyashko, M.M. Potemkin, S.A. Klimenko. Comparative Durability of Materials in Wear[J]. Wear,1998,216:239-243.
    [121]J. T. Maximov. Thermodynamic Optimization of Mechanical Systems with Dissipative Processes[J]. International Journal of Mechanical Sciences 2006,48:62-74.
    [122]B.A. Entropy Generation Minimization-The new Thermodynamics of Finite Size Devices and Finite Time Processes[J]. Journal of Application Physics,1996,79(1):1191-1218.
    [123]B.M. Kramer, B.F. von Turkovich.A Comprehensive Tool Wear Model[J]. CIRP Annals-Manufacturing Technology,1986,35:67-70.
    [124]J.Vleugels, O.Van Der Biest. Development, Characterization and Oxidation Behaviour of Si3N4-Al2O3 Ceramics[J]. Journal of the European Ceramic Society,1994,13:529-544.
    [125]R.F.Silva,F.J.Oliveira,F.P.Castro, et al. Modeling of Chem-ical Wear in Ferrous Alloys Silicon Nitride Contacts[J].Acta Metallurgica,1998,46(7):2501-2507.
    [126]R.F. Silva, J.M. Gomes, A.S. Miranda, et al.Resistance of Si3N4 Ceramic Tools to Thermal and Mechanical Loading in Cutting of Iron Alloys[J].Wear,1991, 148:69-89.
    [127]方刚,曾攀.金属正交切削工艺的有限元模拟[J].机械科学与技术,2003,22(4):641-645.
    [128]B.E.Klamecki. Incipient Chip Formation in Metal Cutting-a Three Dimension Finite Analysis[D].University of Illinois at Urbana-Chanpaign,Urbana,1973.
    [129]M.R.Lajczok. A Study of Some Aspects of Metal Cutting by the Finite Element Method[D].North Carolina State University,USA,1980.
    [130]E.Usui,T.Shirakashi. Mechanics of Machining-form Descriptive to Predictive Theory on the Art of Cutting Metal-75 Years Later Attribute[J]. American Society of Mechanical Engineering, Pressure Vessel Directive(PED), 1982:7-12.
    [131]J.S.Strenkowski, J.T.Carroll. A Finite Element Model of Orthogonal Metal Cutting[J]. Transaction of ASME Journal of Engineering for Industry,1985,107(11):347-354.
    [132]J.S.Strenkowski, K.J.Moon. Finite Element Prediction of Chip Geometry and Tool Workpiece Temperature Distribution in Orthogonal Metal Cutting[J]. Transaction of ASME Journal of Engineering for Industry,1990,112(11):313-318.
    [133]刘战强,吴继华,史振宇等.金属切削变形本构方程的研究[J].工具技术,2008,42(8):3-9.
    [134]S.Jaspers,J.Dautzenberg. Materials Behavior in Conditions Similar to Metal Cutting:Flow Stress in the Primary Shear Zone[J]. Journal of Materia-ls Processing Technology,2002,122:322-330.
    [135]C.Macgregor, J. C. Fisher. A Velocity-modified Temperature for the Plastic Flow of Metals[J]. Journal of Applied Mechanics.1946,13:11-16.
    [136]T.Marusich, M.Ortiz. Modeling and Simulation of High-speed Machining [J]. International Journal of Numerical Methods in Engineering,1995 38:3675-3694.
    [137]F.J. Zerilli, R.W. Armstrong. Dislocation-mechanics-based Constitutive Relations for Material Dynamics Calculations[J]. Journal of Applied Physics, 1987,61(5):1816-1825.
    [138]G.R.Johnson, W.H.Cook. A constitutive model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperature[J]. Proceedings of the 7th International symposium on Ballistics,1983, Netherlands:541-547.
    [139]E.Usui, T.Shirakashi, T.Kitagawa. Analytical Prediction of ThreeDimensional Cutting Process (part3)[J].Journal of Engineering for Industry,1978,100: 236-243.
    [140]戴振东.摩擦磨损的热力学研究现状和展望[M].中国科学E,2009,39(7):1211-1215.
    [141]高职高专化学教材编写组.物理化学[M].北京:高等教育出版社,2000:40.
    [142]肖纪美,朱逢吾.材料能量学[M].上海:上海科学技术出版社,1999:579-581.
    [143]M.Z. Zhang,Y.B. Liu,H. Zhou.Wear mechanism Maps of Uncoated HSS Tools Drilling Die-cast Aluminum alloy[J]. Tribology International,2001, 34:727-731.
    [144]中国航空材料手册编写委员会.中国航空材料手册(第2卷)变形高温合金铸造高温合金[M].北京:中国标准出版社,2001:175.
    [145]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出社,1990:101-141.
    [146]丁皓江,何福保,谢贻权等.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1989:198-220.
    [147]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出社,1999:24-26.
    [148]黄志钢,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究[J].中国机械工程,2003,14(10):846-849.
    [149]E.Usui,T.Shirakashi.Mechanics of Machining from Descriptive to Predictive Theory,on the Art of Cutting Metal-75 Years Later[J].New York:ASME PED,1982:13-30.
    [150]K.Iwata,K.Osakada,Y.Terasaka, et al. Process Modeling of Orthogonal Cutting by Rigid-plastic Finit Element[J]. Journal of Engineering Materials and Technology,1984,106(2):132-138.
    [151]周筑宝,唐松花.功耗率最小与工程力学中的各类变分原理[M].科学出版社,2007,9:2.
    [152]G.Z. Voyiadjis, A.H.Almasri. A Physically based Constitutive Model for Fee Metals with Applications to Dynamic Hardness[J]. Mechanics of Materials.2008,40:549-563.
    [153]N.Fang, H.T.Fronk.Method for Modeling Material Constitutive Behavior[P]. United States Patent, US7240562B2,2007,6.
    [154]M.Peters, J.Hemptenmacher, J.Kumpfert, et al. Structure and Properties Characterization of Ceramic Coatings Produced on Ti-6A1-4V Alloy by Microarc Oxidation in Aluminate Solution [J].Material Letters.2002,52(6): 435-441.
    [155]K.Hayakawa,T.Nakamura,S.Tanaka. Elastic-plastic Behavior of WC-Co Cemented Carbide Used for Forging Tool Considering Anisotropic Damage and Stress Unilaterality. International Journal of Damage Mechanics,2009.
    [156]严群,冯庆芬.材料科学基础[M].北京:国防工业出版社,2009:175.
    [157]D.A.Taminiau,J.H.Dautzenberg. How to Understand Friction and Wear in Mechanical Working Process[J].International Journal of Forming Processes.2005.3(25):62-65.
    [158]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [159]T.Wong, W.Kim, P.Kwon. Experimental Support for a Model-based Prediction of Tool Wear.Wear,2004,257:790-798.
    [160]周泽华.金属切削理论[M].北京:机械工业出版社:1992.
    [161]H.R.Ogden,R.I.Jaffee, F.C.Holden.Trans[J].AIME.1955,203:73-80.
    [162]谭树松.有色金属材料学[M].北京:冶金工业出版社,1993:110.
    [163]吴会强.Fe3Al/Q235真空扩散焊工艺及扩散机理研究[D].山东大学硕士学位论文,2001:9.
    [164]J.L.Margrave, J.Molecular. Constants of Carbon Monoxide at v= 0,1,2, and 3. Rutgers.edu[J].Journal of Chemical Education.1955;32:520-524.
    [165]D.R. Stull, G.C. Sinke.Thermodynamic. Properties of the Elements[J]. Washington:Am.Chemical Soc,1956.
    [166]南京工学院,无锡轻工学院.金属切削原理[M].福州:福建科学技术出版社,1984:119.
    [167]司马琼.金属切削原理及应用[M].长沙:湖南科学技术出版社,1982:198.
    [168]徐淑芬,倪哲明,夏盛杰,等.Mg/Al双金属氧化物吸附Cr(VI)的动力学机理[J].硅酸盐学报,2009,37(5):773-782.
    [169]张士军.涂层刀具切削温度及其测试技术研究[D].山东大学博士学位论文,2009.
    [170]湛垦华,沈小峰,等.普利高津与耗散结构理论[M].西安:陕西科学技术出版社,1982:112-117.
    [171]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986:112-117;71;71.
    [172]邵芳,刘战强,万熠.基于热力学熵的金属切削液比热容的选用研究[J].武汉理工大学学报,2008,30(8):82-85.
    [173]韩步愈.金属切削原理与刀具[M].北京:机械工业出版社,1989:60-63.
    [174]H.C.Meng, K.C.Ludema. Wear Models and Predictive Equations:Their Form and Content[J]. Wear,1995,181-183:443-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700