用户名: 密码: 验证码:
立铣刀几何参数对铣削系统动态特性影响规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铣削加工在工业生产中已经得到了越来越广泛的应用,而制约高速铣削加工效率的一个重要问题就是颤振。获取高速铣削系统尤其是“主轴一刀柄一刀具”系统的动力学特性参数是对颤振现象进行准确预测的关键所在。刀具是铣削加工系统中最活跃的因素,因此有必要系统地分析刀具几何参数对“主轴一刀柄一刀具”系统动力学特性的影响。本文研制应用于铣削系统模态参数测试的电子冲击力锤,并且在建立整体立铣刀几何模型和模态分析模型的基础上,对立铣刀的动态特性进行实验和仿真分析,重点研究立铣刀几何参数对铣削系统动态特性的影响规律,为立铣刀结构优化设计提供理论基础和技术支持。
     首先,针对铣削系统模态测试中人工锤击法的不足,研制一种工作台式电子冲击力锤测试装置。该装置利用电磁原理,通过控制牵引式电磁铁的通/断电,使牵引力带动冲击力锤实现对被测对象的冲击,并对BT40刀柄、立铣刀杆进行冲击测试实验。该装置能够产生重复性好、可变大小的冲击力,可以取代人工力锤,并且适用于切削刀具系统端点频率响应函数的测试。
     其次,建立整体立铣刀的三维几何模型。在Pro/E软件中建立立铣刀的三维实体模型,导入到有限元分析软件ANSYS Workbench中进行模态分析,并通过刀具模态参数测试装置对所建立的模型进行实验分析,验证所建立的三维模型的正确性。
     然后,采用响应耦合子结构分析法(RCSA法)并结合模态试验,获得刀具与刀柄/主轴之间的接合面特性参数,并对铣削系统刀尖点频响函数进行预测。另外,模态试验结果表明,随着刀具悬伸长度的增大,铣削系统一阶固有频率和模态刚度逐渐减小,一阶阻尼比逐渐增大。
     最后,在立铣刀几何模型的基础上,采用RCSA法研究立铣刀几何参数(刀齿数、刀具直径、刀槽芯部直径以及螺旋切削刃长度)的变化对铣削系统动态特性参数的影响规律。
High speed milling (HSM) has been widely used in industry. In the HSM process, a problem known as chatter is frequently encountered. In order to predict chatter in the milling process as accurately as possible, the dynamics of the spindle-tool holder-tool (STT) system need to be known since they are important for the HSM process. As the tool is the most active factor in the milling process, it is necessary to analyze the effect of cutter geometric parameters on the dynamics of STT system. An electric impact hammer which can be used in the modal test of milling systems is developed in this dissertation. A method with combination of experiments with computer simulation is proposed to study the effects of end mill geometric parameters on milling system dynamics. The research could provide a theoretical basis for optimizing and designing the geometric parameters of end mills.
     In the process of experimental modal analysis, there are many uncertainties by using manual hammer impacting. In order to overcome these difficulties, a bench-type electric impact hammer is developed. It is composed of a workbench, a controller, a trigger, a switch power and an actuator. When the solenoid is energized, it creates an electromagnetic field that causes the ferrous core mass to accelerate. Because the impact force can be changeable and repeatable, so the electric impact hammer may take the place of manual hammer, and it can be used in the modal parameters test of many machining systems.
     The three-dimensional geometric model of end mill is established. In this dissertation, a3D model which has the same geometric parameters with actual end mill is established using the three-dimensional software Pro/E and verified by experimental modal analysis.
     A method combined modal experiment with receptance coupling substructure analysis (RCSA) is proposed to predict the tool-point FRF, and the stiffness/damping coefficients for the X direction collet connection between the tool and holder/spindle is validated. It lays a theoretical foundation for simulation analysis. Moreover, the modal parameters of milling systems with different tool overhang length are tested by experimental modal analysis. The results show that, as the tool overhang length are growing, the first-order natural frequency and modal stiffness are decreasing, while the damping ratio is increasing.
     The method of RCSA is used to study the effects of geometric parameters of end mill including tooth number, tool diameter, core diameter of the flute and flute length on the dynamics of the high speed milling system.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2]盛晓敏,邓朝晖.先进制造技术[M].北京:机械工业出版社,2012.
    [3]山特维克(中国)有限公司.高速加工及其刀具选用[J].机械工人(冷加工),2002,10:27-28.
    [4]韩喜峰,徐安平,张大卫,管啸天.铣削加工过程稳定性预测方法综述[J].河北工业大学学报,2011,4:115-118.
    [5]S.A.托贝斯.机床振动学[M].北京:机械工业出版社,1977.
    [6]Koenigsberger F, Tlusty J. Machine tool structures-Vol.I:Stability against chatter[M]. New York: Pergamon Press,1967.
    [7]Merrit H E. Theory of self-excited machine tool chatter[J]. ASME Journal of Engineering for Industry,1965,87:447-454.
    [8]Tlusty J, Ismail F. Basic nonlinearity in machining chatter[J]. CIRP Annals,1981,30:21-25.
    [9]Smith S, Tlusty J. Efficient simulation programs for chatter in milling[J]. Annals of the CIRP, 1993,42(1):463-466.
    [10]Montgomery D, Altintas Y. Mechanism of cutting force and surface generation in dynamic milling[J]. ASME Journal Engineering for Industry,1991,113:160-168.
    [11]Insperger T, Stepan G. Stability of the milling process[J], Periodica Polytechnica,2000,44: 47-57.
    [12]Faassen R P H, Nijmeijer H, Oosterling J A J, et al. An improved tool path model including periodic delay for chatter prediction in milling[J]. Journal of Computational and Nonlinear Dynamics,2007,2:167-178.
    [13]李忠群.复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究[D].北京:北京航空航天大学博士学位论文,2008.
    [14]Smith S, Tlusty J. Update on high-speed milling dynamics[J]. ASME Journal of Engineering for Industry,1990,112(1):142-149.
    [15]Li H Z, Li X P, Chen X Q. A novel chatter stability criterion for the modeling and simulation of the dynamic milling process in the time domain[J]. The International Journal of Advanced Manufacturing Technology,2003,22:619-625.
    [16]Schmitz T L. Chatter recognition by a statistical evaluation of the synchronously sampled audio signal[J]. Journal of Sound and Vibration,2003,262:721-730.
    [17]Sridhar R, Hohn R E, Long G W. A stability algorithm for the general milling process[J]. ASME Journal Engineering for Industry,1968,90:330-334.
    [18]Minis I, Yanushevsky T. A new theoretical approach for the prediction of machine tool chatter in milling[J]. ASME Journal of Engineering for Industry,1993,115:1-8.
    [19]Y. Altintas, E. Budak. Analytical prediction of stability lobes in milling[J]. Annals of the C1RP, 1995,44(1):357-362.
    [20]M. S. Fofana. Effect of regenerative process on the sample stability of a multiple delay differential equation[J]. Chaos, Solitons and Fractals,2002,14:301-309.
    [21]Vincent Thevenot, Lionel Amaud, Gilles Dessein, Gilles Cazenave Larroche. Integration of dynamic behaviour variations in the stability lobes method[J]. Int. J. Adv. Manuf. Technol,2006, 27:638-644.
    [22]U Bravo, O Altuzarra, L N Lopez de Lacalle. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools &Manufacture,2005,45:1669-1680.
    [23]Tony L. Schmitz, Timothy J. Burns, John C. Ziegert. Tool length-dependent stability surfaces[J]. Machining Science and Technology,2004,8(3):1-21.
    [24]I. Mane, V. Gagnol, B. C. Bouzgarrou, et al. Stability-based spindle speed control during flexible workpiece high-speed milling[J]. International Journal of Machine Tools &Manufacture,2008,48:184-194.
    [25]李忠群,刘强.基于频响函数的高速铣削颤振稳定域快速分析与研究[J].高速加工技术,2008(4):53-61.
    [26]汤爱君,刘战强.铣刀参数对薄壁零件铣削稳定性的影响[J].华南理工大学学报(自然科学版),2009(2):29-34.
    [27]梁睿君,叶文华.薄壁零件高速铣削稳定性预测与验证[J].机械工程学报,2009(11): 146-151.
    [28]Quintana G, Ciurana J, Teixidor D. A new experimental methodology for identification of stability lobes diagram in milling operations[J]. International Journal of Machine Tools &Manufacture,2008,48:1637-1645.
    [29]Quintana G, Ciurana J, Ferrer I, et al. Sound mapping for identification of stability lobe diagrams in milling processes[J]. International Journal of Machine Tools & Manufacture,2009, 49:203-211.
    [30]E. Solis, C. R. Peers, J. E.Jime, et al. A new analytical-experimental method for the identification of stability lobes in high-speed milling[J]. International Journal of Machine Tools& Manufacture,2004(44):1591-1597.
    [31]宋清华,艾兴,万熠,唐委校.铣削系统稳定性判定新方法研究[J].机械强度,2008,30(5):718-722.
    [32]宋清华.高速铣削稳定性及加工精度研究[D].济南:山东大学博士学位论文,2009.
    [33]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [34]孙孟琴.球头铣刀铣削加工过程的动力学建模及仿真[D].杭州:浙江工业大学硕士学位论文,2006.
    [35]徐熙庆.高速铣削稳定性预测及软件开发[D].济南:山东大学硕士学位论文,2010.
    [36]贾启芬,刘习军.机械与结构振动[M].天津:天津大学出版社,2007.
    [37]T. L. Schmitz. Predicting high-speed machining dynamics by substructure analysis[J]. Annals of the CIRP,2000,49(1):303-308.
    [38]Schmitz T. L, Davies M, Kennedy M. D. Tool point frequency response prediction for high-speed machining by RCSA[J]. Journal of Manufacturing Science and Engineering,2001, 123(4):700-707.
    [39]Bekir Bediz, Uttara Kumar, Tony L. Schmitz, et al. Modeling and experimentation for three-dimensional dynamics of endmills[J]. International Journal of Machine Tools & Manufacture,2012(53):39-50.
    [40]Schmitz T, Duncan G. Three-component receptance coupling substructure analysis for tool point dynamics prediction[J]. J Manuf Sci Eng, Trans ASME 2005,127(4):781-790.
    [41]Chi Hung Cheng. Improved prediction of spindle-holder-tool frequency response functions[D]. Gainesville:University of Florida,2007.
    [42]S.Filiz, C.-H. Cheng, K. B. Powell, T. L. Schmitz, O. B. Ozdoganlar. An improved tool-holder model for RCSA tool-point frequency response prediction[J]. Precision Engineering,2009,33: 26-36.
    [43]K. Cuppens, P. Sas, L. Hermans. Evaluation of the FRF Based Substructuring and Modal Synthesis Technique Applied to Vehicle FE Data[J]. Journal of Vibration and Acoustics, Transactions of the ASME,1997,119:304-310
    [44]M. R. Movahhedy, J. M. Gerami. Prediction of dynamic response of machine tool by sub-structure analysis[C]. In Eighth International Conference on Vibrations in Rotating Machinery-IMechE Conference Transactions; IMechE Event Publications,2004,2:141-151
    [45]Ing. E. A. J. Geurtsen. Identification of Tool-Tool holder-Spindle Dynamics for High Speed Milling[D]. Eindhoven:Eindhoven University of Technology,2007.
    [46]K.G.E. van Dijck. Identification Machine Dynamics in High-Speed Milling[D]. Eindhoven: Eindhoven University of Technology,2008.
    [47]THE MODAL SHOP, INC. Electric Impact Hammer.http://www.modalshop.com/filelibrary /Electric-Impact-Hammer-Datasheet-(DS-0034). pdf.
    [48]Alta Solutions Incorporated. AS-1220 Automated Impact Hammer.http://www.altasol.com /literature/AS-1220.pdf.
    [49]Christopher Suprock. Microprocessor Controlled Impulse Hammer System.
    [50]Keith Dunwoody. Automated Identification of Cutting Force Coefficients and Tool Dynamics on CNC Machines[D]. Vancouver:The University of British Columbia,2010.
    [51]P. E. Norman, G. Jung, C. Ratcliffe, R. Crane, C. Davis. Development of an automated impact hammer for modal analysis of structures.
    [52]C. J. Li, A. G. Ulsoy, W. J. Endres. The effect of flexible-tool rotation on regenerative instability in machining[J]. Journal of Manufacturing Science and Engineering,2003,125:39-47.
    [53]I. Mane, V. Gagnol, B. C. Bouzgarrou, et al. Stability-based spindle speed control during flexible workpiece high-speed milling[J]. International Journal of Machine Tools and Manufacture,2008,48:184-194.
    [54]G.N. Meshcheriakov, L. P. Tuscharova, N. G. Meshcheriakov, et al. Machine-tool vibration stability depending on adjustment of dominant stiffness axes[J]. Annals of the CIRP,1984, 33(1):271-272.
    [55]V. Gagnol, B. C. Bouzgarrou, P. Ray, et al. Model-based chatter stability prediction for high-speed spindles[J]. International Journal of Machine Tools and Manufacture,2007,47: 1176-1186.
    [56]B.P.Mann, N. K. Garg, K. A. Young, et al. Milling bifurcations from structural asymmetry and nonlinear regeneration[J]. Nonlinear Dynamics,2005,42:319-337.
    [57]M. Weck, N. Hennes, M. Krell. Spindle and toolsystems with high damping[J]. Annals of the CIRP,1999,48(1):297-302.
    [58]M. Rahman. Effect of clamping conditions on chatter stability and machining accuracy[J]. Annals of the CIRP,1985,34(1):339-342.
    [59]S. Smith, T. P. Jacobs, J. Halley. The effect of drawbar force on metal removal rate in milling[J]. Annals of the CIRP,1999,48(1):293-296.
    [60]E. B. Kivanc, E. Budak. Structural modeling of end mills for form error and stability analysis[J]. International Journal of Machine Tools & Manufacture,2004,44:1151-1161.
    [61]C. K. Chang, H. S. Lu. The optimal cutting-parameter selection of heavy cutting process in side milling for SUS304 stainless steel[J]. The International Journal of Advanced Manufacturing Technology,2007,34:440-447.
    [62]J. A. Stori, P. K. Wright. Parameter space decomposition for selection of the axial depth of cut in endmilling[J]. Journal of Manufacturing Science and Engineering,2001,123:654-664.
    [63]E. Budak, A. Tekeli. Maximizing chatter free material removal rate in milling through optimal selection of axial and radial depth of cut pairs[J]. Annals of the CIRP,2005,54(1):353-356.
    [64]黎忠炎,高东强,毛志云,刘洋.基于切削参数的高速铣削系统稳定性研究[J].组合机床与自动化加工技术,2010(11):16-18.
    [65]张春梅,刘业玲,刘永吉.直柄立铣刀切削稳定性的分析[J].工具技术,2004,38(8):31-34.
    [66]李广旭,刘强.刀具几何参数对铣削加工稳定性影响的实验与仿真[J].农业机械学报,2008,10:194-197.
    [67]史琼艳.模态参数识别方法[J].科技信息,2007,35:716-717.
    [68]刘伟,高维成,于广滨ANSYS12.0宝典[M].北京:电子工业出版社,2010.
    [69]杜瑶.整体硬质合金立铣刀的有限分析[D].成都:西华大学硕士学位论文,2010.
    [70]曲会玲.高速立铣刀优化设计[D].济南:山东建筑大学硕士学位论文,2011.
    [71]石岚.高速铣削立铣刀的有限元分析[D].广州:广东工业大学硕士学位论文,2005.
    [72]高长才.基于UG的螺旋立铣刀三维参数化设计系统的若干研究[D].沈阳:东北大学硕士学位论文,2006.
    [73]浦广益ANSYS Workbench 12基础教程与实例详解[M].北京:中国水利水电出版社,2010.
    [74]方远翔.振动模态分析技术[M].北京:国防[业出版社,1993.
    [75]王文平,项昌乐.某型复杂变速器壳体的模态研究[J].汽车工程,2007(29):673-676.
    [76]曹树谦等.振动结构模态分析--理论、实验与应用[M].天津:天津大学出版社,2001.
    [77]谭冬梅,姚三,瞿伟廉.振动模态的参数识别综述[J].华中科技大学学报(城市科学版),2002,19(3):73-78.
    [78]ZHANG Jun, SCHMITZ Tony, ZHAO Wanhua, LU bingheng. Receptance Coupling for Tool Point Dynamics Prediction on Machine Tools[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2011,24:340-345.
    [79]Bishop R. E. D., Johnson D. C. The mechanics of vibration[M]. Cambridge:Cambridge University Press,1960:40-200.
    [80]邵子东.高速整体硬质合金立铣刀结构设计及其性能研究[D].济南:山东大学硕士学位论文,2007.
    [81]刘春生,李贤文.数控刀具技术在航空领域的应用[J].航空制造技术,2008(12):40-44.
    [82]汤爱君.薄壁件高速铣削三维稳定性及加工变形研究[D].济南:山东大学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700