铣削加工过程物理仿真及其在航空整体结构件加工变形预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体结构件的数控加工变形是航空制造技术所面对的最突出问题之一,严重地阻碍了航空制造业的发展。因此,实现航空整体结构件数控加工变形的预测和控制具有重大的理论意义和工程应用价值。本文以加工变形预测为目标,采用理论分析、力学建模、有限元模拟和实验验证等手段,对航空整体结构件铣削加工过程物理建模与仿真关键技术进行了深入研究。
     第一章阐述了论文研究的背景和意义,分别总结了切削加工过程物理仿真和航空整体结构件加工变形的国内外研究现状,提出了本文的研究目标、意义、内容和总体框架。
     第二章在铣削加工机理理论分析的基础上,将复杂的铣削加工过程等效简化为基本的直角/斜角切削过程的组合。进而,通过正交直齿铣削实验,建立了硬质合金刀具切削加工航空铝合金7050-T7451过程中切削基本量与切削参数之间的经验公式,为后续铣削力和铣削热建模提供基本输入参数。
     第三章基于刀齿微元化思想,建立了铣削力预报机械力学模型和统一力学模型。通过铣削力实验,对比研究了两种铣削力模型的预报精度和各自的优缺点,并间接验证了第二章所建立的切削基本量经验模型的正确性。
     第四章在铣削加工热力学模型简化的基础上,分别针对直齿立铣加工和螺旋齿立铣加工,研究了热源强度解析计算、热载荷离散与动态施加等关键技术,建立了基于给定热源法的工件铣削温度场三维有限元模型,模拟得到单齿进给切削过程中工件温度场的动态变化过程。
     第五章着眼于航空整体结构件数控铣削加工全过程动态物理仿真,架构和开发了数控铣削加工物理仿真原型系统,并深入研究了刀位轨迹文件解析、材料去除、动态铣削载荷施加、网格自适应及动态网格数据维护、接力计算方案等有限元建模与仿真过程自动化关键技术。
     第六章借助数控铣削加工物理仿真原型系统,针对典型航空结构件整体加工变形和局部加工变形问题,分别建立了铣削加工过程有限元模型,预测了零件的加工变形,并通过实验验证了本文所采用的铣削加工全过程有限元建模策略的正确性和有效性。
     第七章对全文的研究工作进行了总结,并对有待进一步研究的内容进行了展望。
The distortion of monolithic components due to CNC machining is one of the most striking problems that aeronautical manufacturing technology has to face up to, and hinders the development of the aeronautical industry seriously. So, it has greatly academic and engineering value to predict and manipulate machining distortion of aeronautical monolithic components. Aim to predict machining distortion, key techniques of physical modeling and simulation in the milling process of aeronautical monolithic components are studied on deeply by using theoretic analysis, mechanics modeling, finite element simulation and experiments verification.
     In chapter 1, the background and significance of this dissertation are introduced firstly. Then, the state of the art in the research of physical simulation in cutting process and machining distortion of the aeronautical monolithic components at home and abroad is summarized. Finally, the research target, contents and overall frame structure of this dissertation are shown.
     In chapter 2, based on theoretic analysis of milling mechanism, complex milling process can be equivalently simplified as combination of fundamental orthogonal/oblique cutting process. Furthermore, through orthogonal straight-tooth milling experiments, empirical equations are established between fundamental cutting variables and cutting parameters when cutting is processed between carbide cutting tool and aeronautical aluminum ally 7050-T7451. The empirical equation is used as basic input variables in the following milling force model and milling temperature model.
     In chapter 3, by cutting edge discretization, mechanistic approach and unified mechanics of cutting approach are used to set up milling force model separately. Then, by milling force experiment, the prediction precision and relative merits of these two models are analyzed, and the validity of empirical equations established in chapter 2 is verified.
     In chapter 4, through the simplicity of heat transfer model, investigation of key techniques, such as analytical calculation of heat flux, thermal load discretization and dynamic enforcement etc. are carried out respectively for straight- and helical-tooth milling process. With given heat flux, a three dimensional finite element model is proposed to simulate the distribution of temperature field in the workpiece.
     In chapter 5, a prototype of physical simulation system is developed to simulate the whole NC milling process of aeronautical monolithic component. The key problems concerned with the finite element modeling and automation of simulating process, such as tool-path file discretization, material removal, dynamic load enforcement, adaptive mesh generation and dynamic mesh data management, restart analysis etc. are studied deeply.
     In chapter 6, with the help of the physical simulation system, two finite element models of milling process, corresponding to the whole- and local machining distortion prediction of typical aerospace components, are proposed respectively, and the distortion is predicted. By experiment verification, it can be concluded that the finite element modeling strategy of whole milling process proposed in this dissertation is correct and valid.
     In chapter 7, systematical summary for the whole work in this dissertation is given, and the future work is discussed.
引文
[1] 张峥蝾,袁清珂.21世纪制造业的特点及其关键技术.成组技术与生产现代化,1998,(4):3-5
    [2] 王亚军,吴希孟,刘湘.航空制造技术发展趋势.科技中国,2004,8:44-47
    [3] 刘强,郇极.航空航天制造与现代数控技术及装备.中国制造业信息化,2005,3:64-66
    [4] 史靠军.航空工业数控加工技术的现状及发展趋势.成都:现代切削与测量工程(国际)研讨会,2004
    [5] 查治中,杨彭基.数控技术在飞机制造中的应用.北京:国防工业出版社,1992
    [6] 顾诵芬.航空航天科学技术(航空卷).济南:山东教育出版社,1998
    [7] 林胜.HSM在航空制造业中的应用.航空制造技术,2003,3:25-28,76
    [8] 康小明.大型整体结构件加工变形问题研究[博士后出站报告].杭州:浙江大学.2002
    [9] 郭诚志,孟凡新,付燕松.框接头的数控加工.航天工艺,1998,5:12-15
    [10] 吴恒温.整体结构件的机械加工.航天工艺,1989,4:1-6
    [11] 王炎.飞机整体结构件数控加工技术应用中的问题与对策.航空制造工程,1998,4:28-30
    [12] 李勇,李志成等.致胜21世纪-美国21世纪综合制造技术发展战略综述.北京先进柔性制造技术咨询公司,2002
    [13] the IMTR Roadmapping Project Team. An Overview of the IMTR Roadmaps. IMTI, Inc. 2002
    [14] 凌维业,芮执元,杨萍.计算机仿真在制造业的应用与发展.机械研究与应用,1999,12(4):5-6
    [15] 柳百成.21世纪的材料成形加工技术.航空制造技术,2003,6:17-21,69
    [16] 肖田元 韩向利等.虚拟制造的定义与关键技术.清华大学学报(自然科学版),1998,38(10):102-106
    [17] 肖田元,郑会永,王新龙,韩向利.虚拟制造体系结构研究.计算机集成制造系统,1999,1:33-38
    [18] 黄雪梅,赵明扬,陈书宏.加工过程物理仿真技术研究.组合机床与自动化加工技术,2002,9:8-11
    [19] 韩向利,杨刚,肖田元.CIMS工程中的加工仿真技术.高技术通讯,1999,9:1-5
    [20] 伍铁军.数控加工仿真关键技术研究与软件开发[博士学位论文].南京:南京航空航天大学,2001
    [21] 陈秀生,张承瑞,刘日良,兰红波.数控加工物理仿真技术研究.组合机床与自动化加工技术,2006,9:8-11
    [22] Vericut Optipath Software, CGTech Corporation, 2003, http://www.cgtech.com
    [23] 周济,周艳红.数控加工技术.北京:国防工业出版社,2002
    [24] Iwata K. A. Modeling and simulation architecture for virtual manufacturing systems. Annals of the CIRP, 1995, 44(1): 399-402
    [25] Li H. Z., Li X. P. Modeling and simulation of chatter in milling using a predictive force model. International Journal of Machine Tools & Manufacture, 2000, 40:2047-2071
    [26] 黄雪梅,赵明杨,王启义.虚拟数控车削物理仿真系统的研究与开发.中国机械工程,2002,13(15):1336-1338
    [27] 中山一雄.金属切削原理.上海:上海科学技术出版社,1983
    [28] 小野浩二,河村末久,北野昌则等.理论切削学.北京:国防工业出版社,1985
    [29] Chiou C. H., Hong M. S., Ehmann K. F. Instantaneous shear plane based curing force model for end milling. Journal of Material Processing Technology, 2005, 170:164-180
    [30] Yun W. S., Cho D. W. Accurate 3-D curing force prediction using curing condition independent coefficients in end milling. International Journal of Machine Tools & Manufacture, 2001, 41: 463~478
    [31] Liu X. W., Cheng K., Webb D., Luo X. C. Prediction of curing force distribution and its influence on dimensional accuracy in peripheral milling. International Journal of Machine Tools & Manufacture, 2002, 42:791-800
    [32] Chang C. S. Prediction of cutting forces for the milling of plane carbon steel using chamfered main cutting edge tools. Journal of Materials Processing Technology, 2000, 105:302-326
    [33] Young H., Mathew P., Oxley P. L. B. Predicting cutting forces in face milling. International Journal of Machine Tools & Manufacture, 1994, 34(6): 771-783
    [34] Zheng H. Q., Li X. P., Wong W. S., Nee A. Y. C. Theoretical modeling and simulation of curing forces in face milling with curer run out. International Journal of Machine Tools & Manufacture, 1999, 39:2003-2018
    [35] Li X. P., Nee A. Y. C., Wong Y. S., Zheng H. Q. Theoretical modelling and simulation of milling forces. Journal of materials Processing Technology, 1999, 89-90:266-72
    [36] Li H. Z., Zhang W. B., Li X. P. Modelling of curing forces in helical end milling using a predictive machining theory. International Journal of Mechanical Sciences, 2001, 43:1711-1730
    [37] Li X. P., Li, H. Z. Theoretical modeling of cutting forces in helical end milling with cutter runout, International Journal of Mechanical Scienes, 2004, 46:1399-1414
    [38] Armarego E. J. A. Practical implications of classical thin shear zone cutting analysis, UNESCO/CIRP seminar on manufacturing technology, Singapore, 1983, 167-182
    [39] Armarego E. J. A., Whitfield R. C. Computer based on modeling of popular machining operations for forces and power prediction, Annals of the C1RP, 1985, 34(1): 65-69
    [40] Armarego E. J. A., Smith A. J. R., Gong Z. J. Four plane facet point drills-basic design and cutting model predictions, Annals of the CIRP, 1990, 39(1): 41-45
    [41] Armarego E. J. A., Deshpande N. P. Computerized end milling force predictions with cutting models allowing for eccentricity and cutter deflections, Annals of the CIRP, 1991, 40(1): 25-29
    [42] Armarego E. J. A. The unified generalized mechanics of cutting approach-a step towards a house of predictive performance models for machining operations. Machining Science and Technology, 2000, 4(3): 319-362.
    [43] Carrino L., Giorleo G., Polini W., Prisco U. Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part Ⅰ: three-dimensional theory. International Journal of Machining Tools & Manufacture, 2002, 42:1509-1515
    [44] Budak E., Altintas Y., Armarego E. J. A. Prediction of milling force coefficient from orthogonal cutting data. ASME Journal of Engineering for Industry, 1996, 118:216-224
    [45] Lee P., Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data. International Journal of Machining Tools & Manufacture, 1996, 36(9): 1059-1072
    [46] Merdol S. D., Altintas Y. Mechanics and dynamics of serrated cylindrical and tapered end mills, ASME Journal of Manufacturing Science & Engineering, 2004, 126:317-326
    [47] 周泽华主编.金属切削理论.北京:机械工业出版社,1992
    [48] 李亮.钛合金高速铣削加工机理及工艺研究[博士学位论文].南京:南京航空航天大学,2004
    [49] 王立涛,柯映林,黄志刚.航空铝合金7050-T7451铣削力模型的试验研究.中国机械工程,2003,14(19):1684—1686
    [50] 郭魂.航空多框整体结构件铣削变形机理与预测分析研究[博士学位论文].南京:南京航空航天大学,2005
    [51] Martellotti M. E. An analysis of the milling process, Transactions of the ASME, 1941, 63: 667-700.
    [52] Koenigsberger F., Sabberwal A. J. P. An investigation of the cutting force pulsations during the milling process, International Journal of Machine Tool Design and Research, 1961, 1:15-33
    [53] 万敏.薄壁件周铣加工过程中表面静态误差预测关键技术研究[硕士学位论文].西安:西北工业大学.2005
    [54] Kline W. A., DeVor R. E., Shareef I. A. The prediction of surface accuracy in end milling. Transactions of the ASME Journal of Engineering for Industry, 1982, 104:272-278
    [55] Liao C. L., Tsai J. S. Dynamic response analysis in end milling using pretwisted beam finite element. Transactions of the A SME Journal of Vivration and Acoustics, 1995, 117:1-10
    [56] Tsai J. S., Liao C. L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces. Journal of Materials Processing Technology, 1999, 94:235-246
    [57] Tlusty J., MacNeil P. Dynamics of cutting force in end milling. Annals of the CIRP, 1975, 24: 21-25
    [58] Altintas Y., Spence A. End milling force algorithms for CAD systems. Annals of the CIRP, 1991, 40(1): 31-34
    [59] Budak E., Altintas Y. Peripheral milling conditions for improved dimensional accuracy. International Journal of Machine Tools & Manufacturing, 1994, 34(7): 907-918
    [60] 倪其民,李从心,吴光琳,阮雪榆.考虑刀具变形的球头铣刀铣削力建模与仿真.机械工程学报,2002,38(3):108-112
    [61] Fu H. J., DeVor R. E., Kapoor S. G. A mechanistics model for the prediction of the force system in face milling operations. ASME Journal of Engineering for Industry, 1984, 106:81-88
    [62] Wang, J. J. J., Liang S. Y., Book W. J. Convolution analysis of milling force pulsation. ASME Journal of Engineering for Industry, 1994, 116:17-25
    [63] Melkote S. N., Endres W. J. The importance of including size effect when modeling slot milling. ASME Journal of Manufacturing Science and Engineering, 1998, 120:68-75
    [64] Jayaram S., Kapoor S. G., DeVor R. E. Estimation of the specific cutting pressures for mechanistic cutting force models. International Journal of Machine Tools & Manufacturing, 2001, 41:265-281
    [65] Larue A. Anselmetti B. Deviation of a machined surface in flank milling. International Journal of Machine Tools & Manufacture, 2003, 43:129-138
    [66] 黄田,弓占勇,张大卫,宋健伟.考虑几何偏心的螺旋铣刀铣削力建模方法,天津大学学报,1995,28(2):155-162
    [67] Kline W. A., DeVor R. E., Lindberg J. R. The prediction of cutting forces in end milling with application to cornering cuts, International Journal of Machine Tool Design and Research, 1982, 22:7-22
    [68] Kline W. A., DeVor R. E. The effect of runout on cutting geometry and forces in end milling, International Journal of Machine Tool Design and Research, 1983, 23:123-140
    [69] Sutherland J. W., DeVor R. E. An improved method for cutting force and surface error prediction in flexible end milling systems, ASME Journal of Engineering for Industry, 1986, 108: 269-279
    [70] 武凯,何宁,姜澄宇等.立铣空间力学模型分析研究,南京航空航天大学学报,2002,34(6):553-556
    [71] Chiang S. T., Tsai C. M., Lee A. C. Analysis of cutting forces in ball-end milling. Journal of Materials Processing Technology, 1995,47:231-249
    [72] Zhu R., Kapoor S. G., DeVor R. E. Mechanistic modelling of the ball end milling process for multi-axis machining of free-form surface. ASME Journal of Manufacturing Science and Engineering, 2001,123:369-379
    [73] Albrecht P. New development in the theory of the metal-cutting process - Part I. The ploughing process in metal cutting. ASME Journal of Engineering for Industry, 1960,82:348-358
    [74] Alvrecht P. New development in the theory of the metal-cutting process - Part II. The theory of chip formation. Transactions of the ASME Journal of Engineering for Industry, 1961, 83: 557-571
    [75] Endres W. J., DeVor R. E., Kapoor S. G. A dual-mechanism approach to the prediction of machining forces, Part 1: Model development. ASME Journal of Engineering for Industry, 1995, 117:526-533
    [76] Endres W. J., DeVor R. E., Kapoor S. G. A dual-mechanism approach to the prediction of machining forces, Part 2: calibration and validation. ASME Journal of Engineering for Industry, 1995,117:534-541
    [77] Yoon C, Kim Y. G Cutting dynamic force modeling of endmilling operation, Journal of Materials Processing Technology, 2004, 155-156: 1383-1389
    [78] Wang J. J. J., Zheng C. M. Identification of shearing and ploughing cutting constants from average forces in ball-ed milling, International Journal of Machine Tools & Manufacture, 2002, 42: 695-705.
    [79] Zheng C. M., Wang J. J. J. Estimation of in-process cutting constants in ball-end milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003,217:45-56
    [80] Gradisek J., Kalveram M., Weinert K. Mechanistic identification of specific force coefficients for a general end mill. International Journal of Machine Tools & Manufacture, 2004, 44(4): 401-414
    [81] Yucesan G., Altintas Y. Prediction of ball end milling forces. ASME Journal of Engineering for Industry, 1996,118(1): 95-103
    [82] Bailey T., Elbestawi M. A., Wardany T. I. E, Fitzpatrick P. Generic simulation approach for multi-axis machining, Parts 1 and 2, Transactions of the ASME Journal of Manufacutring Science and Engineering, 2002, 124(3):624-642
    [83] Mackerle J. Finite element analysis and simulation of machining: a bibliography(1976~1996). Journal of Materials Processing Technology, 1999, 86(1-3): 17-44
    [84] Mackerle J. Finite element analysis and simulation of machining: an addendum a bibliography(1996~2002). International Journal of Machine Tools & Manufacture, 2003, 43(1): 103-114
    [85] 方刚,曾攀.切削加工过程数值模拟的研究进展.力学进展,2001,31(3):394-404
    [86] 胡韦华,王秋成,胡晓冬,刘云峰.切削加工过程数值模拟的研究进展.南京航空航天大学学报,2005,37:194-198
    [87] Ozel T. Investigation of high speed flat end milling process-prediction of chip formation, cutting forces, tool stresses and temperatures[Doctoral thesis]. The Ohio State University, USA, 1998
    [88] Ozel T., Altan T. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling, International Journal of Machine Tools & Manufacture 2000, 40(5): 713-738.
    [89] 黄志刚,柯映林,董辉跃.基于正交切削模拟的直齿圆柱铣刀前角优化,浙江大学学报(工学版),2005,39(6):780-784
    [90] Dong Huiyue, Ke Yinglin. A simulation of 3D chip shaping of aluminum alloy 7075 in milling processes, Transactions of Nonferrous Metals Society of China, 2005, 15(6): 1315-1321
    [91] 董辉跃,柯映林,成群林.航空铝合金材料三维铣削加工的有限元模拟与分析,浙江大学学报(工学版),2006,5:759-762
    [92] 成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究.航空学报,2006,27(4):724-727
    [93] Szecsi T. Cutting force modeling using artificial neural networks. Journal of Materials Processing Technology, 1999, 92-93:344-349
    [94] Alique A., Haber R. E., Haber R. H. etc. A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case. Proceedings of the 15th International Symposium on Intelligent Control, Patras, Greece, 2000, pp: 121-125
    [95] Zuperl U., Cus F. Tool cutting force modeling in ball-end milling using multilevel perceptron, Journal of Materials Processing Technology, 2004, 153-154:268-275
    [96] Radhakrishnan T. Milling force prediction using regression and neural networks, Journal of Intelligent Manufacturing, 2005, 16:93-102
    [97] Kim T. Y., Woo J., Kim J. Indirect cutting force measurement in multi-axis simultaneous NC milling processes. International Journal of Machine Tools & Manufacture, 1999, 39(11): 1717-1731
    [98] Tandon V., Mounayri H. E. A novel artificial neural networks force model for end milling. International Journal of Advanced Manufacturing Technology, 2001, 18(10): 693-700
    [99] Tandon V., Mounayri H. E., Kishawy H. NC end milling optimization using evolutionary computation, International Journal of Machine Tools & Manufacture, 2002, 42(5): 595-605
    [100] Briceno J. F., Mounayri H. E., Mukhopadhyay S. Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process. International Journal of Machine Tools & Manufacture, 2002, 42(6): 663-674
    [101] Jaeger J. C. Moving Sources of Heat and the Temperature at Sliding Contacts, Journal and Proceedings Royal Society of New South Wales, 1942, 76:133-228
    [102] Trigger K. J., Chao B. T. An analytical evaluation of metal cutting temperature, ASME Journal of Engineering for Industry, 1951, 73:57-68
    [103] Chao B. T., Trigger K. J. The significance of thermal number in metal machining. ASME Journal of Engineering for Industry, 1953, 75:109-120
    [104] Loewen E. G., Shaw M. C. On the analysis of cutting tool temperatures. ASME Journal of Engineering for Industry, 1954, 76:217-231.
    [105] Boothroyd G.. Fundamentals of Metal Machining and Machine Tools. McGraw-Hill, New York, 1975
    [106] Wright P. K., McCormick S. P., Miller T. R. Effect of rake face design on cutting tool temperature distribution. ASME Journal of Engineering for Industry, 102:123-128
    [107] Venuvinod P. K., Lau W. S. Estimation of rake temperatures in free oblique cutting. International Journal of Machine Tool Design and Research, 1986, 26(1): 1-14
    [108] Stephenson D. A. Assessment of steady-state metal cutting temperature models based on simultaneous infrared and thermocouple Data," ASME Journal of Engineering for Industry, 1991, 113:121-128
    [109] Kapoor S. G. An analytical model for prediction of tool temperature fields during continuous and interrupted cutting. ASME Journal of Engineering for Industry, 1994, 116:116-135
    [110] Richardson D. J., Keavey M. A., Dailami F. Modelling of cutting induced workpiece temperatures for dry milling. International Journal of Machine Tools & Manufacture, 2006, 46: 1139-1145
    [111] 郭强,谭光宇,董丽华,李振加.三维槽型铣刀片铣削平均温度数学模型,哈尔滨理工大学学报,2000,5(6):33-36
    [112] 苌浩.高速铣削加工中铣削温度的研究[硕士学位论文].南京:南京航空航天大学,2003
    [113] 周忆,梁锡昌.超高速铣削加工的温度场计算及生产应用.中国机械工程,2003,14(13):1158-1160
    [114] 阎海鹏.高速铣削铝合金切削温度的研究[硕士学位论文].南京:南京航空航天大学,2004
    [115] Chan C. L., Chandra A. A boundary element method analysis of the thermal aspects of metal cutting processes. ASME Journal of Engineering for Induetry, 1991, 113:311-319
    [116] Tanaka Y., Honma T., Kaji I. On mixed element solutions of convection-diffusion problems in three dimensions. Applied Mathematics Modelling, 1986, 10:170-175
    [117] Boothroyd G Temperatures in orthogonal metal cutting. Proceedings of the Institution of Mechanical Engineers, 1963, 177 (29): 789-810
    [118] Levy E. K., Tsai C. L., Groover M. P. Analytical investigation of the effect of tool wear on the temperature variations in a metal cutting tool. ASEM Journal of Engineering for Industry, 1976, 98:251-257
    [119] Smith A. J. R., Armarego E. J. A. Temperature prediction in orthogonal cutting with a finite difference approach. Annals of the CIRP, 1981, 30(1): 9-13
    [120] Tay A. E., Stevenson M. G, Davis G. D. Using the finite element method to determine temperature distribution in orthogonal machining. Proceedings of the Institution of Mechanical Engineers, 1974, 188:627-638
    [121] Stevenson M. G, Wright P. K., Chow J. G. Further developments in applying the finite element method to the calculation of temperature distributions in machining and comparisons with experiment. ASME Journal of Engineering Industry, 1983, 105:149-154
    [122] Dawson P. R., Malkin S. Inclined moving heat source model for calculating metal cutting temperatures. ASME Journal of Engineering Industry, 1984, 106:179-186
    [123] Ceretti E., Fallbohmer P., Wu W. T., Altan T. Application of 2D FEM to chip formation in orthogonal cutting. Journal of Materials Processing Technology, 1996, 59:169-180
    [124] Shet C., Deng X. Finite element analysis of the orthogonal metal cutting process. Journal of Material Processing Technology, 2000, 105: 95-109
    [125] Hamid A. A., Wifi A. S., Gallab M. A three dimensional finite element there-mechanical analysis of intermittent cutting process. Journal of Materials Processing Technology, 1996, 56:643-654
    [126] Lazoglu I., Altintas Y. Prediction of tool and temperature in continuous and interrupted machining. International Journal of Machine Tools & Manufacture, 2002, 42:1011-1022
    [127] Li Zhengjia, etc. Mathematical model of milling temperature and temperature field analysis for three-dimensional complex groove milling insert. Chinese Journal of Mechanical Engineering, 2003, 16(4): 340-343
    [128] 陈明,袁人炜,凡孝勇,严隽琪.三维有限元分析在高速铣削温度研究中应用.机械工程学报,2002,38(7):76-79
    [129] 袁伟军.铣削加工过程稳定性计算机仿真及实验研究[硕士学位论文].北京:北京工业大学,2003
    [130] 张智海.铣削工艺系统瞬态力学模型和非线性动力学特性的研究[博士学位论文].北京:清华大学,2001
    [131] 唐季校.高速切削稳定性及其动态优化研究[博士学位论文].济南:山东大学,2005
    [132] 陈建满.高速铣削表面形貌的仿真与实验研究[硕士学位论文].南京:南京航空航天大学,2002
    [133] 胡家国.铣削力及铣削表面微观形貌分纬数的研究[硕士学位论文].南京:南京理工大学,2003
    [134] 高彤.铣削加工表面形貌及端铣加工变形仿真研究[硕士学位论文].西安:西北工业大学,2004
    [135] 徐安平,曲云霞,段国林等.基于工件网格划分的周铣加工表面形貌仿真算法.西安交通大学学报,2001,35(5):502-505
    [136] 王霄,刘会霞,杨润党,蔡兰.虚拟数控加工过程物理仿真模型的建立.计算机仿真,2003,20(4):88-91
    [137] Takata S., Tsai M. D., Inui M., etc. A cutting system for machinability evaluation using a workpiece model. Annals of the CIRP, 1993, 42(1): 417-421。
    [138] Tarng Y. S., Chang W. S. Dynamic NC simulation of milling operation. Computer-Aided Design, 1993, 25(12): 769-775
    [139] Armarego E. J. A., Deshpande N. P. Force prediction models and CAD/CAM software for helical tooth milling processes, Part Ⅰ basic approach and cutting analysis. International Journal of Production Research, 1993, 31(8): 1991-2009
    [140] Armarego E. J. A., Deshpande N. P. Part Ⅱ peripheral milling operations. 1993, 31(10): 2319-2336
    [141] Armarego E. J. A., Deshpande N. P. Part Ⅲ End milling and slotting operations. 1994, 32(7): 1715-1738
    [142] Spenee A., Altintas Y. A solid modeler based milling process simulation and planning system. ASME Journal of Engineering for Industry, 1994, 116:61-69
    [143] Tamg Y. S., Cheng C. I., Kao J. Y. Modeling of three-dimensional numerically controlled end milling operations. International Journal of Machine Tools & Manufacture, 1995, 35(7): 939-950
    [144] Ko J. H., Yun W. S., Cho D. W., Ehmann K. F. Development of a virtual machining system, part 1, 2, 3. International Journal of Machine Tools & Manufacture, 2002, 42:1595-1626
    [145] 黄雪梅.虚拟数控车削加工物理仿真系统研究[博士学位论文].沈阳:东北大学,2001
    [146] 姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制.中国机械工程,2000,11(5):520-524
    [147] 倪其民,李从心,阮雪榆.基于实体造型的球头铣刀三维铣削力仿真.上海交通大学学报,2001,35(7):1003-1007
    [148] 刘强,尹力.一种面向数控工艺参数优化的铣削加工过程动力学仿真系统研究.中国机械 工程,2005,16(13):1146-1150
    [149] 熊光楞,范文慧.21世纪制造业的建模与仿真技术.系统仿真学报,2004,16(9):1884-1886
    [150] 王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[博士学位论文].杭州:浙江大学,2003
    [151] 黄志刚.航空整体结构件铣削加工变形的有限元模拟理论及方法研究[博士学位论文].杭州:浙江大学,2003
    [152] 孙杰.航空整体结构件数控加工变形校正理论和方法研究[博士学位论文].杭州:浙江大学,2004
    [153] 董辉跃.航空整体结构件加工过程的数值仿真[博士学位论文].杭州:浙江大学,2004
    [154] 成群林.航空整体结构件切削加工过程的数值模拟与实验研究[博士学位论文].杭州:浙江大学,2006
    [155] Wang S. P., Padmanaban S. A new approach for FEM simulation of NC machining processes. AIP Conference Proceedings, 2004, 712(1): 1371-1376
    [156] MSC Software Corporation. Theory and user information, MSC.Marc Version, 2005
    [157] 孙杰,柯映林.残余应力对航空整体结构件加工变形的影响分析.机械工程学报,2005,41(2):117-122
    [158] Wang Z. J., Chen W. Y., Zhang Y. D., etc. Study on the machining distortion of thin-walled part caused by redistribution of residual stress. Chinese Journal of Aeronautics, 2005, 18(2): 175-179
    [159] Guo H., Zuo D. W., etc. Effect of too-path on milling accuracy under clamping. Transactions of Nanjing University of Aeronautics & Astronautics, 2005, 22(3): 234-239
    [160] 王树宏.航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究[博士学位论文].南京:航空航天大学,2005
    [161] 梅中义,王运巧,范玉青.飞机结构件数控加工变形控制研究与仿真.航空学报,2005,26(2):234-239
    [162] Tsai J. S., Liao C. L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpiecs. Journal of Materials Processing Technology, 1999, 94:235-246
    [163][163] 武凯,何宁,廖文和.薄壁腹板加工变形规律及其变形控制方案的研究.中国机械工程,2004,15(8):670-674
    [164] 万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究.航空学报,2005,26(5):598-603
    [165] Ratchev S., Liu S., Huang W., Becker A. A. Milling error prediction and compensation in machining of low-rigidity parts. International Journal of Machine Tools & Manufacture, 2004, 44:1629-1641
    [166] 魏丽,郑联语.改进薄壁零件数控加工质量的进给量局部优化方法.航空精密制造技术, 2001,37(4):10-14
    [167] 王志刚,何宁,武凯等.薄壁零件加工变形及控制方案.中国机械工程,13(2):114-117
    [168] 王增强,孟晓娴,任军学,胡创国.复杂薄壁零件数控加工变形误差控制补偿技术研究.机床与液压,2006,4:61-63
    [169] 董辉跃.铝合金高速加工及整体结构件加工变形的试验与仿真研究[博士后出站报告].杭州:浙江大学,2006
    [170] Shaw M. C. Metal Cutting Priciples. Oxford: Clarendon Press, 1984
    [171] Armarego E. J. A. and Brown R. H. The Machining of Metals. Prentice-Hall, 1969
    [172] Nakayama K. and Arai M. On the storage of data on metal cutting forces. Annals of the CIRP, 1976, 25(1): 13-18
    [173] Ueda N. and Matsuo T. An investigation of some shear angle theories. Annals of the CIRP. 1986, 35(1): 27-30
    [174] Yang M., Park H. The prediction of cutting force in ball end milling, International Journal of Machining Tools and Manufacture, 1991, 31(1): 45-54
    [175] 艾兴.高速切削加工技术,北京:国防工业出版社,2003
    [176] Wallace P. W. An investigation on the friction between chip and tool in metal cutting[fellowship thesis]. Department of Mechanical Engineering, University of Salford, England, 1962
    [177] Zorev N. N. Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. International Research in Production Engineering, 1963, pp: 42-49
    [178] 张铁茂,丁建国.试验设计与数据处理.北京:兵器工业出版社,1990
    [179] Komanduri R. and Hou Z. B. Tribology in metal cutting—some thermal issues, ASME Journal of Tribology, 2001, 123:799-815
    [180] Abukhshim N. A., Mativenga P. T., M. A. Sheikh. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools & Manufacture, 2006, 46:782-800
    [181] McFeron D. E. and Chao B. T. Transient interface temperatures in plain peripheral milling, Transactions of ASME, Journal of Engineering for Industry, 1958, 80:321-329.
    [182] 王勖成.有限单元法.北京:清华大学出版社,2003
    [183] 张定华,汪文虎.难加工材料切削机理研究的新进展.力学进展,2004,34(3):373-378
    [184] 毕运波,柯映林,成群林,董辉跃.基于物理学的铣削过程仿真关键技术研究.浙江大学学报(工学版),2007,41(4):541-546
    [185] 黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究,中国机械工程,2004,15(11):991-995
    [186] Yoshitaka W., Hiroshi O. Effective adaptation technique for hexahedral mesh. Concurrency and Computation: Practice and Experience, 2004, 14(6-7): 451-463
    [187] Samet H. Applications of spatial data structure: computer graphics, image processing and GIS. Addison-Wesley Publishing Company, 1990
    [188] 柯映林,董辉跃.7075铝合金厚板预拉伸模拟分析及其在淬火残余应力消除中的作用[J].中国有色金属学报,2004,14(4):639-645
    [189] ABAQUS Scripting User's Manual, Version 6.5, Hibbitt, Karlsson & Sorensen Inc., 2005
    [190] 王运巧,梅中义,范玉青.航空薄壁弧形件加工变形的非线性有限元分析.航空制造技术,2004.6:84-86
    [191] 黄志刚,柯映林,董辉跃.框类整体结构件铣削加工顺序的有限元模型.浙江大学学报(工学版),2005,39(3):368-372
    [192] 毕运波,柯映林,董辉跃.航空铝合金薄壁件加工变形有限元仿真与分析.浙江大学学报(工学版),录用待发表
    [193] 李亮.薄壁零件的加工振动分析与加工工艺研究[硕士学位论文].南京:南京航空航天大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700