镍基合金Inconel 718高速切削刀具磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、高效切削加工技术近年来以其独特的优势成功应用于钢铁、铝合金以及高温合金的切削加工。论文主要针对镍基高温合金Inconel718高速切削加工过程中刀具摩擦磨损过程、前、后刀面的热-力耦合场以及热-力耦合场作用下刀具寿命的预测模型展开研究,为镍基合金加工刀具材料选择、刀具结构设计及切削参数优化提供理论依据和技术支撑。
     依据热力学熵产生计算方法,结合涂层硬质合金刀具高速切削Inconel718磨损特点,计算了粘滞性流动、扩散和氧化反应三个磨损子过程的熵产生,从而得到系统总熵产生与切削速度和后刀面平均磨损量VB之间的变化规律。根据系统总熵产生变化趋势深入研究了刀具自组织特性和形成过程机理,探究了积屑瘤、切屑流动带、氧化层和粘结层4种自组织表现形式和各种表现形式所对应的减摩机理。利用总熵产生变化规律,映射了刀具磨损的层次特性,此特性根据具体切削参数选择不同,会出现一个或三个磨损阶段的情况。
     建立了考虑刀尖圆弧半径和刀具磨损的刀具前、后刀面的热-力耦合场的三维解析模型。分析了不同切削参数和不同刀具几何参数下,各切削微元的剪切角、剪应变、刀屑接触长度的变化。通过计算高速切削摩擦、磨损系统的热分配系数计算每个切削微元由剪切热源和摩擦热源引起的刀-屑接触面的温升。通过假设切屑流动速度为匀速,从而得到每个切屑微元受力矢量和为零,进而求得刀具所受三向分力以及合力数值。模型的计算结果表明:刀具磨损时,刀具前刀面切削力增加不显著,切削温度略有降低,而刀具后刀面所受力和温度都随着刀具的磨损明显增大。依据热-力耦合场影响机制,分析了涂层硬质合金刀具车削Inconel718在不同的切削参数下切屑形态特征和切屑形成机理,同时分析了切削速度、进给量和刀具磨损对工件表面质量的影响。
     在不同的磨损阶段中各种磨损机理所占的比重有较大差异。由于初始磨损阶段粘结层的频繁剥落与生成,导致广义扩散力增大,所以扩散磨损对刀具寿命的影响最大,但是此阶段由于扩散浓度小、切削温度低氧化磨损所占的比重最小甚至不能发生。然而在稳定磨损阶段,粘结层相对稳定,剥落的频率降低,元素的浓度梯度减低,扩散速度减慢氧化磨损提供了适合的条件,氧化磨损速率持续升高,其所占比重也越来越大,进而分析发现在磨损末期氧化磨损对刀具寿命的影响占绝对优势。综合考虑上述三阶段磨损的特点,依据扩散磨损、粘结磨损和氧化磨损机理,结合热-力耦合作用机制建立了刀具寿命预测模型,并实验验证了理论模型具有一定的可行性和精确性。
     结合实验加工的具体要求,重点分析了涂层硬质合金刀具和Sialon陶瓷刀具高速车削以及涂层硬质合金刀具高速铣削镍基合金Inconel718时刀具每个磨损阶段刀具磨损形态和磨损机理的变化。
     本课题得到国家自然基金(50575126)和国家重点基础研究发展计划(2009CB724402)的支持。
High speed cutting (HSC) and high performance machining technology has been applied in steel, aluminum and high-temperature alloys cutting successfully because its particular advantages. Our research focused on the tool friction and tool wear process, the thermal-mechanical coupling in the rake face and flank of cutting tool and tool life prediction model under thermal-mechanical coupling action. The analysis of HSC process of Nickel-based superalloys Inconel 718 provided theoretical foundation and technical support for cutting tool material selection on Nickel-based superalloys machining, cutting tool structure design and cutting parameters optimization.
     During HSC Inconel718 process with coated carbide tools, by the calculation of thermodynamic entropy production on three wear sub-processes (viscosity flow, diffusion and oxidation), the entropy production of system was investigated with the changes of cutting speed and flank wear VB. The self-organization process of cutting tool was analyzed according to the changing of the entropy got from the system, the cutting process was divided into three (one) wear stages. When the values of the cutting parameters on HSC friction and wear system were with in a certain range, the friction films of self-organization kept friction and wear system in a stable stage. When these values exceeded a certain rage, the friction film of self-organization was difficult to be generated, which led cutting tool only has one wear stage and a short tool life. Mechanisms of 4 self-organization friction films (BUE, chip flow zone, oxide layer and the bonding layer) were considered in the high speed cutting process.
     The thermal-mechanical coupling 3D analytical model in the rake face and flank of cutting tool was created consedering nose radius and tool wear. The changes of shear angle, shear strain and tool-chip contact length for each differential cutting element were analyzed under different cutting parameters and different tool geometries. The temperature rised on each cutting element on the tool-chip contact surface was caused by shear and friction heat which was calculated by the heat distribution coefficient of HSC friction and wear system. By assuming that flow velocity of chip as uniform motion, the force vector sum was zero, and then three direction components and composition of forces on the tool could be calculated. The calculation of model show that the increased of cutting force on the rake face of cutting tool was not significant and cutting temperature decreased a little when the cutting tool is worn. The cutting force and temperature on the flank of cutting tool increased significantly with the tool wear. The influence of chip shapes, chip formation mechanism, cutting speed, feed rate and cutting tool wear on workpiece surface quality were analyzed based on the thermal-mechanical coupling on Incone1718.
     The proportion of each wear mechanisms on different wear stage was very different. In a beginning wear stage, general diffusion wear increased caused by frequent spalling and generation of bonding layer, so the most important influence factor in this stage for tool life was diffusion wear. And small diffusion concentration and low cutting temperature result the proportion of oxidized wear was so small to happen. In the stable wear stage, relatively stable bonding layer reduced spalling frequency, decreased concentration gradient of element and decreased diffusion speed, which provided suitable conditions for oxidation wear. Oxidation wear rate continued to rise, in the end of wear stage, it became the biggest influence factor on tool life at the failure stage. Considering the characteristics of the three wear stage and the thermal-mechanical coupling, tool life prediction model was established with diffusion wear, adhesive wear and oxidation wear were considered as the main wear mechanism.
     The tool wear and wear mechanisms in different cutting tool wear stages and a variety of cutting tools changed when the nickel-based superalloys Inconel 718 was cutting with coated carbide tools and Sialon ceramic tools.
     This research is supported by the National Natural Science Foundation of China (50575126) and the National Basic Research Program of China (2009CB724402).
引文
1. 艾兴等.高速切削加工技术[M].北京:国防工业出版社2003.26-90.
    2. R Arunachalam, M.A Mannan, Machinability of nickel-based high temperature alloys [J]. Mach. Sci. Technol.2000, (4):127-268.
    3. A Behrens, K Kalisch, J.P Wulfsberg. Possibilities and problems of finite element simulation of high speed cutting mechanics [J]. Proceedings of the 2004 ASME International Mechanical Engineering Congress andR&DExposition Anaheim.2004:1-9.
    4. R.T Coelho, L.R.Silva, A Braghini, A.A Bezerra. Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718 (TM) at high cutting speeds[J]. J. Mater. Process. Technol.2004, (48):147-153.
    5. D Dudzinski, A Devillez. A review of developments towards dry and high speed machining of Inconel 718 alloy [J]. Int. J. Mach. Tools Manuf.2004, (44):439-456.
    6. E.O Ezugwu, J Bonney. An overviewof themachinability of aeroengine alloys [J]. J. Mater. Process Technol.2003, (134):233-253.
    7. E.O Ezugwu, D.A Fadare, J Bonney, R.B Silva, W.F Sales. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel718 alloy using an artificial neural network [J]. Int. J. Mach. Tools Manuf 2005, (45):1375-1385.
    8. N Narutaki, Y Yamane. High speed machining of Inconel 718 with ceramic tools. Annals of CIRP 1993,(42):103-106.
    9. 梁彦军,高峰.我国高速加工急速演剧现状及发展趋势.工具技术[J],2002,(36):16-20.
    10.艾兴,刘镇昌等.高速切削技术的研究和应用.全国生产工程第8届学术大会第3届青年学者学术会议论文集[M].北京:机械工业出版社,1999,(9):146-150.
    11.赵军,艾兴等.模具高速加工技术的研究与策略[J].工具技术。2002,(36):32-34.
    12.李沪曾,郭重庆,诸乃雄,林建平.高速切削加工技术在模具和模型制造中的应用[J].机械工程:程材料,2005,(28):50-52.
    13. H Schulz. High-speed machining [M]. Carl Hanser Verlag,1996.
    14.马晓云,林建平淬硬模具钢SKD61的高速铣削加工研究[J].机械工程材料,2004,(28) 27-29.
    15. Jing Lulu, Shen Zhong, Chen Ming. Experiment on Surface Integrity of Milling Tool for Hardened Steel SKD11 [J]. TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS,2007(24):157-163.
    16. Seamus Gordon, Michael T. Hillery. Development of a high-speed CNC cutting machine using linear motors [J] Journal of Materials Processing Technology,2007(166):321-329.
    17. R C Dewes, D K Aspinwall. High speed machining cutting tools and machine requirements [J]. Proceedings of the Tirty-first MATADOR conference,1995:445-461.
    18. T. J Schuett. Advanced controls for high speed machining [J]. Proceedings of the SME High Speed Machining Conference,1996.
    19. RC Dews, DK Aspinwall. The use of high speed machining for the manufacturing of hardened steel dies [J], Proceedings of the North American Research Conferencem 1996:21-26.
    20.付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究.山东大学博士学位论文,2007.
    21.赵新,朱承元,易克平,江燕.铝合金高速铣切屑温度实验研究[J],电子机械工程,2004(01):37-39.
    22. B.M. Kramer. On tool materials for high speed machining [J], J. Eng. Ind,1987 (109):87-91.
    23. J. Kopac, M. Sokovic and S. Dolinsek. Tribology of coated tools in conventional and HSC machining [J], J. Mater. Process. Technol,2001 (118):377-384.
    24. P. Koshy, R.C. Dewes and D.K. Aspinwall. High speed end milling of Hardened AISI D2 tool steel (~58 HRC) [J], J. Mater. Process. Technol,2002 (127):266-273.
    25. Hideharu Kato, Kazuhiro Shintani, Hitoshi Sumiya. Cutting performance of a binder-less sintered cubic boron nitride tool in the high-speed milling of gray cast iron [J]. Journal of Materials Processing Technology,2002(127):217-221.
    26. P. Fallbohmer, C. A. Rodriguez, T. Ozel, T. Altan. High-speed machining of cast iron and alloy steels for die and mold manufacturing [J]. Journal of Materials Processing Technology, 2000(98):104-115.
    27. D.G. Flom, W.R. Reed Jr., L.E. Hibbs Jr., T.J. Broskea. High-speed machining of cast iron with BZN compacts[J].Wear,1991(147):253-265.
    28. N. Camuscu. Effect of cutting speed on the performance of Al2O3 based ceramic tools in turning nodular cast iron[J].Materials & Design,2006(27),997-1006.
    29. T. Kitagawa, A. Kubo, K. Maekawa. Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti---6Al---6V---2Sn [J]. Wear,1997(202):142-148.
    30. Y. Yamabe-Mitarai, H. Aoki, An assessment of Ir-Pt-Al alloys for high-temperature materials [J]. Journal of Alloys and Compounds,2003(359):143-152.
    31.侯军占,赵志龙,阎光明,刘林.晶粒细化对高温合金K4169切削加工性能的影响[J].金属功能材料,2007(04):11-14.
    32.杨芳红,赵志龙,严光明.对比研究不同晶粒度高温合金K4169的加工性能[J].机械设计与制造,2007(11):102-104.
    33.肖茂华,何宁,李亮,刘海滨.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究[J]中国机械工程,2008(10):1188-1192.
    34. 杨芳红,赵志龙,阎光明,刘林.晶粒细化对K4169高温合金切削加工性能的影响[J]制造技术与机床,2007(09):48-51.
    35.郭新贵,汪德才等.高速切削技术及其在模具工业中的应用.现代制造工程[J],2001(3):32-36.
    36.邵传伟.电主轴与高速加工机床[J],世界制造技术与装备市场(WMEM),2002(5):24-26.
    37.张铁铭.干式切削及其所用刀具材料的现状[J].工具展望,2002(5):14.
    38.李如松.正在兴起的干切削技术[J].国际金属加工商情,2003(7).
    39.李良琦.取代磨削的硬切削[J].国防制造技术2010(1):58-59.
    40.冯立新,刘少东提高硬切削质量的建议[J].机械工程师,2007(7):161-161.
    41.戴淑芝..柔性机械制造技术及关键技术应用[J].科技创新导报,2010,(18):67.
    42.梁福军;石治平21世纪的制造技术[J].机械制造,2001(11):18-19.
    43. 新世纪航空机载设备制造技术展望[J].航空制造技术,2000(6):31-34.
    44.刘战强,艾兴,宋世学.高速切削技术的发展与展望[J].制造技术与机床,2001(7):5-7.
    45. K. GroBmann. Machining and Precision[J]. Encyclopedia of Materials:Science and Technology, 2008:4692-4697.
    46.王树林,王贵成.高速加工及其工具系统的研究进展[J].江苏理工大学学报,2001(449-53).
    47.孙大涌,屈贤明,张松滨.先进制造技术[M].北京:机械工业出版社,2000:438-441.
    48.张柏霖,夏红梅,黄晓明.高速电主轴设计制造中若干问题的探讨[J].制造技术与机床,2001(7):12-14.
    49. H. Schulz, G. Spur. Aspects in Cutting Mechanism in High Speed Cutting[J]. CIRP Annals-Manufacturing Technology,1989,(38):51-54.
    50. Herbert Schulz, Toshimichi Moriwaki. High-speed Machining[J]. CIRP Annals-Manufacturing Technology,1992,(41):637-643.
    51.李郭龙,周延佑,郭刚.NURBS插补应用研究[J].制造技术与机床,2000(1):48-50.
    52.艾兴,刘占强,赵军.高速切削刀具的进展的未[J]来.制造技术与机床,2001(8):21-25.
    53. Ashley S. High speed machining goes mainstream[J]. Mechanical Engineering,1995(1)56-61
    54.王成勇,周莉.模具高速加工的NC编程策略[J].制造技术与机床,2002(2):25-29.
    55. Jerard RB, Fussell BK, Hemmett JG. Tool path federate optimization:A case study [J]. Preceding of the 2000 NFC Design and Manufacturing System Conference.2000:3-6.
    56.刘凯.高速铣的加工策略[J].新技术新工艺,2002(5):16-18.
    57.齐燕飞,赵淑珍,陈述文,杨宏青.整体壁板高速切削工艺研究[J].航天制造技术,2007(03):23-27.
    58.朱建军,邱敬之,庄永德.高速切削工艺浅析[J]电子机械工程[J],2000(06):48-50.
    59.周正干,王美清,李和平,邬学礼,崔在成.高速加工的核心技术和方法[J].航空制造技术,2000,(03):13-17.
    60.张耀满.高速机床若干关键技术问题研究.东北大学博士论文,2006.
    61.李长河,丁玉成,卢秉恒.高速切削加工技术发展与关键技术.青岛理工大学学报,2009(2):13-16.
    62. Sun-Min Kim, Sun-Kyu Lee. Prediction og thermo-elastic behavior in a sprindle bearing system considering bearing surroundings [J]. Machine Tools & manufacturing,2001,(41):809-931.
    63. Robert Grejda, Eric Marsh, Ryan Vallance. Techniques for calibrating spindles with nanometer error motion [J],Precision Engineering,2005, (29):113-123.
    64. Tony Schmitz, Matthew Davies, Brian Dutterer. The application of high-speed CNC machining to Prototype Production [J], Machine Tools & manufacturing,2001,(41):1209-1228.
    65. E. Abele, Y. Altintas, C. Brecher. Machine tool spindle units [J]. CIRP Annals-Manufacturing Technology,2010,(59):781-802.
    66. E. Abele, Y. Altintas, C. BrecherH.J.Pahk, S.W. lee. Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the spindle Thermal Error and the feed axis thermal error [J], Advanced Manufacturing Technology,2002,(20):487-494.
    67.张伯霖,黄晓明,范梦吾.高速机床进给系统的发展趋势[J],组合机床与自动化加工技术,2002,(10)7-11.
    68.周宏甫.六坐标工具磨床CNC系统的关键技术研究[D].华中理工大学博士论文,1996.
    69.崔汉锋,韩世强.高性能CNC系统中实时多任务处理[J]华中理工大学学报,1993,(21):89-94.
    70. Junyan Liu, Rongdi Han, Li Zhang, Hongbin Guo. Study on lubricating characteristic and tool wear with water vapor as coolant and lubricant in green cutting[J].Wear,2007,(262),442-452.
    71. Junyan Liu, Rongdi Han, Yongfeng Sun. Research on experiments and action mechanism with water vapor as coolant and lubricant in Green cutting [J]. International Journal of Machine Tools and Manufacture,2005, (45):687-694.
    72. C. Kim, M.C. Kang, J.S. Kim, K.H. Kim, B.S. Shin, T.J. Jef. Mechanical properties and cutting performance of nanocomposite Cr-Si-N coated tool for green machining[J]. Current Applied Physics,2009, (9):145-148.
    73.王刚,刘冬花.绿色制造的系统工程学观点[J].科技风,2010,(12):275-276.
    74.孙建彪;发展绿色制造势在必行[J].宁夏机械,2006,(02):5-7.
    75.华少红.绿色制造-高速干切削概述[J].中国新技术新产品,2009,(13):138-139.
    76.林朝平.绿色制造技术的进展[J].常熟高专学报,2002,(16):70-73.
    77.罗永顺,曾伟民.关于干切削技术推广问题的探[J]讨.现代制造工程,2004,(10):103-104.
    78.谢国如.绿色制造中干切削的研究[J].现代机械,2004,(6):57-66.
    79.刘学杰,杨建鸣.高速干切削[J].包头钢铁学院学报,1998,(17):157-160.
    80.杨小璠,刘菊东.干切削的关键技术及其应用[J].机械工人冷加工,2002,(12):11-12.
    81.倪雪飞.高温合金分析的进展[J].理化检验(化学分册),1997,(33):374-377.
    82.熊玉华;K4169高温合金化学法晶粒细化工艺及机理的研究[J].材料导报,2001,(15):76.
    83.胡华南;徐大源;张崇高;高温合金切削加工技术现状与展望[J].安徽工学院学报, 1990(9):47-54.
    84.王志刚.难加工材料的高速切削[D].南京航空航天大学硕士论文,2001.
    85.李企芳.难加工材料的加工技术[M].北京:科学技术出版社,1992.
    86.韩荣第,于启勋主编.难加工[材料切削加工[M].北京:机械工业出版社,1996.
    87. I.A. Choudhury. M. A. El-Baradie. The machinability of nickel-based alloys:a general review[J]. Materials Processing Technology.1998, (77):278-284.
    88.师昌绪,仲增墉.高温合金40年[J].金属学报,1997,(33):1-8.
    89. E.M Trent. Metal cutting (3rd Edition.)[M]. Oxford:Butterworth Heinemann,1991.
    90.克利沃乌霍夫.耐热合金及钛合金的切削加工性[M].北京:国防工业出版社,1963.
    91. E.O. Ezugwu, Z.M. Wang, A.R. Machado. The machinability of nickel-based alloys:a review [J] Journal of Materials Processing Technology,1998,(86):1-16.
    92. S.Y. Hong, I.Markus, W. Jeong. New coolong approach and tool life improvement in cryogenic machining of titanum Ti-6A1-4V [J]. Tools Manufac.,2001, (41):2245-2260.
    93. Z.M. Wang, E.Q.Ezugwu, A. Gupta. Evaluation of self-propelled rotary tool in the machining of aerospace materials [J]. Tribol. Trans,1998 (41):289-295.
    94. E. Q. Ezugw, K.A. Olajire, Z.M. Wang. Wear Evaluation of self-propelled rotary tool when machining titanium, IMI 318, alloy [C]. Proceedings of the Inst. of Mech. Engineers,2002(216): 891-897.
    95. P. Chen.Cutting temperature and forces in the machining of high performance materials with self-propelled rotary tool [J]. JSME,1992(35):180-185.
    96. B.M. Kramer. On tool materials for high speed machining, J. Eng. Ind.1987(109):87-91.
    97. F. Kloche, W. Knig, K.. Gerschwiler. Advanced Manufacturing Systerm and Technology. CISM Couses and Lecture No.372,1996:7-21.
    98.艾兴.坚持自主创新发展和应用高效切削技术提升加工制造水平[J].工具技术,2006,(6)2-6.
    99. A. Moufki, D. Dudzinski, A. Molinari, M. Rausch. Thermoviscoplastic modelling of oblique cutting:forces and chip flow predictions [J].International Journal of Mechanical Sciences. 2000(42):1205-1232.
    100. M. C. Shaw, A. Vays. The mechanism of chip formation with hardened steels. Annals of CIRP. 1998(47):77-82.
    101. John S. Strenkowski, Albert J. Shih, Jong-Cherng Lin. An analytical finite element model for predicting three-dimensional tool forces and chip flow[J].International Journal of Machine Tools and Manufacture,2002(42):723-731.
    102. N. Fang. Tool-chip friction in machining with a large negative rake angle tool [J]. Wear, 2005(258):890-897.
    103. W. Grzesik, P. Nieslony. Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating-chip interface[J].Wear,2004(256):108-117.
    104. Gillespie L. K. The formation and properties of machining burrs. M.S. Thesis. Utah State University, Logon, UT,1993.
    105. Kim J. Optimization and control of Drilling Burr Formation in Metals [D]. Ph.D. Dissertation. Department of Mechanical Engineering, University of California ar Berkeley,2000.
    106.丁建宁,刘延山.金属切削摩擦学[M].镇江:江苏理工大学出版社,1997:29-31.
    107. German S. Fox-Rabinovich. Self-organization during friction [M]. New York:CRC,2006:1-196
    108. Bushe, N.A., Kopitco, V.V. Tribological Compatibility. Nauka:Moscow,1981, p.128.
    109. Kragelsky, I.V., Alisin, V.V. Friction, Wear and Lubrication. Mashinostroenie:Moscow,1978, pp.160-230.
    110. Shuster, L.S. Tribological compatibility during forming of titanium alloys. J. Friction Wear 1993,18(5):914-921.
    111. Kostetsky, B.I. Evolution of structure, phase conditions and mechanism of self-organization of materials in external friction. J. Friction Wear 1993,14(4):773.
    112. A.K. Tieu, Y.J. Liu, P.B. Kosasih, Z.Y. Jiang.Effects of elastic deformation and temperature on a mixed film lubrication model [J]. Tribology Series,2002,(40):115-120.
    113. E. Ceretti, M. Lucchi, T. Altan. FEM simulation of orthogonal cutting:serrated chip formation [J]. Journal of Materials Processing Technology,1999,(95),:17-26.
    114. Tugrul Ozel. The influence of friction models on finite element simulations of machining [J]. International Journal of Machine Tools and Manufacture,2006,(46):518-530.
    115. Halil Bil, S. Engin Kilic, A. Erman Tekkaya. A comparison of orthogonal cutting data from experiments with three different finite element models [J]. International Journal of Machine Tools and Manufacture,2004, (44):933-944.
    116.方刚,曾攀,Finite Element Simulation of Metal Quenching[J].清华大学学报(英文版),2004,(9):555-559.
    117.黄志刚柯映林王立涛金属切削加工有限元模拟的相关技术研究[J].浙江大学学报(工学版),2005,(3):846-849.
    118. S.D.J.A. Arsecularatne, G. Barrow, S. Hinduja. Prediction of the radial force in turning using feed force data [J]. International Journal of Machine Tools and Manufacture,1993,(33): 827-839.
    119. J. Wang. The effect of the multi-layer surface coating of carbide inserts on the cutting forces in turning operations [J]. Journal of Materials Processing Technology,2000,(97):114-119.
    120. Yong Huang, Steven Y. Liang. Effect of Cutting Conditions on Tool Performance in CBN Hard Turning [J]. Journal of Manufacturing Processes,2005,(7):10-16.
    121. R. Komanduri, Z. B. Hou. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[J].Tribology International,2001,(34),:653-682.
    122. W. Grzesik.Composite layer-based analytical models for tool-chip interface temperatures in machining medium carbon steels with multi-layer coated cutting tools[J].Journal of Materials Processing Technology,2006,(176):102-110.
    123. A. Moufki, A. Molinari, D. Dudzinski.Modelling of orthogonal cutting with a temperature dependent friction law [J]. Journal of the Mechanics and Physics of Solids,1998,(46): 2103-2138.
    124. A. Molinari, A. Moufki. A new thermomechanical model of cutting applied to turning operations. Part Ⅰ. Theory[J].International Journal of Machine Tools and Manufacture, 2005,(45):166-180.
    125.I S Jawahir, R Ghosh, X D Fang. An investigation of the effects of chip flow on tool wear in maching with complex grooved tools [J]. Wear,1995,(184):145-154.
    126. J A Arsecykaratne, R F Flowle, P Mathew. Prediction of tool life in oblique machining with nose radius tools [J]. Wear,1996, (198):220-228.
    127. J A Arsecykaratne. On prediction of tool life and tool deformation conditions in machining with restricted contact tools [J]. International Journal of Machine Tools & Manufacture.2003, (43):657-669.
    128. J A Arsecykaratne. Prediction of tool life for restricted contact and grooved tools based on equivalent feed [J]. International Journal of Machine Tools & Manufacture.2004,(44):1271-1282.
    129. J A Arsecykaratne, L C Zhanga, C Montross. Wear and tool life of tungsten carbide, PCBN and PCD cutting tools [J]. International Journal of Machine Tools & Manufacture.2006,(46):482-491.
    130.陈章燕.研究切削过程的新方法[J].北京工业学院学报,1989,(15):96-106.
    131.王晓琴;艾兴;赵军;李甜甜.硬质合金刀具高速干车削Ti6A14V切削力及刀具寿命研究[J].制造技术与机床,2008,(04):36-39.
    132. J. A. Arsecularatne. Prediction of tool life and tool deformation conditions in machining with restricted contact tools [J]. International Journal of Machine Tools and Manufacture,2003(43): 657-669.
    133. Yong Huang, T. G Dawson. Tool crater depth modeling in CBN hard turning [J]. Wear,2005, (258):1455-1461.
    134. A Molinary, M Nouary. Modeling of tool wear by diffusion in metal cutting [J]. Wear,2002, (252):135-149.
    135. X Luo, K Chen, R Holt, et al. Modeling flank wear of carbide tool insert in metal cutting [J]. Wear,2005,(259):1235-1240.
    136. Yong Huang, Ty G. Dawson. Tool crater wear depth modeling in CBN hard turning [J].Wear, 2005(258):1455-1461.
    137. S. Karmakar, U. R. K. Rao, A. Sethuramiah. An approach towards fatigue wear modeling[J]. Wear,1996(198):242-250.
    138. L.J. Yang. Modeling transient adhesive wear of tungsten carbide inserts tested with an angular setting[J].Tribology International,2007(40):1075-1088.
    139. K. Elleuch, S. Fouvry. Experimental and modelling aspects of abrasive wear of a A357 aluminium alloy under gross slip fretting conditions [J]. Wear,2005, (258):40-49.
    140. A.A. Torrance. Modelling abrasive wear. Wear,2005(258):281-293.
    141. T. F. J. Quinn. Oxidational wear modelling Part Ⅲ. The effects of speed and elevated temperatures[J].Wear,1998(216):262-275.
    142. J. Lorentzon, N. Jarvstrat. Modelling tool wear in cemented-carbide machining alloy 718[J]. International Journal of Machine Tools and Manufacture,2008,(48):1072-1080.
    143. Luigino Filice, Fabrizio Micari, Luca Settineri, Domenico Umbrello. Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools [J]. Wear,2007,(262):545-554.
    144. D. G. Thakur. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Materials and Design.2008,7(11):1-6.
    145. Abhay Bhatt, Helmi Attia, R. Vargas, V. Thomson. Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718 [J].Tribology International,2010(43): 1113-1121.
    146. J.P. Costes, Y. Guillet, G. Poulachon, M. Dessoly. Tool-life and wear mechanisms of CBN tools in machining of Inconel 718 [J].International Journal of Machine Tools and Manufacture, 2007(47):1081-1087.
    147. G. Brandt, A. Gerendas, M. Mikus. Wear mechanisms of ceramic cutting tools when machining ferrous and non-ferrous alloys[J].Journal of the European Ceramic Society,1990(6):273-290.
    148. Bhattacharyya, S K Jawaid, A Lewis, M H Wallbank, J, Wear Mechanisms of Syalon Ceramic Tools When Machining Nickel-Based Materials [J]. Met. Technol,1983 (10):482-489.
    149. A. Senthil Kumar, A. Raja Durai, T. Somakumar.Wear behaviour of alumina based ceramic cutting tools on machining steels [J].Tribology International,2006(39):191-197.
    150. Deng Jianxin, Liu Lili, Liu Jianhua, Zhao Jinlong, Yang Xuefeng. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys [J]. International Journal of Machine Tools and Manufacture,2005(45):1393-1401.
    151. Mehdi Remadna, Jean Francois Rigal. Evolution during time of tool wear and cutting forces in the case of hard turning with CBN inserts [J]. Journal of Materials Processing Technology, 2006,(178):67-75.
    152. S. Lo Casto, E. Lo Valvo, E. Lucchini, S. Maschio, M. Piacentini, V. F. Ruis. Ceramic materials wear mechanisms when cutting nickel-based alloys [J]. Wear,1999,(225-229):227-233.
    153. A. Altin, M. Nalbant, A. Taskesen. The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools [J]. Materials & Design,2007, (28):518-2522.
    154.黄传真,艾兴.加工镍基合金时切削力和切削温度的特点[J].工具技术,1995,(29):35-37
    155.徐林红江征风Jan-Eric St hl等.镍基合金Inconel 718可切削加工性的试验研究[J].现代制造工程,2010(2)91-94.
    156.高群;铸造镍基高温合金K418切削性能试验研究[J].航空精密制造技术2010(46):37-42.
    157.徐芗明.镍基高温合金切削加工锯齿形切屑研究[J].金属材料.机械制造,2008,(46)38-40.
    158.何宁.难加工材料高速切削[J].南京航空航天大学学报1996,(28):230-234.
    159.丁建宁,刘延山.金属切削摩擦学[M].镇江:江苏理工大学出版社,1997:29-31.
    160.曾丹苓.工程非平衡热动力学[M]。北京:科学出版社,1991:96-157.
    161. Heinicke G..Tribochemistry[M]. Berlin:Akademie-Verlag 1984:1-64.
    162.戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002:146.
    163.李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986:23-146.
    164.G.尼克利斯,I.普利戈京.非平衡系统的自组织[M].北京:科学出版社,1986-65.
    165.周泽华.金属切削理论[M].北京:机械工业出版社,1992:121-145.
    166.化学工程手册编委会.化学工程手册第10篇-传质[M].北京:化学工业出版社,1989:56-89.
    167. Jiang Hua, Rajiv Shivpri. A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys [J]. Transaction of the ASME,2005, (327):136-144.
    168. F. Kloche, W. konig, K. Gerschwiler. Advanced machining of titanium and nickel-based alloys. Advanced Manufacturing Systems and nickel-base alloys. Advanced Manufacturing Systems and Technlogy, CISM Courses and Lecture No.372, Springer, Wien,1996:7-21.
    169.周泽华.金属切削理论[M].北京:机械工业出版社,1992:62-91.
    170.赵炳桢.切削技术与工具工业的新时代[J].工具技术,2004,38(9):24-26.
    171.小野浩二,理论切削工学[M].北京:国防工业出版社,1985:1-99.
    172. Shaw MC.Metal cutting Principts [M]. Oxaford University Press 1985:1-156.
    173.熊大章,王长兴.超精密切削模型[J].长春光机学院学报,1986,9(3):1-7.
    174. A. Molinari, A. Moufki. A new thermomechanical model of cutting applied to turning operations. Part Ⅰ. Theory [J]. International Journal of Machine Tools and Manufacture, Volum2005,(45):166-180.
    175. A. Molinary, D. Dudzinski, Stationary shear band in high-speed machining [J]. C. R. Sci. Paris 1992:399-405.
    176. D. Dudzinski, A Monlinari. A modeling of cutting for viscoplastic materials [J]. Int. J. Mech. Sci,1997(39):369-389.
    177.许香谷,肖诗刚.金属切削原理与刀具[M].重庆:重庆大学出版社,1990:1-52.
    178. Yusuf Altintas.数控技术与自动化[M].北京:化学工业出版社,2002:11-38.
    179.杨勇,方强,柯映林,董辉跃.基于有限元模拟的钛合金锯齿状切屑形成机理浙江大学学报(工学版)2008(42):11-16.
    180. Thomas Childs. Metal Machining:Theory and Applications [M]. London:Hodder Headline Group:1-135.
    181.谭云成,杨建东,夏仁丰.考虑刀具磨损时的理论切削力[J].长春光学精密机械学院学报,1995,18(2):41-45.
    182.韩育平,王永梅.切削力监测工l具磨损的一种方法[J].煤矿机械,2004(1):74-76.
    183.李凯岭,宋强.机械制造技术基础,济南:山东科学技术出版社2009:46-104.
    184. David W. Smithey, Shiv G. Kapoor, Richard E. DeVor A worn tool force model for three-dimensional cutting operationsInternational [J]. Journal of Machine Tools and Manufacture,2000, (40):1929-1950.
    185.王晓琴.钛合金Ti6A14V高效切削刀具摩擦磨损特性及刀具寿命研究[D].山东大学,2009:1-92.
    186.朱裕贞,顾达,黑恩成.现代基础化学[M],北京:化学工业出版社2003:248-279.
    187.朱裕贞,顾达,黑恩成.现代基础化学[M],北京:化学工业出版社2003:16-34.
    188.全永昕.工程摩擦学[M].杭州:浙江大学出版社,1994:65-159.
    189.万熠,艾兴.高速铣削航空铝合金7050-T745l时刀具的磨损破损[J].机械工程学报,2007, 43(4):103-107.
    190. Herbert Schulz, Eberhard Abele,何宁.高速加工理论与应用[M],北京:科学出版社,2010:167-186
    [1]Dj.M. Maric, P.F. Meier and S.K. Estreicher:Mater. Sci. Forum Vol.83-87 (1992), p.119
    [1]L. Li, M.He, et al:Journal of Materials Processing Technology, Vol.129 (2002), p.127
    [2]N. Richards, et al:Int J Mach Tool Manf, Vol.29 (1989), p.575
    [3]S. Miller:Interdisciplinary, Sci. Rev, Vol.21(1996), p.117
    [4]Ezugwu, EO, Machado, AR., et al:J Wallbank Lubrication Engineering 1991, Vol. 47(99), p.751
    [5]Altin. A, Nalbant. M, et al:Materials & Design, Vol.28 (2007), p.2518
    [6]Y.S. Liao, R.H. Shiue:Wear Vol.193 (1996), p.16
    [7]Y.C Chen, Y.S Liao:Journal of Materials Processing Technology Vol.140(2003), p. 269
    [8]J.P. Costes, Y. Guillet, et al International Journal of Machine Tools and Manufacture Vol.47(2007), p.108
    [9]A. Devillez, F. Schneider, et al:Wear Vol.262(2007), p.931
    [10]Jawaid, A., Sharif, S., et al, Journal of Materials Processing Technology, Vol.99 (2000), p.266
    [11]L. Ning, S.C. Veldhuis, et al, International Journal of Machine Tools and Manufacture, Vol.48 (2008), p.656
    [12]J. Zhao, J.X. Deng, J.H. Zhang, et al:Wear Vol.208 (1997), p.220
    [13]Konig, W., Fritsch, R., et al, Surf. Coatings Technol, Vol.49 (1991), p.16
    [14]W. Konig, R.Fritsch, etal:Surf. Coatings Technol Vol.49 (1991), p.316
    [1]Y.S. Liao, R.H. Shiue:Wear Vol.193 (1996), p.16
    [2]A. Jawaid, S. Koksal, S. Sharif:Journal of Materials Processing Technology Vol.116 (2001), p.2
    [3]N. Natural, Y.Yamaha:Ann CIRP Vol.42 (1993), p.103
    [4]M. Alauddin, M.A. EI-Baradie, M.S.J. Hashmi:J. Eng. Manuf. Vol.210 (1996), p. 11
    [5]M. Rahman, W.K.H. Seah, et al:Journal of Materials Processing Technology Vol.63 (1997), p.199
    [6]F.W. Taylor:Trans. ASME Vol.28 (1907), p.31
    [7]Y.C Chen, Y.S Liao:Journal of Materials Processing Technology Vol.140(2003), p. 269
    [8]J.P. Costes, Y. Guillet, G. Poulachon, M. Dessoly:International Journal of Machine Tools and Manufacture Vol.47(2007), p.1081
    [9]A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere:Wear Vol.262(2007), p.931
    [10]A. Jawaid, S. Sharif, et al:Journal of Materials Processing Technology Vol.99 (2000), p.266
    [11]L. Ning, S.C.Veldhuis, etal:International Journal of Machine Tools and Manufacture Vol.48 (2008), p.656
    [12]Y. Wan, Z.Q. Liu, X. Ai:Transact of Najing University of Aeronautics & Astronautics Vol.24 (2007), p.125
    [13]B.M. Kramer,:J. Eng. Ind Vol.109(1987), p.87
    [14]J. Zhao, J.X. Deng, J.H. Zhang, et al:Wear Vol.208 (1997), p.220
    [15]W. Konig, R.Fritsch, etal:Surf. Coatings Technol Vol.49 (1991), p.316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700