高速断续切削淬硬钢刀具失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为获取好的加工质量以及高的加工效率,制造业中已广泛应用高速切削加工技术。本文针对高速断续切削淬硬钢条件下的刀具失效机理,进行了一系列理论及实验研究。基于损伤力学理论,建立了高速断续车削淬硬条件下的刀具损伤模型以及刀具寿命预测模型,结合实验分析了刀具损伤失效机理并对刀具寿命以及刀具失效演变进行了预测。基于传热学理论,建立了高速平面铣削淬硬钢条件下的刀具瞬时平均温度模型,以刀具温度理论研究结果为切入点,针对等金属去除率条件下的刀具失效机理进行了实验研究。通过高速平面铣削淬硬钢实验,确定了关于切削力、加工表面粗糙度以及刀具寿命的临界切削速度,分析、对比并揭示了不同切削速度区间内的刀具失效机理,并明确了临界切削速度两侧速度范围内各切削参数对切削力、加工表面粗糙度以及刀具寿命的影响。
     基于连续介质损伤力学,建立了高速断续车削淬硬钢陶瓷刀具损伤模型,对刀具损伤演变进行了理论研究。刀具材料的损伤累积是由晶间微裂纹的扩展所导致的,提出了确定刀具材料初始以及临界损伤值的数学方法。采用损伤当量应力最大值(MDES)对刀具损伤进行了分析,结果表明:发生在刀具前刀面的断裂要比后刀面处更为严重;较小的切出角有利于降低刀具材料断裂的可能性;较小的刀具前角,增大了刀具前刀面在切入工件阶段发生断裂的可能性,而降低了刀具后刀面在整个切削阶段发生断裂的可能性;刀具后角增大时,刀具后刀面更易发生大面积断裂。
     通过高速断续车削淬硬钢实验,结合刀具材料损伤模型的理论研究结果,对两种A12O3/(W, Ti)C陶瓷刀具的失效机理进行了实验研究。结果表明,各切削参数对刀具寿命的影响大小顺序为:切削速度、背吃刀量、进给量。机械载荷对刀具失效的影响由磨损初期的相对较强转变为后期的相对较弱,而热载荷影响的变化过程则与之相反。较低切削速度下,机械载荷导致刀具材料微细观损伤破坏,并最终导致刀具材料宏观疲劳裂纹扩展。较高切削速度下,高的刀具温度导致刀具材料力学性能下降,使得刀具材料产生热损伤,在机械、热载荷的复合作用下,刀具材料最终发生局部断裂。结合损伤模型建立的刀具寿命预测模型能够较好得预测刀具失效演变以及刀具寿命。
     建立了高速平面铣削淬硬钢刀具瞬时平均温度模型。此模型可用于计算刀具任意深度处的瞬时平均温度。针对等金属去除率条件下的9种切削方式的刀具温度进行了理论计算以及对比分析,发现了切削周期内刀具温度峰值的差异性。本刀具温度模型为优化切削条件、刀具几何参数等提供了理论依据,深化了对刀具温度的认识。
     基于刀具温度理论研究结果,设计并进行了等金属去除率条件下的高速平面铣削淬硬钢实验,对CBN刀具失效机理进行了实验研究。当切削速度升高时,正常磨损阶段缩短且刀具磨损速率升高。较低切削速度下,刀具前、后刀面的失效机理为磨粒磨损与粘结磨损。在较高切削速度下,由于更加强烈的热、机械冲击,刀具前刀面更易发生剥落,并且较高的切削温度削弱了刀具材料的机械性能,当受到较大机械载荷时,刀具后刀面更易发生断裂。较低切削速度下,刀具材料应具备足够抵抗粘结磨损的能力。在较高切削速度下,刀具材料的高温力学性能以及抵抗机械冲击的能力尤为重要。
     通过硬质合金涂层刀具高速平面铣削淬硬钢实验,对临界切削速度进行了实验研究。当采用临界切削速度1400m/min时,可同时获取较低的切削力、较低的加工表面粗糙度、较高的刀具寿命。当切削速度超过1400m/min后,切削速度以及每齿进给量对切削力以及加工表面粗糙度的影响程度增大;切削速度对刀具寿命的影响程度增大。在速度区间200m/min~1000m/min内,刀具失效机理为发生在刀具后刀面上的磨粒磨损、粘结磨损和氧化磨损。在速度区间1000m/min~1400m/min内,受较高强度机械冲击以及热冲击的影响,前刀面和切削刃处分别出现涂层剥落和微崩刃。在速度区间1400m/min~2400m/min内,更高的刀具温度以及更高强度的机械、热冲击导致刀具前刀面出现大面积剥落。
In order to acquire good surface finish and high machining efficiency, high-speed machining (HSM) technology has been widely applied in manufacturing process. In the present study, the tool wear mechanisms in high-speed intermittent cutting of hardened steel were investigated theoretically and experimentally. Tool damage model and tool life prediction model were proposed in order to identify the tool wear mechanisms and predict the tool life and the tool wear evolution in high-speed intermittent turning of hardened steel. An analytical model was built to calculate and analyze the transient average tool temperatures in high-speed face milling of hardened steel. High-speed face milling experiments were designed and conducted with the calculated results of tool temperature considered. The wear mechanisms of tools tested with fixed metal removal rate and different cutting speeds were investigated. High-speed face milling of hardened steel was performed in order to explore the critical cutting speeds for cutting force, surface roughness and tool life. The tool wear mechanisms obtained in different cutting speed ranges were distinguished. The effects of cutting parameters on cutting force, surface roughness and tool life were investigated in different cutting speed regions divided by the critical cutting speed.
     Ceramic tool damage model was constructed based on continuum damage mechanics for high-speed intermittent turning of hardened steel. Theoretical analysis of tool damage mechanisms were conducted based on the established model. The tool damage accumulation can be attributed to the growth of the microcrack at the grain boundary. A mathematical method was applied to calculate the initial and critical damage value of the tool material. The concept of maximum damage equivalent stress (MDES) was proposed to analyze the tool damage mechanisms. The analysis results showed that fracture happened on the tool rake face was more serious than that happened on flank face. Lower exit angle was beneficial for reducing the degree of tool fracture. Smaller rake angle enhanced the possibility of fracture happened on the rake face at the initial cutting stage and reduced that of fracture happened on the flank face in the whole cutting process. When the clearance angle increased, larger fractured area was more likely to arise on the flank face.
     Taking the theoretical analysis results of tool damage mechanisms into consideration, high-speed intermittent turning of hardened steel was conducted in order to investigate the ceramic tool wear mechanisms. The contribution orders of cutting parameters for tool life was cutting speed, depth of cut and feed rate. The mechanical load influenced more on tool wear at the early stage of tool wear evolution process than it did in the whole tool life, while the thermal load influenced in the opposite way. At relatively low cutting speed, the mechanical load caused microscale damage of the tool material, leading to the fatigue crack growth. When the cutting speed was relatively high, the mechanical properties of the tool material were weakened due to the thermal damage caused by high tool temperature. Regional fracture happened on the tool because of the combined effects of mechanical and thermal loads. The established tool life prediction model can be used to predict tool life and tool wear evolution with acceptable level of accuracy.
     A transient average tool temperature model was established for high-speed face milling of hardened steel. This model can be applied to evaluate the transient average tool temperatures at any depth of the cutting tool. Based on the established model, the transient average tool temperatures for nine different cutting conditions with fixed cutting speed and metal removal rate were calculated and analyzed in order to identify the differences of the maximum tool temperatures. The proposed theoretical method increased the understanding of tool temperatures in face milling process without costly experimental time. Furthermore, it provided theoretical basis for the design of cutting tool.
     Based on the theoretical analysis of tool temperature, high-speed face milling of hardened steel was designed and conducted to investigate the CBN tool wear mechanisms experimentally. When the cutting speed increased, the normal wear stage became shorter and the tool wear rate growed larger. At relatively low cutting speed, the wear mechanisms of tool rake and flank faces were abrasive wear and adhesive wear. Due to the severer mechanical and thermal impact, flaking was likely to happen when the cutting speed was relatively high. Since the mechanical properties were weakened by the high cutting temperature, fracture was more inclined to arise on the tool flank face when relatively higher mechanical load is applied. For the purpose of acquiring high tool life of the CBN tool, the tool material should have sufficient capability of resisting adhesion when tested at relatively low cutting speed. At relatively high cutting speed, retention of mechanical properties to high cutting temperature and resistance to mechanical impact were crucial for enhancing the tool life.
     High-speed face milling of hardened steel with coated cemented carbide tool used was performed in order to investigate the critical cutting speed. At the critical cutting speed of1400m/min, relatively low cutting force, relatively low surface roughness Ra and relatively long tool life can be obtained at the same time. When the cutting speed surpassed1400m/min, cutting speed and feed per tooth became much more influential to cutting force and surface roughness Ra. As for tool life, the effect of cutting speed increased. When the tools were tested within cutting speed range200m/min~1000m/min, the main tool wear mechanisms were abrasive wear, adhesive wear and oxidation wear which mostly influenced the tool flank face. When the cutting speed was between1000m/min and1400m/min, owing to the severer mechanical and thermal impact resulting from the higher cutting speed, coating delamination and microchipping happened on the tool rake face and cutting edge, respectively. As the cutting speed increased from1400m/min to2400m/min, abrupt flaking occurred on the tool rake face due to the increase of tool temperature, mechanical impact and thermal impact.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2]Salomon C J. Process for machining metals of similar acting materials when being worked by cutting tools. German patent,523594.1931.04.
    [3]郭新贵,汪德才,李从心.高速切削技术及其在模具工业中的应用[J].现代制造工程,2001,(9):31-33.
    [4]Noaker P M,刘绪华.高速铣削加工的发展[J].国外金属加工,1999,(2):23-28.
    [5]Kahles J F, Field M, Harvey S M. High speed machining possibilities and needs[J]. Annals of CIRP,1978,27(2):551-558.
    [6]Smith S, Tlusty J. Current trends in high-speed machining[J], Journal of manufacturing science and engineering,1997,119(4):664-666.
    [7]Heller. Defines High-Speed. Machinery and Production Engineering[J].1999, (11):25-26.
    [8]张伯霖,杨庆东,陈长年.高速切削技术及应用[M].北京:机械工业出版社,2003.
    [9]王正君,史津平,周小玉.高速超高速切削及高速切削机床[J].机床与液压,2001,(1):7-8.
    [10]赵炳桢.重视刀具应用技术提高切削加工效率[J].航空制造技术,2005,(7):38-40.
    [11]李如松.正在兴起的干切削技术[J].国际金属加工商情,2003,(7):11-14.
    [12]冯立新,刘少东.提高硬切削质量的建议[J].机械工程师,2007,(7):161-161.
    [13]李良琦.取代磨削的硬切削[J].国防制造技术,2010,(1):58-59.
    [14]张铁铭.干式切削及其所用刀具材料的现状[J].工具展望,2002,(5):1-4.
    [15]Sadat A B. Effect of high cutting speed on surface integrity of AISI 4340 steel during turning[J]. Materials Science and Technology,1990,6(4):371-375.
    [16]Msaoubi R, Outeiro J C, Changeux B, et al. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels[J]. Journal of materials processing technology,1999, 96(1-3):225-233.
    [17]Chen W. Cutting forces and surface finish when machining medium hardness steel using CBN tools[J]. International journal of machine tools and manufacture,2000,40(3):455-466.
    [18]Ko T J, Kim H S. Surface integrity and machineability in intermittent hard turning[J]. The International Journal of Advanced Manufacturing Technology,2001,18(3):168-175.
    [19]Kang M C, Kim J S, Kim J H. A monitoring technique using a multi-sensor in high speed machining[J]. Journal of Materials Processing Technology,2001,113(1-3):331-336.
    [20]Alauddin M, Mazid M A, El Baradi M A, et al. Cutting forces in the end milling of Inconel 718[J]. Journal of Materials Processing Technology,1998,77(1-3):153-159.
    [21]Rahman M, Senthil Kumar A. Evaluation of Minimal of Lubricant in End Milling[J]. The International Journal of Advanced Manufacturing Technology,2001,18(4):235-241.
    [22]Minamino S, Kitajima K, Sakamoto Y, et al. High speed cutting by using high performance end mill[C]. Proceedings of the Third International Conference on Progress of Cutting and MachGrinding, Osaka, Japan,1996:204-211.
    [23]Ohtani T, Fujise K, Yokogawa H. Cutting Force Characteristics in Machining of Hardened Steel[J]. Bulletin of the Japan Society of Precision Engineering,1986,20(2):127-129.
    [24]Tonshoff H K, Gey C, Tonnessen K, et al. High speed flank milling of Greek Ascoloy:the effect of cooling lubrication on tool wear, cutting forces and surface integrity [C]. Second International Seminar on improving machine tool performance, Nantes-La Baule, France,2000:13.
    [25]Tonshoff H K, Amor R B, Andrae P. Chip formation in high speed cutting (HSC) [C]. Third International Machining and Grinding, Cincinnati, Ohio, USA,1999:1-12.
    [26]Trent E M, Wright P K. Metal cutting[M]. Woburn, MA:Butterworth-Heinemann,2000.
    [27]Dumitrescu M, Elbestawi M A, Chen L, et al. Critical assessment of carbide and PCBN tool performance in high speed milling of dies and moulds[C]. Proceedings of the 1998 XXVI NAMRC Conference, Atlanta, Georgia, USA,1998:1-6.
    [28]Ng E G, Aspinwall D K. Evaluation of cutting force and temperature when turning hardened die steel with Amborite AMB90 and DBC 50 tooling[J]. Industrial Diamond Review,1999,59(582): 183-240.
    [29]Chou Y K, Evans C J. Cubic boron nitride tool wear in interrupted hard cutting[J]. Wear,1999, 225-229:234-245.
    [30]Chou Y K. Hard turning of M50 steel with different microstructures in continuous and intermittent cutting[J]. Wear,2003,255(7-12):1388-1394.
    [31]Ghani J A, Choudhury I A, Hassan H H. Application of Taguchi method in the optimization of end milling parameters[J]. Journal of Materials Processing Technology,2004,145(1):84-92.
    [32]Iqbal A, He N, Li L, et al. A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process[J]. Expert Systems with Applications,2007, 32(4):1020-1027.
    [33]Toh C K. Cutter path orientations when high-speed finish milling inclined hardened steel[J]. The International Journal of Advanced Manufacturing Technology,2006,27(5-6):473-480.
    [34]Urbanski J P, Koshy P, Dewes R C, et al. High speed machining of moulds and dies for net shape manufacture[J]. Materials & Design,2000,21(4):395-402.
    [35]Toh C K. Static and dynamic cutting force analysis when high speed rough milling hardened steel[J]. Materials & design,2004,25(1):41-50.
    [36]Tonshoff H K, Rackow N, Gey C. Advanced tool path generation for flank milling turbomachinery components[C]. The Third World Congress on Intelligent Manufacturing Processes and Systems, Cambridge, MA, USA,2000:8.
    [37]Mutou M, Morita N, Yoshida Y. Study on high speed milling of hard materials (2nd report), effect of tool shape on cutting force, cutting edge temperature and tool wear[J]. Journal of the Japan Society for Precision Engineering,1999,65(2):234-239.
    [38]Fang F Z, Thoe T B, Song W, et al. Energy dissipation in high speed milling[C]. The International Conference on Precision Engineering, Singapore,2000:486-491.
    [39]Senthil Kumar A, Raja Durai A, Sornakumar T. Machinability of hardened steel using alumina based ceramic cutting tools[J]. International Journal of Refractory Metals and Hard Materials, 2003,21(3-4):109-117.
    [40]Liu Z Q, Ai X. Cutting tool materials for high speed machining[J]. Progress in Natural Science, 2005,15(9):777-783.
    [41]Longbottom J M, Lanham J D. A review of research related to Salomon's hypothesis on cutting speeds and temperatures [J]. International Journal of Machine Tools and Manufacture,2006, 46(14):1740-1747.
    [42]Lezanski P, Shaw M C. Tool face temperatures in high speed milling[J]. Journal of Engineering for Industry,1990,112:132-135.
    [43]Zeman P, Safek J, Madl J. Selected aspects of high speed milling process[C]. Proceedings of the 34th International Matador Conference, Manchester,2004:95-101.
    [44]Li L, Chang H, Wang M, et al. Temperature measurement in high speed milling Ti6A14V[J]. Key Engineering Materials,2003,259-260:804-808.
    [45]Denkena B, Armo R B, Kuhlmann A. Thermomechanical aspects of high-speed machining[C]. Proceedings of the Fourth International Conference on Metal Cutting and High Speed Machining, Darmstadt,2003.
    [46]Wyatt J E. High-speed face and end milling of stainless steel grades[D]. Southampton Institute, 2002.
    [47]Agba E I, Ishee D, Berry J T. High speed machining of unsupported thin-walled structures[C]. Proceedings of the 1999 3rd International Machining and Grinding, Cincinnati, OH, USA,1999: MR99-204-1-MR99-204-10.
    [48]Dewes R C, Ng E, Chua K S, et al. Temperature measurement when high speed machining hardened mould/die steel[J]. Journal of materials processing technology,1999,92-93:293-301.
    [49]Sutter G, Molinari A, Faure L, et al. An experimental study of high speed orthogonal cutting[J]. Journal of manufacturing science and engineering,1998,120(1):169-172.
    [50]Dewes R C, Aspinwall D K. A review of ultra high speed milling of hardened steels[J]. Journal of Materials Processing Technology,1997,69(1-3):1-17.
    [51]Dewes R C, Aspinwall D K, Wise M L H. High speed machining cutting tools and machine requirements[C]. Proceedings of the Thirty-first MATADOR Conference, Manchester, UK, 1995:455-461.
    [52]Wyatt J E. A novel approach to the ultra-high-speed milling of stainless steels and other materials[C]. Second International Industrial Tooling Conference, Southampton,1997.
    [53]Schulz H, Moriwaki T. High-speed machining[J]. Annals of the CIRP,1992,41(2):637-643.
    [54]Smith G T. Ultra-high speed machining—the problems associated with spindle designs, tooling and machined parts when milling[C]. Proceedings of the Second International Conference on Flexible Automation and Information Management (FAIM), Falls Church, VA, USA,1992: 947-961.
    [55]Komanduri R. High-speed machining[J]. Mechanical Engineering,1985,64-76.
    [56]King R I. Handbook of high-speed machining technology[M]. New York:Chapman and Hall, 1985.
    [57]Schmidt A O. Machine tool engineering:todays facts and fiction[C]. The Winter Annual Meeting of ASME, New Orleans, LA, USA 1984:69-82.
    [58]Komanduri R, Flom D G, Lee M. Highlights of the DARPA advanced machining research program[J]. Journal of Engineering for Industry,1985,107(4):325-335.
    [59]King R I, Vaughn R L. A synoptic review of high speed machining from salomon to the present[C]. The Winter Annual Meeting of ASME, New Orleans, LA, USA,1984:1-13.
    [60]McGee F J. High Speed machining-study:methods for aluminium workpieces[J]. American Machinist,1979,123:121-126.
    [61]Siekmann H. High speed cutting with ceramic tools[J]. The Tool Engineer,1958,85-88.
    [62]McGee F J. An Assessment of High-Speed Machining[J]. Society of Manufacturing Engineers, 1978:22.
    [63]Arndt G. Ultra-High-Speed Machining:A Review and an Analysis of Cutting Forces[J]. Proceedings of the Institution of Mechanical Engineers,1973,187(1):625-634.
    [64]Polosatkin G D, Korotaeva V L, Zhdanov V V, et al. Cutting and grinding at ultra high speeds[J]. Russian Physics Journal,1967,10(10):54-58.
    [65]Opitz H, Kob J. Cutting forces and temperatures when milling with carbide cutters[J]. The Tool Engineer,1953,35-41.
    [66]Rowe W B, Jin T. Temperatures in high efficiency deep grinding (HEDG)[J]. Annals of the CIRP,2001,50(1):205-208.
    [67]Stephenson D J, Jin T, Corbett J. High efficiency deep grinding of a low alloy steel with plated CBN wheels[J]. CIRP Annals-Manufacturing Technology,2002,51(1):241-244.
    [68]Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling[J]. International Journal of Machine Tools and Manufacture,2006,46(10): 1139-1145.
    [69]Dagiloke I F, Kaldos A, Douglas S, et al. High-speed machining:an approach to process analysis[J]. Journal of Materials processing technology,1995,54(1-4):82-87.
    [70]Ming C, Fanghong S, Haili W, et al. Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling[J]. Journal of materials processing technology,2003,138(1):468-471.
    [71]OSullivan D, Cotterell M. Workpiece temperature measurement in machining[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002, 216(1):135-139.
    [72]Osullivan D, Cotterell M. Temperature measurement in single point turning[J]. Journal of Materials Processing Technology,2001,118(1):301-308.
    [73]Palmai Z. Cutting temperature in intermittent cutting[J]. International Journal of Machine Tools and Manufacture,1987,27(2):261-274.
    [74]Schultz H. High speed milling of aluminium alloys[C]. High Speed Machining. Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, New Orleans, LA, USA,1984:241-244.
    [75]Schmidt A O. Workpiece and surface temperatures in milling[J]. Transactions of the ASME, Journal of Engineering for Industry,1953,75(5):883-890.
    [76]Ueda T, Hosokawa A, Oda K, et al. Temperature on flank face of cutting tool in high speed milling[J]. CIRP Annals-Manufacturing Technology,2001,50(1):37-40.
    [77]Sato M, Ueda T, Tanaka H. An experimental technique for the measurement of temperature on CBN tool face in end milling[J]. International Journal of Machine Tools and Manufacture,2007, 47(14):2071-2076.
    [78]McFeron D E, Chao B T. Transient interface temperatures in plain peripheral milling[J]. Transactions of the ASME, Journal of Engineering for Industry,1958,80(2):321-329.
    [79]Stephenson D A, Ali A. Tool temperatures in interrupted metal cutting[J]. Journal of engineering for industry,1992,114(2):127-136.
    [80]Lazoglu I, Altintas Y. Prediction of tool and chip temperature in continuous and interrupted machining[J]. International Journal of Machine Tools and Manufacture,2002,42(9): 1011-1022.
    [81]Ai X, Liu Z Q. Developments of tool materials for high speed machining and their aplications[C]. Fifth Int. Conf. HSM, Metz, France,2006:883-894.
    [82]Kopac J, Sokovic M, Dolinsek S. Tribology of coated tools in conventional and HSC machining[J]. Journal of materials processing technology,2001,118(1):377-384.
    [83]Ai X, Zhao J, Liu Z Q, et al. Research and development of high speed cutting tribology[J]. Key Engineering Materials,2006,315-316:401-405.
    [84]Kopac J, Sokovic M, Dolinsek S. Tribology of coated tools in conventional and HSC machining[J]. Journal of materials processing technology,2001,118(1-3):377-384.
    [85]Childs T H C. Friction modelling in metal cutting[J]. Wear,2006,260(3):310-318.
    [86]Nabhani F. Wear mechanisms of ultra-hard cutting tools materials[J]. Journal of Materials Processing Technology,2001,115(3):402-412.
    [87]刘战强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学学报,2002,22(6):468-471.
    [88]Kronenberg M. Analysis of initial contact of milling cutter and work in relation to tool life[J]. Transactions of the ASME,1946,68(3):217.
    [89]Opitz H, Beckhaus H. Influence of initial contact on tool life when face milling high strength materials[J]. Annals of CIRP,1970,18(2):257.
    [90]孙伟军,李振加,王志刚,等.面铣刀切入方式的判别式推导[J].哈尔滨理工大学学报,2005,10(1):1-3.
    [91]胡映宁,王成勇,张华伟,等.小直径铣刀铣削淬硬钢切入过程的动力学仿真研究[J].机械强度,2006,27(6):782-789.
    [92]董丽华,李振加.铣刀片的应力场分析[J].工具技术,1999,33(3):8-11.
    [93]董丽华,朱海涛.波形刃铣刀切削机理研究[J].哈尔滨理工大学学报,1999,4(2):13-15.
    [94]Pekelharing A J. The exit failure in interrupted cutting[J]. Annals of the CIRP,1978,27(1): 5-10.
    [95]李振加,黎志仁,伊兵.铣削过程刀具破损原因的探讨[J].机械1:程学报,1993,29(4): ●93-96.
    [96]Tan G, Tao F, Yuan Z. Study on mechanism of negative shear forming[C]. Proceedings of the Seventh International Manufacturing Conference in China, China Machine Press,1995,1: 59-64.
    [97]Hirao K, Tlusty R, Sowerby R, et al. Chip formation with chamfered tools[J]. Journal of Engineering for Industry,1982,104:339-342.
    [98]Ghani A K, Barrow G, De Barr A E. Tool failure at exit during interrupted cutting[J]. CIRP Annals-Manufacturing Technology,1985,34(1):71-74.
    [99]Kunio Uoharo. Fundamental Approach to the Thermal Crack of Cement Cutting Tools[J]. CIRP Annals-Manufacturing Technology,1981,30(1):47-51.
    [100]Chandrasekaran H, Venkatesh V C. Thermal Fatigue Studies on Tool Carbides and Its Relevance of Milling Cutters[J]. CIRP Annals-Manufacturing Technology,1985,34(1): 125-128.
    [101]Merten C W, von Turkovich B F. Thermal shock as a carbide grade development tool[J]. CIRP Annals-Manufacturing Technology,1984,33(1):65-69.
    [102]Diniz A E, Gomes D M, Braghini Jr A. Turning of hardened steel with interrupted and semi-interrupted cutting[J]. Journal of materials processing technology,2005,159(2):240-248.
    [103]Sayit E, Aslantas K, Cicek A. Tool wear mechanism in interrupted cutting conditions[J]. Materials and Manufacturing Processes,2009,24(4):476-483.
    [104]Pavel R, Marinescu I, Deis M, et al. Effect of tool wear on surface finish for a case of continuous and interrupted hard turning[J]. Journal of Materials Processing Technology,2005, 170(1):341-349.
    [105]Diniz A E, de Oliveira A J. Hard turning of interrupted surfaces using CBN tools[J]. journal of materials processing technology,2008,195(1):275-281.
    [106]Park S, Kapoor S G, DeVor R E. Microstructure-level model for the prediction of tool failure in coated WC-Co cutting tool materials during intermittent cutting[J]. Journal of manufacturing science and engineering,2007,129(5):893-901.
    [107]Ezugwu E O, Okeke C I. Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation[J]. Journal of Materials Processing Technology,2001,116(1):10-15.
    [108]Zhao J, Yuan X, Zhou Y. Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro-nano-composite ceramic tool [J]. International Journal of Refractory Metals and Hard Materials,2010,28(3):330-337.
    [109]Fallbohmer P, Rodriguez C A, Ozel T, et al. High-speed machining of cast iron and alloy steels for die and mold manufacturing[J]. Journal of Materials Processing Technology,2000,98(1): 104-115.
    [110]Asian E. Experimental investigation of cutting tool performance in high speed cutting of hardened X210 Cr12 cold-work tool steel (62 HRC)[J]. Materials & design,2005,26(1):21-27.
    [111]Koshy P, Dewes R C, Aspinwall D K. High speed end milling of hardened AISI D2 tool steel (similar to 58 HRC)[J]. Journal of Materials Processing Technology,2002,127(2):266-273.
    [112]Ghani J A, Choudhury I A, Masjuki H H. Wear mechanism of TiN coated carbide and uncoated cermets tools at high cutting speed applications[J]. Journal of materials processing technology, 2004,153-154(1-3):1067-1073.
    [113]Liu Z Q, Ai X, Zhang H, et al. Wear patterns and mechanisms of cutting tools in high-speed face milling[J]. Journal of materials processing technology,2002,129(1-3):222-226.
    [114]Siller H R, Vila C, Rodriguez C A, et al. Study of face milling of hardened AISI D3 steel with a special design of carbide tools[J]. The International Journal of Advanced Manufacturing Technology,2009,40(1-2):12-25.
    [115]Nouari M, Molinari A. Experimental verification of a diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented tungsten carbide at various cutting speeds[J]. Wear, 2005,259(7-12):1151-1159.
    [116]Huang Y, Chou Y K, Liang S Y. CBN tool wear in hard turning:a survey on research progresses[J]. The International Journal of Advanced Manufacturing Technology,2007,35(5): 443-453.
    [117]Yen Y C, Sohner J, Lilly B, et al. Estimation of tool wear in orthogonal cutting using the finite element analysis[J]. Journal of Materials Processing Technology,2004,146(1):82-91.
    [118]Li X P, Ng H H, Lim S C. A predictive mapping system for tool wear in metal cutting[J]. Journal of Materials Processing Technology,1999,89-90:279-286.
    [119]Vivancos J, Luis C J, Costa L, et al. Optimal machining parameters selection in high speed milling of hardened steels for injection moulds[J]. Journal of Materials Processing Technology, 2004,155-156:1505-1512.
    [120]Vivancos J, Luis C J, Ortiz J A, et al. Analysis of factors affecting the high-speed side milling of hardened die steels[J]. Journal of materials processing technology,2005,162-163:696-701.
    [121]Ding T, Zhang S, Wang Y, et al. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel[J]. The International Journal of Advanced Manufacturing Technology,2010,51(1):45-55.
    [122]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [123]Lemaitre J损伤力学教程[M].北京:科学出版社,1996.
    [124]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [125]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [126]Krajcinovic D. Damage mechanics:accomplishments, trends and needs[J]. International Journal of Solids and Structures,2000,37(1):267-277.
    [127]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1989.
    [128]余天庆,宁国钧.损伤理论及其在混凝土结构研究中的应用[J].桥梁建设,1986,(3):58-71.
    [129]黄克智,程莉.大变形与损伤力学[J].力学与实践,1989,11(2):1-7.
    [130]Li Z, Qian J. Creep damage analysis and its application to nonlinear creep of reinforced concrete beam[J]. Engineering Fracture Mechanics,1989,34(4):851-860.
    [131]Wei S, Bin R, Hao L. A crack-damage mechanics model for composite laminate[J]. Engineering fracture mechanics,1985,21(5):1019-1029.
    [132]Yang G S. An elastic micro-structural continuous damage model[J]. Acta mechanica solida sinica (English Ed.),1989,2(1):25-36.
    [133]Kyoya T, Ichikawa Y, Kawamoto T. Application of damage tensor for estimating mechanical properties of rock mass[J]. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers,1985,3(358):27-35.
    [134]Murakami S, Ohno N. Continuum Theory of Material Damage at High Temperature[J]. High Temperature Creep--Fatigue,1988,3:43-64.
    [135]Tirosh J, Miller A. Damage evolution and rupture in creeping of porous materials[J]. International journal of solids and structures,1988,24(6):567-580.
    [136]Gao Z, Mura T. Nondestructive evaluation of interfacial damages in composite materials[J]. International journal of solids and structures,1989,25(8):901-916.
    [137]Lee H, Li G, Lee S. The Influence of Anisotropic Damage on the Elastic Behaviour of Materials[C]. International Seminar on Local Approach of Fracture, Paris,1986:79-90.
    [138]Yu T Q, Miao X S, Xiong J M, et al. An orthotropic damage model for concrete at different temperatures[J]. Engineering fracture mechanics,1989,32(5):775-786.
    [139]Boehler J P. Failure Criteria of Structured Media [M]. Rotterdam:AA Balkema,1993.
    [140]Murakami S, Rong H. Anisotropic elasticity-anisotropic damage coupling in creep damage [J]. Transactions of the Japan Society of Mechanical Engineers, Part A,1989,55(512):858-863.
    [141]Uhlmann E, von der Schulenburg M G, Zettier R. Finite element modeling and cutting simulation of inconel 718[J]. CIRP Annals-Manufacturing Technology,2007,56(1):61-64.
    [142]Mabrouki T, Girardin F, Asad M, et al. Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1187-1197.
    [143]Owen D R J, Vaz Jr M. Computational techniques applied to high-speed machining under adiabatic strain localization conditions[J]. Computer methods in applied mechanics and engineering,1999,171(3-4):445-461.
    [144]Vaz Jr M, Owen D R J, Kalhori V, et al. Modelling and simulation of machining processes[J]. Archives of computational methods in engineering,2007,14(2):173-204.
    [145]Lemaitre J, Desmorat R. Engineering damage mechanics:ductile, creep, fatigue and brittle failures[M]. Berlin:Springer,2005.
    [146]Ashby M F. The failure of brittle solids containing small cracks under compr states[J]. Acta Metallurgica, 1986,34(3):497-510.
    [147]Deng H, Nemat-Nasser S. Dynamic damage evolution in brittle solids[J]. Mechanics of materials,1992,14(2):83-103.
    [148]Gambarotta L. Modeling dilatancy and failure of uniaxially compressed brittle materials by microcrack-weakened solids[J]. Engineering fracture mechanics,1993,46(3):381-391.
    [149]Huang C, Subhash G, Vitton S J. A dynamic damage growth model for uniaxial compressive response of rock aggregates[J]. Mechanics of materials,2002,34(5):267-277.
    [150]Kemeny J M. A model for non-linear rock deformation under compression due to sub-critical crack growth[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1991,28(6):459-467.
    [151]Li H B, Zhao J, Li T J. Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(6):923-935.
    [152]Nemat-Nasser S, Deng H. Strain-rate effect on brittle failure in compression[J]. Acta metallurgica et materialia,1994,42(3):1013-1024.
    [153]Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle materials[J]. Journal of applied mechanics,1988,55:24-35.
    [154]Ning J, Ren H, Li P. Mechanical behaviors and damage constitutive model of ceramics under shock compression[J]. Acta Mechanica Sinica,2008,24(3):305-315.
    [155]Ravichandran G, Chen W. Dynamic failure of brittle materials under uniaxial compression[J]. Experiments in Micromechanics of Fracture Resistant Materials,1991:85-90.
    [156]Ravichandran G, Subhash G. A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and structures,1995,32(17):2627-2646.
    [157]Steif P S. Crack extension under compressive loading[J]. Engineering Fracture Mechanics, 1984,20(3):463-473.
    [158]Horii H, Nemat-Nasser S. Brittle failure in compression:splitting, faulting and brittle-ductile transition[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences,1986,319:337-374.
    [159]Tada H, Paris P C, Irwin G R, et al. The stress analysis of cracks handbook[M]. New York: ASME press,2000.
    [160]Freund L B. Dynamic fracture mechanics[M]. Cambridge University Press,1998.
    [161]Fredrich J T, Evans B, Wong T F. Effect of grain size on brittle and semibrittle strength: Implications for micromechanical modelling of failure in compression[J]. Journal of Geophysical Research,1990,95(B7):10907-10,920.
    [162]Meyers M A. Dynamic behavior of materials[M]. New York:Wiley & Sons,1994.
    [163]Ozel T, Zeren E. Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool[C]. Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations, Chemnitz, Germany,2005:533-541.
    [164]陈日曜.金属切削原理[M].北京:机械工业出版社,1985.
    [165]Loewen E G, Shaw M C. On the analysis of cutting tool temperatures [J]. Journal of Engineering for Industry,1954,76(2):217-231.
    [166]Chen L, El-Wardany T I, Nasr M, et al. Effects of edge preparation and feed when hard turning a hot work die steel with polycrystalline cubic boron nitride tools[J]. CIRP Annals-Manufacturing Technology,2006,55(1):89-92.
    [167]Ozisik M N. Heat Conduction[M]. New York:Wiley,1980.
    [168]Gradshteyn I S, Ryshik I M. Table of Integrals, Series, and Products[M]. New York:Academic Press,1980.
    [169]Childs T, Maekawa K, Obikawa T, et al. Metal machining:theory and applications[M]. New York:Wiley,2000.
    [170]Wilkinson P, Reuben R L, Jones J D C, et al. Surface finish parameters as diagnostics of tool wear in face milling[J]. Wear,1997,205(1):47-54.
    [171]Benardos P G, Vosniakos G C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments[J]. Robotics and Computer-Integrated Manufacturing,2002,18(5):343-354.
    [172]Yang W H, Tarng Y S. Design optimization of cutting parameters for turning operations based on the Taguchi method[J]. Journal of Materials Processing Technology,1998,84(1):122-129.
    [173]Lin T R. Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel[J]. Journal of materials processing technology,2002,127(1):1-7.
    [174]Boothroyd G, Knight W A. Fundamentals of machining and machine tools,3rd edn. New York: CRC,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700