基于系统动态设计技术的高速面铣刀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削技术具有高效率、高精度和高表面质量等无可比拟的优越性,广泛地应用于汽车、航空航天、模具等制造领域,取得了显著的技术经济效益。高速切削刀具及其相关技术直接决定了高速切削的效益、质量和安全,是推广和应用高速切削技术的基础。
     高速面铣刀是目前应用比较广泛的高效金属切削加工刀具,在高速、断续切削的条件下,离心力和动态切削力所产生的冲击和振动是影响刀具使用寿命、加工质量、生产效率和机床高速切削效能发挥的重要因素,有必要对高速面铣刀的动态特性及其减振机理进行深入探讨,以改善切削质量,提高加工效率。
     本文以已有的高速铣削机理、高速铣刀安全性要求和高速刀具技术研究成果为基础,采用系统动态设计技术对高速面铣刀进行研究,主要研究内容为:
     1.针对高速面铣刀切削加工过程特点,建立高速面铣刀动态切削模型和高速面铣刀动力学微分方程,为高速面铣刀动态特性的研究奠定了基础;
     2.通过对高速面铣刀切削加工时所受动态载荷的研究,进行了高速面铣刀在离心力和动态切削力作用下振动模型预报;
     3.以减小高速面铣刀离心力和动态切削力作用下刀具振动幅值为目标,以高速面铣刀的切削特点、加工特征和高速面铣刀的安全性要求为基础,进行切削铝合金的高速面铣刀产品开发设计;
     4.通过有限元分析技术,对所开发的高速面铣刀进行减振性能预报。进行高速面铣刀在离心力作用下的变形分析,使刀具结构合理。
     5.对高速面铣刀进行动平衡试验和切削性能试验,对高速面铣刀的动态切削性能进行评价。
     研究结果表明,控制刀具的不平衡量,提高刀具的动平衡品质等级,进行刀具齿距的合理设计,能显著减小高速面铣刀离心力和动态切削力作用下振动幅值,可使高速面铣刀具有良好的动态切削性能,该方法具有很好的实用性。
High speed cutting technology has incomparable superiority, such as high efficiency, high precision and high surface quality; it has been widely used in automotive, aerospace, mold and other manufacturing fields and has made significant technical and economic benefits. High speed cutter and its related technology which directly determine the efficiency, quality and security of high speed cutting are the foundation of the promotion and application of high speed cutting technology.
     High speed face milling cutter is the widely used high efficiency metal cutting tool, under the high speed, intermittent cutting conditions, shock and vibration caused by centrifugal force and dynamic cutting force are important factors affecting tool life, machining quality, productivity and the machine effectiveness of the high speed cutting, it is necessary to explore the dynamic characteristics of the high speed face milling cutter and its vibration mechanism for improving cutting quality and increasing machining efficiency.
     Based on the existing high speed milling mechanism, high speed milling cutter security requirements and study of the high speed cutter technology, this paper researches on high speed face milling cutter using system dynamic design technology, its major study are as follows:
     1. For the machining features of the high speed face milling cutter, establishes dynamic cutting force model and kinetics differential equations of the high speed face milling cutter, laid the foundation for the research of high speed face milling cutter dynamic characteristics.
     2. Through the research on dynamic forces in the machining process of high speed face milling cutter, makes the vibration model prediction of the high speed face milling cutter when the centrifugal force and dynamic cutting force play roles.
     3. To reduce the vibration amplitude of the cutter under the force of centrifugal force and dynamic cutting force, based on the cutting characteristics of the high speed face milling cutter, machining features and its security requirements, develop and design the high speed face milling cutter used to high speed machining aluminum alloy.
     4. By finite element analysis technology, the performance of vibration reducing of the developed high speed face milling cutter has been predicted. Deformation of the high speed face milling cutter under the centrifugal force has been analyzed so that the structure of the cutter will be more reasonable.
     5. Evaluate the dynamic cutting performances of the high speed face milling cutter based on its dynamic balancing test and cutting performance test.
     The research shows that controlling the imbalance of the cutter, improving the balancing quality grade of the cutter, reasonable design of the tooth pitch, reducing the amplitude of the high speed face milling cutter under the role of dynamic cutting forces can make the cutter have good dynamic cutting performance, the method is practical.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:20-25.
    [2]刘战强,王兆时,刘逢时.先进切削加工技术综述[J].航空制造技术,2003,37(5):3-7.
    [3]刘永强.高速切削及其关键技术发展现状[J].航空精密制造技术,2001,37(2):1-5.
    [4] LIU X W , CHENG K, VEB D . Improved cutting force model in peripheral milling part 1:Teoretical model and simulation[J].International Journal of Advanced Manufacturing Technology,2002,9(20):631-638.
    [5] MATIVENGA P T,HON K B.An experimental study of cutting forces in high-speed end milling and implications for dynamic force modeling[J] . Journal of manufacturing Science and Engineering ,Transaction of the ASME,2005,2(127):251-261.
    [6] DESTOMBES T.Very high-speed machining of ferrous and solid composite material:Test campaign results[J].High Speed Machining New York,ASME,2004:263-267.
    [7] CHEN Ming,SUN Fang Hong,WANG Hai Li.Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling[J].Journal of Materials Processing Technology,2003,20(138):468-471.
    [8] LIN S Y,LIN J C,WEN Y J.Life prediction system using a tools geometric shape for high-speed milling[J].The International Journal of Advanced Manufacturing Technology,2006,30:622-630.
    [9]刘战强.先进刀具设计技术:刀具结构、刀具材料和涂层技术[J].航空制造技术,2006,(7):38-42.
    [10]刘战强,艾兴.高速切削刀具的发展现状[J].工具技术,2001,35(3):2-23.
    [11] KING Robert.Handbook of high speed machining technology[J].New York: Chapman and Hall,2001:236-241.
    [12]宋清华,唐委校.大型通用有限元分析软件ANSYS高级分析探讨[J].机械增刊,2005,32:56-58.
    [13]曹妍妍,赵登峰.有限元模态分析理论及其应用[J].机械工程与自动化,2007,1:73-74.
    [14]俞启灏,黄永铸.模态分析在工程振动中的应用[J].北京建筑工程学院学报,2007,1:15-18.
    [15]邓建新,冯益华,艾兴.高速切削刀具材料的发展、应用及展望[J].专题报导,2003,40(449):56-60.
    [16]邓建兴,艾兴.切削刀具与加工对象的匹配研究[J].工具技术,2001,35(10): 6-9.
    [17]谢黎明,唐林虎,张季惠.抑制高速旋转刀具系统不平衡量的方法[J].兰州理工大学学报,2006,5(32):40-43.
    [18]刘战强,艾兴.高速切削刀具的动平衡[J].新技术新工艺,2001,11:18-20.
    [19]赵炳桢.开发高速铣削刀具的安全技术[C].全国生产工程第8届学术大会暨第3届青年学者学术会议论文集,机械工业出版社,1999:157-161.
    [20]张松.高速旋转刀具系统的安全性研究[D].济南:山东大学(博士学位论文),2004:40-45.
    [21]徐林红.系列化可转位铣刀参数化设计系统的研究[D].兰州:兰州理工大学(硕士),2003:2-8.
    [22]杜留法.机械结构动态设计方法及应用研究[D].西安:西北工业大学(硕士学位论文),2006:15-18.
    [23]腾启.优良性能设计技术的研究[J].机械设计与制造,2000,6:52-54.
    [24]闻邦椿,刘树英.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001:21-25.
    [25]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用—建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2004:53-57,94-99.
    [26]张锦江.多阶频率与振型约束下的结构动力学优化设计[D].西安:西北工业大学(硕士学位论文),2007:11-24.
    [27] LAVAGNA M,SANGIOVANNI G.The dynamic system theory as a tool to model and guide the Concurrent Engineering design process:The space system design application[C] . Collection of Technical Papers-11thAIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006:782-792.
    [28] YAN Xiao Wei,WANG Yan Qin,SHENG Mei Ping.Optimum design of multiple dynamic vibration absorbers of continuous parameter system based on power flow[J].Journal of Ship Mechanics,2003,6(7):130-138.
    [29] HWANG,THONG Shying,HUANG Chi Hui.Mechanism design and dynamic analysis of the high speed and accuracy linear motor actuating platform system[J].Transactions of the Aeronautical and Astronautical Society of the Republic of China,2001,2(33):111-118.
    [30] BAID,FAN X J.Integrated design system for dynamic thermal protection system sizing[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2007,5(221):883-885.
    [31] LI Zhi,CHANG Xiao Ping,QIN Jian Hua.Optimization design of solar energy dynamic power system in space station based on particle swarm algorithms[J].Journal of Mechanical Engineering,2006,9(22):195-198.
    [32] BOWLING , ALAN P , RENAUD John E . Reliability-based design optimization of robotic system dynamic performance[J] . Journal of Mechanical Design,Transactions of the ASME,2007,4(129):449-454.
    [33]宋清华.高速旋转系统动态特性分析及优化方法研究[D].济南:山东大学(硕士学位论文),2006:10-15.
    [34]谢黎明,唐林虎,张季惠.高速旋转刀具系统的振动分析及控制途径[J].工具技术,2006,2:33-35.
    [35]郭志全,霍津海,徐燕申.CNC机床结构动态设计方法研究[J].设计与研究,2007,7:71-75.
    [36]唐委校.高速切削稳定性及动态优化研究[D].济南:山东大学(博士学位论文),2005:6-9.
    [37]李小雷,童水光.高速切削刀具系统固有特性和动态相应分析[J].工程设计学报,2004,10(5):268-272.
    [38]吴化勇,唐委校.高速加工中心主轴系统动力学建模及其优化设计[J].机床与液压,2005,12:38-40.
    [39] NIKHAJOEI , HASSAN . Dynamic model of a matrix converter for controller design and system studies[J] . IEEE Transactions on PowerDelivery,2006,2(22):744-746.
    [40]何伟,何邦贵,杨朝丽.主轴系统结构设计参数对其动力特性影响研究[J].精密制造与自动化,2002,1:18-21.
    [41]周泽华.金属切削理论[M].上海科学出版社,1984:34-44.
    [42]李沪曾,张国红,魏衡.多齿端铣切削振动的计算机仿真[J].同济大学学报,2000,1(20):55-59.
    [43]李辉,张宇平,刘凤利.不等齿距端铣刀对端铣振动影响的研究[J].机械科学与技术,2003,3(22):408-413.
    [44]张松,艾兴,唐委校.高速旋转状态下的主轴/刀柄联结特性[J].山东大学学报,2003,33(5):473-476.
    [45]张松,艾兴.HSK主轴/刀柄联结的有限元分析[J].机械科学与技术,2004,6(22):631-634.
    [46]张松,艾兴,刘占强.7:24主轴刀柄联结非均匀应力场的有限元分析[J].工具技术,2003,7(37):25-27.
    [47]吴自浩.高速铣削铝合金刀具选型及模糊综合评判[J].电子机械工程,2005,21(2):44-48.
    [48] KAWANO Y,MINAMI A,YOSHIMITSU S.Behavior monitoring of small-diameter milling-cutter during high-speed milling[J].Key Engineering Materials,2004,(259):165-169.
    [49]张松,艾兴,李剑锋.高速整体硬质合金铣刀的变形与应力分析[J].中国机械工程,2005,18:1681-1684.
    [50]宋清华,唐委校.高速铣削系统动态实验方法研究[J].组合机床与自动化加工技术,2005,9:21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700