高速铣削热缩加长刀杆与刀具配合特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型深型腔注塑模具是大屏幕彩色电视机外壳、电脑显示器、汽车仪表盘、汽车车门内饰件等大型注塑制品的关键制造装备,具有深型腔复杂多型面结构、加工精度和表面质量要求高、制造周期长等特点。当前该类模具的制造过程过分依赖电火花加工与手工抛光与打磨、过分依赖制造者的个人技能与经验等,而使得加工质量难以得到有效保证、整个制造周期大大延长而很难满足日益加剧的市场竞争需要。热缩加长刀杆(Lengthened Shrink-fit Holder-LSFH)与刀具配合因其具有高夹紧强度、高回转平衡性、易于到达和接近深型腔、能满足复杂多型面模具加工对刀具多样性的要求等特点,使其成为实现大型深型腔模具高速、高效高质量铣削加工的重要手段和途径。目前,由于缺乏对LSFH-刀具配合的配合特性、及使用LSFH时的加工参数优选、加工精度控制等方面的深入研究,使其在高速铣削加工中的优势得不到充分发挥。
     本文根据大型深型腔模具对适合其高速铣削加工刀具系统的迫切需要,着重从LSFH-刀具配合的接触特性、径向夹持刚度、动力学特性、加工参数优化以及加工变形误差补偿等方面进行深入研究,并通过试验验证了研究过程中所建分析模型的正确性以及加工参数优化与误差补偿方法的有效性和实用性。
     作为动力学特性研究和加工变形误差补偿的前提和基础,首先对基于LSFH-刀具配合的高速铣削加工进行了铣削力建模,建立基于反向传播神经网络(Back-Propagation neural network-BPNN)的瞬态铣削力预测模型。通过对实验数据的适当处理,模型把时间参量引入输入向量,从而克服了以往神经网络切削力预测模型只能预测平均切削力而不能预测瞬态切削力的局限;预测模型采用梯度下降动量学习函数和梯度下降动量BP算法训练函数,避免了单纯的梯度下降法使网络训练易收敛到局部最小值的不足。检验结果表明预测模型具有很好的预测精度,高于通常的铣削力解析模型。
     在接触特性及径向夹持刚度研究方面,建立了参数化的有限元模型,并给出了一种合理确定模型中接触刚度系数的新方法。研究了初始基本过盈量、配合长度、配合直径以及高速旋转状态下的离心力对等效应力、接触变形与接触压力等的影响。在此基础上首次引入接触变差系数的概念及其计算方法,给出了实现LSFH-刀具配合的合理接触控制的有效方法。研究了不同配合过盈量、夹持长度及主轴转速对径向夹持刚度的影响,并对不同配合过盈量下的临界弯矩进行了理论界定,建立了静态夹持刚度的有效测量评定方法。研究结果表明:所给出的快速确定LSFH-刀具配合接触刚度系数的迭代算法,既能够保证分析结果的准确,又能够保证分析过程的收敛;应根据不同的刀具配合直径进行合理的接触控制;所给出的合理接触控制方法,既能保证刀具夹持的稳定可靠又能提高LSFH的耐用度;在高转速条件下需充分考虑到离心力对径向夹持刚度的削弱作用,以保证在高转速下实现对刀具安全可靠的夹持;静态径向夹持刚度的评定结果验证了所建有限元仿真模型的正确性,分析结果可为LSFH-刀具配合的设计、选用以及生产实际提供依据。
     在动力学特性研究方面,首次将有限元分析(Finite Element Analysis-FEA)技术和试验模态分析(Experiment Modal Analysis-EMA)技术结合起来建立LSFH-刀具配合的有限元模型综合验证与修正流程。分析研究了刀具悬伸出LSFH的长度、主轴转速对LSFH-刀具配合的动力特性包括固有频率和振型的影响。在动力特性分析的基础上对给定加工工况下的LSFH-刀具配合进行了瞬态动力学分析,并对实际的瞬态位移响应进行了评定。研究结果表明:刀具悬伸长度对固有频率的影响较为显著;当转速超过一定时应充分考虑高转速对动力特性的影响;在高速加工工况下,要准确求取加工过程中LSFH-刀具配合的受力与变形,必需考虑到LSFH-刀具配合的瞬态动力学特性的影响,这样才能得出与实际加工工况相符合的正确结论。实际评定结果验证了数值仿真结果的正确性,所建立的瞬态动力学分析模型能够满足工程需要,可用于实际铣削加工过程分析。
     在使用LSFH高速铣削加工的加工参数优化研究方面,在充分考虑到各约束条件的模糊性的基础上,将LSFH-刀具配合的力学与动力学特性作为加工参数优化的物理约束条件,建立了高速铣削加工过程切削参数模糊优化模型。优化结果表明,与不考虑约束条件模糊性的常规优化结果及刀具手册的推荐参数相比,高速铣削加工时间分别减少5.95%和8.54%,表面粗糙度分别降低5.42%和6.85%。
     在使用LSFH高速铣削加工的加工变形误差补偿研究方面,在前述有限元模型、铣削力模型的建立以及加工参数优化结果的基础上,提出了一种基于铣削力与刀具变形平衡迭代新算法的加工误差补偿方法,实现了高速铣削加工刀具变形误差的离线补偿。加工应用实例表明,加工最大误差由未补偿加工的42μm降低到补偿加工后的9.5μm,使加工误差降低了77.4%。在大型深型腔模具曲面高速铣削加工中,采用本章所提出的离线误差补偿方法,在不牺牲加工效率的情况下能够获得较高的表面加工尺寸精度。
Large-scale and deep cavities injection dies, usually characterized by complex multi-surface, high requirement of machining accuracy, high requirement of surface quality and a long manufacturing cycle, etc., are the key manufacturing equipment to produce the plastic products of the shell of Large-screen color TV sets, computer monitors, car dashboards, interior of vehicle door, etc. At present, the process of manufacturing of such die depends too much on EDM, manual polishing and grinding, personal skills and experience of manufacturer, which make it difficult to guarantee the machining quality, extend the manufacturing cycle greatly and is hard to meet the growing market competition. The matching of lengthened shrink-fit holder (LSFH) and cutter, which has the characteristics of high clamping intensity, high rotary balance, easily close to deep cavity, can meet the diversity requirement of cutter in machining complex multi-surface, etc., become an important means to achieve a high-speed, high-efficiency and high-quality milling of this above die. Nowdays, the advantage of the matching of LSFH-cutter do not give full play due to the lack of in deep study of the registration property, processing parameter optimization and the machining precision control of which when LSFH is used.
     This paper focused on the contact characteristics, radial clamping rigidity, dynamics, processing parameter optimization and deformation error compensation of the matching of LSFH and cutter according to the urgent demand of suitable cutter system when high speed milling of large-scale and deep cavity injection. Meanwhile, the analysis model established in the course of study, the effectiveness and practicality of processing parameter optimization and deformation error compensation are verified by experiments.
     Firstly, basing on Back-Propagation Neural Network (BPNN), a predictive transient milling force mode of the matching of LSFH-cutter is set up since the transient milling force is the basis of the study of dynamics and deformation error compensation. Before the milling force model is set up, the experiment data are processed properly and the time-parameter is introduced into input vector, then the limitation of the past neural network model only can forecast the average cutting force is overcome. Usually simple gradient descent method to network training easily converges to a local minimum. In order to overcome this shortcoming, the momentum gradient descent learning function and momentum gradient descent BP algorithm training function are used in this forecast model. Test results show that the prediction accuracy is very higher than that of the usual analytical model.
     On contact characteristics and radial clamping rigidity of the matching of LSFH and cutter, a parametric finite element model is established and a new method to determine the contact stiffness coefficient of model is given too. The influence of initial basic interference, fit length, fit diameter and centrifugal force caused by high rotation speed on equivalent stress, contact deformation and contact pressure are studied. On this basis, variation coefficient and its calculation method is first introduced to control the reasonable contact state between LSFH and cutter. Subsequently, the influence of interference fit, clamping length and spindle speed on radial clamping rigidity are studied, and at the same time, the critical bending moment under different interference fit is defined theoretically and an effective method to evaluate the static radial clamping rigidity is established too. The results show that: not only the accuracy of analysis results but also the convergence of analysis process can be guaranteed by using the new iterative algorithm presented in this chapter to rapidly determine the stiffness coefficient of the matching of LSFH-cutter; the reasonable contact state should be controlled according to the diameter of cutter; the method to control the reasonable contact given in this paper not can only guarantee the stable and reliable clamping of cutter but also improve the durability of LSFH; in order to have a secure and reliable cutter clamping on condition of high rotation speed, the weaken role of centrifugal force to radial clamping rigidity must be taken into account; the finite element simulation model established in this paper is proved to be correct by the evaluation results of static radial clamping rigidity experiment and the analysis results can provide the reference to the design and selection of the matching of LSFH and cutter.
     On dynamics of the matching of LSFH and cutter, the first time, FEA (Finite Element Analysis) technology and EMA (Experiment Modal Analysis) technology are combined to set up the comprehensive finite element model verification and correction process. The influence of overhang length of cutter and spindle speed on dynamic characteristics (include natural frequency and mode shape) are studied. Based on above, transient dynamic of the matching of LSFH and cutter are analyzed in a given processing conditions, and the actual transient displacement response was evaluated. The results show that: the overhang length of cutter affects the natural frequency more significantly; the influence of high rotation speed on dynamic characteristics should be taken into account when the rotation speed exceeds a certain limit; in order to obtain the accurate deformation and force of the matching of LSFH and cutter in an actual high-speed processing condition the influence of transient dynamic must be considered so that the obtained results agree with the actual milling conditions. The results of numerical simulation are verified by experiments. The transient dynamic model can meet the engineering needs and can be used to analyze the actual milling process.
     On machining parameters optimization when LSFH is used in high speed milling, a fuzzy optimization model of high speed milling is established on the basis of taking fully into account the fuzziness of all restrictive conditions and takes the mechanics and dynamics of the matching of LSFH and cutter as physical restrictive conditions. The optimization results show that the high speed milling time reduces 5.95%, 8.54% and the surface roughness decrease 5.42, 6.85% compared with the results of the conventional optimization without considering the fuzziness of restrictive conditions and the milling results using the parameters recommended by the cutter manual.
     On machining deformation error compensation when LSFH is used in high speed milling, a new compensation method is presented based on an algorithm of iterative balance between milling force and cutter deformation, and the previous finite element model, milling force model and optimization results, then the high speed milling error caused by the deformation of cutter is compensated offline. The milling example shows that the maximum milling error is decreased from 42μm to 9.5μm after compensation, and the milling error reduce about 77.4%. When machining large-scale and deep cavity injection die, high dimensional accuracy of surface finish can be obtained using this compensation method.
引文
[1]http://www.cdmia.com.cn
    [2]何宁,李亮.高速切削工艺技术.机械工人,2003(9):23-26
    [3]艾兴等.高速切削加工技术.第1版.北京:国防工业出版社,2003
    [4]张伯霖.高速切削技术及应用.第1版.北京:机械工业出版社,2003
    [5]王华侨,王德跃.模具高速铣削加工技术及其数控编程实例应用.CAD/CAM 与制造业信息化,2005,4:79-83
    [6]陈世平.高速切削技术及其发展前景.先进制造技术,2001,30(5):43-45
    [7]R.C.Dewes,D.K.Aspinwall.A review of ultra speed milling of hardened steels.Journal of Materials Technology.1997,69:1-17
    [8]J.P.Urbanski.High speed machining of moulds and dies for net shape manufacture.Materials and Design,2000,21(4):395-402
    [9]A.Enselmann.HSC-Hartfrasen von Formen und Gesenken-Technologie,Wirtschaftlichkeit,Optimierung.Vulkan Verlag,Essen,1999
    [10]J.Friedhoff.Process optimization for HSC hard milling-optimum use of machine and tool through feed adaptation.2000,133(5):72-74
    [11]M.A.Elbestawi.High speed milling of dies and molds in their hardened state.Annals of CIRP,1997,1:57-62
    [12]周莉.高性能石墨高速铣削加工研究.[博士学位论文].广州:广东工业大学,2007.5
    [13]N.He.High machining in the application of the hard-machining materials,in proceeding of High Speed Machining Conference 2005,Guangzhou,China,2005.
    [14]蔡以君,黄洪清,朱立文.数控机床市场.2004,11:28-31
    [15]张钟伟.高速高精度加工用热装刀具夹持系统.MC现代零部件,2006,2:76-78
    [16]王文光.热装式夹头及其支撑技术.工具展望,2005,2:11-13
    [17]http://www.shrinkfit.com
    [18]叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003
    [19]K.Y.Lee,M.C.Kang,Y.H.Jeong,D.H.Lee and J.S.Kim.Simulation of surface roughness and profile in high-speed end milling.Journal of Materials Processing Technology 2001,113(1-3):410-415
    [20]S.J.Li,R.S.Liu and A.J.Zhang.Study on an end milling generation surface model and simulation taking into account of the main Alex's tolerance.Journal of Materials Processing Technology 2002,129:86-90
    [21]M.Alauddin and M.A.EI Braradie.Tool life model for end milling steel(190BHN).Journal of Materials Processing Technology 1997,66(1):50-59
    [22]C.K.Toh.Static and dynamic cutting force analysis when high speed rough milling hardened steel.Materials and Design 2004,25(1):41-50
    [23]W.Lai,B.Greenway and T.Faddis.Flute engagement in peripheral milling.Journal of Materials Processing Technology 2004,117(1-2):1-8
    [24]S.A.Tobias,Machine-tool Vibration.London:Blackie and Son Limited,1965
    [25]S.Park,Y.Altintas,M.Movahhedy.Receptance coupling for end mills.International Journal of Machine Tool and Manufacture 2003,44(11):1151-1161
    [26]T.Schmitz and G.S.Duncan.Three-component receptance coupling structure analysis for tool point dynamics prediction.Journal of Manufacturing Science and Engineering 2005,127(4):781-790
    [27]T.Burns,T.Schmitz.A study of linear joint and tool models in spindle-holder-tool receptance coupling,in Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Long Beach,America,2005,pp.24-28
    [28]T.Schmitz and G.S.Duncan.Receptance coupling for dynamics prediction of assemblies with coincident neutral axes.Journal of Sound and Vibration 2006,289(4-5):1045-1065
    [29]T.L.Schmitz et al.Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling.International Journal of Machine Tools and Manufacture 2007,47(9):1368-1380.
    [30]R.P.H.Faassen,N.van de Wouw et al.Prediction of Regenerative chatters by modeling and analysis of high-speed milling.International Journal of Machine Tools and Manufacture 2003,43(14):1437-1446
    [31]V.Gagnol,B.C.Bouzgarrou,P.Ray and C.Barra.Model-based chatter stability prediction for high-speed spindles.International Journal of Machine Tools and Manufacture 2007,4(7-8):1176-1186
    [32]U.Bravo,O.Altuzarra et al.Stability limits of milling considering the flexibility of the workpiece and the machine.International Journal of Machine Tools and Manufacture 2005,45(15):1669-1680
    [33]Y.Altintas,P.K.Chan.In-process detection and suppression of chatter in milling.International Journal of Machine Tools and Manufacture 1992,32(3):329-347
    [34]T.L.Schmitz,Jeremiah Couey et al.Runout effects in milling:Surface finish,surface location error,and stability,International Journal of Machine Tools and Manufacture 2007,47(5):841-851
    [35]尹力,刘强.基于加工过程动力学仿真的CNC机床工艺参数选择与应用研究.制造技术与机床,2004,(6):87-90
    [36]陈勇.平面铣削加工过程虚拟仿真系统的开发及应用研究.[博士学位论文].泉州:华侨大学,2004.11
    [37]L.Shi,C.Y.Wang and Z.Qin.Finite Element Modal Analysis of End Mill in High Speed Milling,in Proceeding of the 12th International Manufacturing Conference(IMCC'2006),Xi'an,China,2006,212-217
    [38]刘志新.高速铣削过程动力学建模及其物理仿真研究.[博士学位论文].天津:天津大学,2006.5
    [39]S.Lammens.Frequency response based validation of dynamic structural finite element models,Ph.D.dissertation,Katholieke University Leuven,Belgium, 1995
    [40]H.T.Bai and J.Z.Guo.Modal Analysis Theory and Testing,Beijing Institute of Technology Press,Beijing 2001
    [41]G.M.Kim,B.H.Kim,C.N.Chu.Estimation of cutter deflection and form error in a ball-end milling process,International Journal of machine Tool and Manufacture 2003,43(9):917-924.
    [42]M.Yang,H.Park.Prediction of cutting force in ball end milling.International Journal of Machine Tool and Manufacture 1991,31(1):45-54
    [43]K.Yamazaki,N.Kojima,et al.Real-time Model Reference Adaptive Control of 3D Sculptured Surfaced Machining.Annals of the CIRP40 1991,1:479-482.
    [44]W.Wang.Solid Modeling for Optimization Metal Removal of Three-dimensional NC End Milling.Journal of Manufacturing Systems 1998,7(1):57-65
    [45]H.S.Feng,C.H.Menq.The prediction of cutting forces in the ball end milling process model-Ⅰ.Formulation and model building procedure.International Journal of Machine Tool and Manufacture 1994,34(5):697-710
    [46]H.S.Feng,C.H.Menq.The prediction of cutting forces in the ball end milling process-Ⅱ.Cut geometry analysis and model verification.International Journal of Machine Tool and Manufacture 1994,34(5):711-719
    [47]X.P.Li,A.Y.C.Nee,Y.S.Wong,H.Q.Zheng.Theoretical modeling and simulation of milling forces.Journal of Materials Processing Technology 1999,89-90:266-272
    [48]M.Matjaz,C.Franci.Simulation of cutting forces in ball-end milling.Robotics and Computer Integrated Manufacturing 2003,19(1-2):99-106
    [49]Lamikiz,L.N.Lo'pez de Lacalle,J.A.Sa'nchez,M.A.Salgado.Cutting force estimation in sculptured surface milling.International Journal of Machine Tools and Manufacture 2004,44(14):1511-1526
    [50]尹力.数控铣削加工过程动力学仿真优化技术及应用研究.[博士学位论文].北京:北京航空航天大学,2004.10
    [51]王素玉,艾兴等.高速立铣3Cr2Mo模具钢切削力建模及预测.山东大学学报工学版,2006,1:1-5
    [52]S.Tamas.Cutting force modeling using artificial neural networks.Journal of Materials Processing Technology 1999,92-93:344-349
    [53]U.Zuperl,F.Cus,B.Mursec,T.Ploj.A generalized neural network model of ball-end milling force system.Journal of Materials Processing Technology 2006,175(1-3):98-108
    [54]杨松林.工程模糊论方法及其应用.北京:国防工业出版社,1996
    [55]李元科.工程最优化设计.北京:清华大学出版社,2006
    [56]陈伦军.机械优化设计-遗传算法.北京:机械工业出版社,2005
    [57]黄洪钟.机械设计模糊优化原理及应用.北京:科学出版社,1997
    [58]F.W.Taylor.On the art of cutting metals.Transactions of ASME,1907,28-31
    [59]E.J.Armarego,R.H.Brown.The Machining of Metals.New Jersy:Prentice-Hall Inc,1969
    [60]G.Draghici,C.Paltinea.Calculation by convex mathematical programming of the optimum cutting condition when cylindrical milling.International Journal of Machine Tool Design and Research,1974,14(2):143-159
    [61]张臣,周来水、余湛悦等.基于仿真数据的数控铣削加工多目标参数优化.计算机辅助设计与图形学学报,2005,17(5):1039-1045
    [62]金问林,张幼桢.切削过程优化问题的边界极值解法.南京航空学院学报,1992,24(4):370-376
    [63]叶文华,许洪昌,张幼桢.一种新型的切削数据优化方法.南京航空航天大学学报,1993,6:780-786
    [64]师汉民,陈日曜.基因遗传算法用于切削用量优化.机械工艺师,1992,9:3-6
    [65]师汉民,陈吉红.基因遗传算法的原理及在机械工程中的应用.中国机械工程,1992,3(3):18-2
    [66]李兆前,邓建新.基于刀具可靠性的切削用量优化.机械工程学报,1995,31(6):6-10
    [67]唐委校,艾兴,姜华等.高速切削稳定性数据库的研究.制造技术与机床,2005.6:75-78
    [68]W.P.Wang.Solid modeling for optimization metal removal of three-dimensional NC ends milling.Journal of Manufacturing Systems,1998,7(1):57-65
    [69]Y.Altintas,E.Shampoto,P.Lee.Analytical prediction of stability lobes in ball end milling.ASME of Journal of Manufacturing science and Engineering,1999,121:586-592
    [70]S.Smith,J.Tlusty.Stabilizing chatter by automatic spindle speed regulation.Annals of the CIRP,1992,41(1):433-436
    [71]K.B.Dae,J.K.Tae,S.K.Hee.Optimization of feedrate in a face milling operation using a surface roughness model.International Journal of Machine Tools & Manufacture 2001,41(3):451-462
    [72]J.Vivancos,C.J.Luis,L.Costa,J.A.Ort'lz.Optimal machining parameters selection in high speed milling of hardened steels for injection moulds.Journal of Materials Processing Technology.2004,155-156:1505-1512
    [73]M.Tolouei-Rad,et al.,On the optimization of machining parameters for milling operations.International Journal of Machine Tools & Manufacture.1997,37(1):1-16
    [74]D.K.Beak,et al.,Optimization of feed rate in a face milling operation using a surface roughness model.International Journal of Machine Tools &Manufacture,2001,41:451-462
    [75]Z.Z.Li,M.Zheng,et al.,A solid model based milling process simulation and optimization system integrated with CAD/CAM.Journal of Materials Processing Technology,2003,138:513-517
    [76]张庆力.大型汽车塑料模具高速加工的误差分析与补偿.[硕士学位论文].南宁:广西大学,2007.6
    [77]R.Ramesh,M.A.Mannan,A.N.Poo,Error compensation in machine tools-a review,Part Ⅰ:geometric,cutting-force-induced and fixture-dependent errors.International Journal of machine Tools and Manufacture 2000,40(9):1235-1256
    [78]R.Ramesh,M.A.Mannan,A.N.Poo,Error compensation in machine tools-a review,Part Ⅱ:thermal errors,cutting-force-induced and fixture-dependent errors.International Journal of machine Tools and Manufacture 2000,40(9):1257-1284
    [79]Z.Yazar,K.F.Koch,T.Merrik,T.Altan,Feed rate optimization based on cutting force calculations in 3 axes milling of dies and moulds with sculptured surfaces.International Journal of machine Tools and Manufacture 1994,34(3):365-377
    [80]K.M.Y.Law,A.Geddam,V.A.Ostafiew,A process design approach to error compensation in the end milling of pockets.Journal of Materials Processing Technology 1999,88-89:238-244
    [81]K.M.Y.Law,A.Geddam,Error compensation in the end milling of pockets:methodology.Journal of Materials Processing Technology 2003,139(1-3):238-244
    [82]T.Watnanbc,S.lwai.A control system to improve the accuracy of finished surface in milling.Transactions of ASME.Journal of Dynamic Systems,Measurements and Control 1983,105(3):192-199
    [83]S.Ratchev,S.Liu,W.Huang,A.A.Becket,Milling error Prediction and compensation in milling of low-rigidity parts.International Journal of machine Tools and Manufacture 2004,44(15):1629-1641
    [84]S.Ratchev,S.Liu,A.A.Becker,Error compensation strategy in milling flexible thin-wall parts.Journal of Materials Processing Technology 2005,162-163:673-681
    [85]S.Ratchev,S.Liu,W.Huang,An advanced FEA based force induced error compensation strategy in milling,International Journal of machine Tools and Manufacture 2006,46(5):542-551
    [86]S.Ratchev,S.Liu,W.Huang,A.A.Beckcr,A flexible force model for end milling of low-rigidity parts.Journal of Materials Processing Technology 2004,153-154:134-138
    [87]王志刚,何宁等.航空薄壁件加工变形的有限元分析.航空精密制造技术.2000,36(6):7-11
    [88]赵威,何宁等.薄壁结构高效铣削加工.航空精密制造技术.2002,38(6):12-15
    [89]Philippe Depince,Jean-Yves Hascoet.Active integation of tool deflection effects in end milling.Part1:Prediction of milled surface.International Journal of machine Tools and Manufacture 2006,46:937-944
    [90]Philippe Depince,Jean-Yves Hascoet.Active integation of tool deflection effects in end milling.Part2:Compensation of tool deflection.International Journal of machine Tools and Manufacture 2006,46:945-956
    [91]W.A.Kline,R.E.Devor,I.A.Shareef.The prediction of surface accuracy in end milling,Transactions of the ASME.Journal of Engineering for Industry 1982,104(3):272-278
    [92]蔡慧林.小尺寸铣刀的变形误差与补偿方法研究.兰州铁道学院学报.1999,18(2):82-83
    [93]V.S.Rao,P.V.M.Rao.Tool deflection compensation in peripheral milling of curved geometries.International Journal of machine Tools and Manufacture 2006,46(15):2036-2043
    [94]G.M.Kim,B.H.Kim,C.N.Chu,Estimation of cutter deflection and form error in ball-end milling processes.International Journal of machine Tools and Manufacture 2003,43(9):917-924
    [95]康永刚,王仲奇,姜澄宇.一种快速有效的薄壁件加工表面误差预测算法.航空学报.2007,28(5):1262-1267
    [96]楼文明.航空薄壁件加工变形补偿技术研究.[硕士学位论文].西安:西北工业大学,2007
    [97]张钟伟.高速高精度加工用热装刀具夹持系统.MC现代零部件,2006,2:76-78
    [98]http://news.thomasnet.com
    [99]http://www.emuge.com/endmills/shrink.htm
    [100]刘坤.ANSYS有限元方法精解,国防工业出版社,2004.8
    [101]Zienkiewicz.Analysis of the mechanism of orthogonal machining by the finite element method.Journal of the Japan Society Precision Engineering,1971,37(7):503-508
    [102]T.H.Child,M.H.Dirikolu,M.D.Sammons,k.Maekawa.Experiments on and Finite Element Modeling of Turning Free-cutting Steels at Cutting Speeds up to 250m/min,Proceedings of the 1st French and German Conference on high speed Machining 1997,pp:325-331
    [103]B.E.Kamecki.Incipient chip formation in metal cutting.[PhD dissertation].Urbana:University of Illinois at Urban-Chanpaign.1973
    [104]E.Usui,T.Shirakashi.Mechanics of Machining-Form 'Descriptive' to 'Predictive' theory.American Society of Mechanical Engineers,Production Engineering Division(Publication)PED,1982,7:13-35
    [105]D.H.Howerton.An experiment and numencal investigation of orthogonal roughening of aluminum 6061-T6[PhD dissertation].North Carolina State University,1989
    [106]H.C.Hsu.An Elasto-Vscoplastic Finite Element model of Orthogonal Metal cutting for Residual Stress Prediction[PhD dissertation].North Carolina State University,1992
    [107]W.T.Chien,A numerical and Experimental Investigation of the sticking and sliding Contact Regions at the Chip-Tool Interface in Machining Aluminum 6061-T6[PhD dissertation].North Carolina State Universltv,1992
    [108]A.J.Shih,Finite element simulation of orthogonal metal cutting.ASME Journal of Engineering for Industry,1995,117(1):84-93
    [109]A.J.Shih,Finite element analysis of orthogonal metal cutting mechanics.International Journal of Machine Tools and Manufacture.1996,36(2):255-273
    [110]S.Chandrakanth,Finite element analysis of the orthogonal metal cutting process,Journal of Materials Processing Technology 2000,105(1):95-109
    [111]N.A.Abukhshim,P.T.Mativenga,M.A.Sheikh.Heat generation and temperature prediction in metal cutting.A review and implications for high speed machining.International Journal of Machine Tools and Manufacture.2006,46(7-8):782-800
    [112]Z.C.Lin,W.L.Lai,C.R.Liu.The study of ultra-precision machining and residual stress for Nip alloy with different cutting speeds and depth of cut.Journal of materials Processing Technology,2000,97(1-3):200-210
    [113]王立涛.基于铣削力要素的航空结构件变形机理研究及有限元模拟[博士学位论文].杭州:浙江大学,2003
    [114]王立涛 柯映林等.航空结构件铣削残余应力分布规律的研究.航空学报.2003.24(3):286-288
    [115]黄志刚.航空整体结构件铣削加工变形的有限元模拟理论及方法研究[博士学位论文].杭州:浙江大学,2003
    [116]M.Weck,I.Schubert.New Interface Machine/tool:Hollow Shank.Annals of the CIRP,1994,43(1):345-348
    [117]M.Tsutsumi,T.Kuwada,S.Shimizu.Deformation and Interface Pressure Distribution of 1/10 Tapered Joints at high Rotation speed.Int.J.Japan Prec.Eng.,1996,30(1):23-28
    [118]E.I.Rivin.Advanced 7/24 Tapered Toolholder/spindle Interfaces for High-Speed CNC Machine Tools.SAE Transaction,Journal of Materials and Manufacturing,1998,107:1057-1068
    [119]M.Weck,N.Hennes,M.Krell.Spindle and Toolsystems with High Damping.Annals of the CIRP,1999,48(1):297-302
    [120]T.Aoyama,I.Inasaki.Performances of HSK Tool Interface under High Rotation speed.Annals of the CIRP,2001,50(1):281-284
    [121]I.M.Hanna,J.S.Agapiou,D.A.Stephenson.Modeling the HSK Toolholder-Spindle Interface.Journal of Manufacturing Science and Engineering,Transaction of the ASME,2002,124(8):734-744
    [122]Aoyama T,Inasaki I.Performance of HSK tool interfaces under high rotational speed.CIRP Annals-Manufacturing Technology,2001,50(1):281-284
    [123]张华伟.小直径铣刀高速铣削淬硬钢过程动力学仿真与有限元分析[硕士学位论文].南宁:广西大学,2005.6
    [124]胡映宁、王成勇、张华伟等.小直径铣刀铣削淬硬钢切入过程的动力学仿真研究.机械强度,2005,27(6):782-789
    [125]王树林.高速加工中HSK工具系统性能及其应用基础的研究[博士学位论文].镇江:江苏大学,2003
    [126]张松.高速旋转刀具系统的安全性研究[博士学位论文].济南:山东大学,2004
    [127]王贵成,王树林,董广强.高速加工工具系统.北京:国防工业出版社,2005
    [128]吉富达也.热装夹头的刚性分析.工具技术,2006,40:87-88
    [129]http://www.mst-corp.co.jp
    [130]赵容.互换性与测量技术基础.沈阳:辽宁科学技术出版社,1997:10-28
    [131]白化同,郭继忠译.模态分析理论与实验.北京:北京理广大学出版社,2001
    [132]R.F.Gibson and Y.F.Wen.Evaluation of boundary condition for a composite plate vibration test,Proceeding spring conference on Experimental Mechanics,Dearborn,Michigan,1993,pp.19-27
    [133]李德葆、陆秋海著.工程振动试验分析,清华大学出版社,2004
    [134]飞思科技产品研发中心.神经网络理论与MATLAB7.0实现.北京:电子工业出版社,2005
    [135]武云霞.石墨电极点火化加工工艺研究.[硕士学位论文].广州:广东工业大学,2004.5
    [136]S.S.Panda,A.K.Singh,D.Chakraborty,S.K.Pal.Drill wear monitoring using back Propagation neural network.Journal of Materials Processing Technology 2006,172(2):283-290
    [137]韩青,张毅刚,赵凯红.结构工程中接触问题的数值计算方法.北京工业大学学报,2006,32(4):321-325
    [138]陈曼琪.用拟弹性叠加双重迭代法解弹塑性接触问题.固体力学学报,1983,4(3):365-374
    [139]S.Sen,B.Aksakal,Stress analysis of interference fitted shaft-hub system under transient heat transfer conditions.Materials and Design 2004,25(5):407-412
    [140]张松,艾兴.HSK主轴/刀具联结的有限元分析.机械科学与技术,2004,23(6):631-633
    [141]C.E.Truman,J.D.Booker.Analysis of a shrink-fit failure on a gear hub/shaft assembly[J].Engineering Failure Analysis 2007,14(4):557-572
    [142]Y.Zhang,Mcclain B.Fang,X.D.Design of interference fits via finite method.International Journal of Material science,2000,42(9):1835-1850
    [143]俞汉清,李晓沛,赵秉厚.公差与配合-过盈配合计算和选用指南。北京:中国标准出版社,1990
    [144]博弈创作室.参数化有限元分析技术及其应用实例.北京:清华大学出版社,2004
    [145]马平,张伯霖,李锻能等.高速机床电主轴过盈配合量的计算.组合机床与自动化加工技术,1999,7:22-27
    [146]J.E.Shigley,C.R.Mischke.Standard handbook of machine design[M].New York:McGraw-Hill Book Company,1998
    [147]马斌捷,张骏华.结构可靠性检验的CV方法.机械强度,1997中山大学数力系.概率论及数理统计.北京:高等教育出版社,1980
    [148]沈键.新型精密刀具夹持系统浅析.制造技术与机床,2002
    [149]德国雄克公司.德国雄克公司的精密刀具与夹持技术,航空制造技术,2004,4:110-111
    [150]徐芝纶.弹性力学(2).北京:人民教育出版社,1982:25-28
    [151]刘战强,万熠,艾兴.高速铣削中切削力的研究.中国机械工程,2003,14(9):734-737
    [152]程志刚.高速铣削型腔拐角工艺研究[硕士学位论文].广州:广东工业大学,2006
    [153]吴国玥译.高速铣削中动态特性对工件质量的影响.国外金属加工,2000,1:31-35
    [154]C.K.Toh.Vibration analysis in high speed rough and finish milling hardened steel,Journal of Sound and Vibration 2004,278(1-2):101-115
    [155]石岚.高速铣削立铣刀的有限元分析.[硕士学位论文].广州:广东工业大学,2005.5
    [156]王锋,马大为,冯勇等.基于瞬态动力学分析的某装备改装研究.系统仿真学报,2007,1(19):194-196
    [157]诸德超,邢誉峰.工程振动基础.北京:北京航空航天大学出版社,2004
    [158]R.Katz.The dynamic response of a rotating shaft subject to an axially moving and rotating load.Journal of Sound and Vibration,2001,246(5):757-775
    [159]A.Lamikiz,L.N.Lopez de Lacalle,J.A.Sanchez,M.A.Salgado.Cutting force estimation in sculptured surface milling.International Journal of Machine tools and Manufacture 2004,44(12):1511-1526
    [160]R.M.Tolouei,I.M.Bidhendi.On the optimization of machining parameters for milling operations.International Journal of Machine Tools & Manufacture,1997,37(1):1-16
    [161]王素玉.高速铣削加工表面质量的研究.[博士学位论文].济南:山东大学,2006.4
    [162]袁哲俊.金属切削实验技术.北京:机械工业出版社,1988
    [163]上海市金属切削技术协会.金属切削手册(第二版).上海:上海科学技术出版社,1984
    [164]艾兴,肖诗纲.切削用量简明手册(第三版).北京:机械工业出版社,1995
    [165]张信等译.切削加工.北京:机械工业出版社,1983
    [166]孙祥,徐流美,吴清.Matlab 7.0基础教程.北京:清华大学出版社,2005
    [167]张伯霖,潘珊珊等.直线电机及其在超高速机床上的应用.中国机械工程,1997(4):85-88
    [168]张伯霖.杨庆东,陈长年.高速切削技术及其应用.北京:机械工业出版社,2002
    [169]A.J.Carrott,D.A.Venables,A.A.West,Et al.Design of control systems for high speed machining,IEE Colloquium(digest),1996(042):29
    [170]K.M.Y.Law,A.Geddam,Error compensation in the end milling of pockets:methodology.Journal of Materials Processing Technology 2003,139:238-244
    [171]EE Meng Lim and Chia-Hsiang Meng.The prediction of dimensional error for sculptured surface productions using ball end milling process,Part2:Surface generation model and experimental verification.International Journal of machine Tools and Manufacture 1995,35(8):1171-1185
    [172]S.H.Ryu,H.S.Lee,C.N.Chu.The form error prediction in side wall machining considering tool deflection,International Journal of machine Tools and Manufacture 2003,43:1405-1411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700