海马放射状胶质细胞的体外诱导激活及向胆碱能神经元的分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:海马放射状胶质细胞的体外诱导激活及其神经干细胞样特性
     目的探讨海马放射状胶质细胞在切割穹窿海马伞去神经支配海马提取液诱导下的形态学变化以及细胞增殖、胚胎源性和向神经元及胶质细胞分化的神经干细胞样特性。
     方法取生后1 d的SD大鼠海马组织,应用差速贴壁及摇床振荡法分离纯化海马放射状胶质细胞。将纯化的海马放射状胶质细胞接种于24孔培养板中,分成切割组和正常组,切割组加入含5%(v/v)切割穹窿海马伞去神经支配海马提取液的DMEM/F12培养液,正常组加入含5%(v/v)正常侧海马提取液的DMEM/F12培养液,同时在两组中加入5-溴-2-脱氧尿嘧啶(BrdU)标记增殖的细胞,并分别于培养后1、3、7和14 d时行BLBP免疫荧光检测和Hoechst标记;同时用BLBP/BrdU、BLBP/nestin、BLBP/MAP-2、BLBP/GFAP、BLBP/CNP免疫荧光双标技术观察其增殖特性和胚胎源性以及向神经元、星型胶质细胞、少突胶质细胞分化的情况,检测BrdU阳性细胞占BLBP阳性细胞的百分比、BLBP阳性细胞的周长和面积,以及两组中BLBP/nestin、BLBP/MAP-2、BLBP/GFAP、BLBP/CNP双标细胞占BLBP阳性细胞的百分比。应用Stata10.0统计软件行组间比较。
     结果BLBP免疫荧光检测结果显示,通过上述的纯化培养方法,我们获得了几近100%的海马放射状胶质细胞,BLBP在细胞浆、细胞核及突起中均有表达。切割组BrdU阳性细胞占BLBP阳性细胞的百分比明显高于正常组(切割组:56.86±8.52%;正常组:31.11±4.28%,P<0.01)。接种1 d后,两组细胞的胞体均较小,突起较短较细;3 d时,与正常组相比,切割组BLBP阳性细胞的胞体稍变大,突起稍变得粗而长;7 d时,与正常组相比,切割组BLBP阳性细胞的胞体明显变大,突起明显变粗、变长且交织成网状;14 d时两组细胞的胞体和突起均开始变细变短,正常组较为明显。两组各d BLBP阳性细胞的周长和面积的统计分析结果表明除1 d时两组BLBP阳性细胞的周长和面积无明显差异(P>0.05)外,其余各d切割组BLBP阳性细胞的周长和面积均高于正常组(P<0.01)。切割组nestin阳性细胞占BLBP阳性细胞的百分比也明显高于正常组(切割组:57.92±17.93%;正常组:23.26±9.85%,P<0.01)。并可见切割组中较多的BLBP阳性细胞向MAP-2阳性的神经元分化(切割组:46.13±14.92%;正常组:29.13±10.07%,P<0.05),虽然两组向GFAP阳性的星型胶质细胞和CNP阳性的少突胶质细胞分化在数量上无明显差异,但切割组中两种胶质细胞的胞体明显增大、突起明显丰富。
     结论切割穹窿海马伞去神经支配海马提取液不仅可以明显诱导BLBP阳性放射状胶质细胞增殖、胞体明显增大、突起变粗变长呈“激活”状态,具胚胎源性,而且还可使其向神经元、星型胶质细胞和少突胶质细胞分化,表现为神经干细胞样特性。
     第二部分:去神经支配海马提取液诱导海马放射状胶质细胞向胆碱能神经元的分化
     目的在体外细胞培养中加入切割穹窿海马伞去神经支配海马提取液,模拟在体海马神经再生微环境,观察海马放射状胶质细胞向胆碱能神经元分化的情况。
     方法将纯化的海马放射状胶质细胞分成切割组和正常组,切割组加入含5%(v/v)切割穹窿海马伞去神经支配海马提取液的DMEM/F12培养液,正常组加入含5%(v/v)正常侧海马提取液的DMEM/F12培养液,分别在培养7d后应用BLBP/ChAT免疫荧光双标、Real-time PCR及Western blot等技术观察两组放射状胶质细胞向胆碱能神经元的分化,以及表达ChAT mRNA和蛋白的情况。
     结果ChAT免疫荧光结果显示,加入切割穹窿海马伞侧海马提取液后,与正常组相比,切割组中ChAT阳性的胆碱能神经元占BLBP阳性细胞的比例(41.62±9.97%)明显多于正常组(16.08±7.31%) (P<0.01),且切割组中ChAT阳性的胆碱能神经元的胞体较正常组明显增大,突起明显增粗增长。切割组ChAT mRNA水平明显高于正常组,约是正常组的5倍(P<0.01)。ChAT蛋白的表达量虽较低,但切割组(0.1141±0.0380)仍高于正常组(0.0423±0.0106)(P<0.05)。
     结论切割穹窿海马伞侧海马提取液可明显诱导BLBP阳性放射状胶质细胞向胆碱能神经元分化。
Part I THE INDUCED ACTIVATION AND THE NEURAL STEM CELLS'CHARACTERISTICS OF HIPPOCAMPAL RADIAL GLIAL CELLS IN VITRO
     Objective To explore the changes of hippocampal radial glial cells (RGCs) in the morphology, proliferation, embryogenicity and the neural stem cells (NSCs) identity towards to neurons and glial cells after the denervated fimbria-fornix transected hippocampal extracts induced.
     Methods On the postnatal 1 day, the hippocampi of SD rats were acquired. RGCs were separated and purified by differential velocity adherent method and shakingbed oscillation technique. The purified RGCs were plated into 24-well plates and then divided into transection group and normal group. The DMEM/F12 medium containing 5% (vol/vol) fimbria-fornix transected hippocampal extracts was added into the transection group, while the normal group added the the DMEM/F12 medium containing 5% (vol/vol) normal hippocampal extracts. At the same time, BrdU were added into both groups to label the proliferated cells, the cells of both groups were detected by BLBP immuno-fluorescence and marked by Hoechst on the 1st,3rd,7th and 14th d respectively. Double-labeling immunofluorescence of BLBP/BrdU、BLBP/nestin、BLBP/MAP-2、BLBP/GFAP、BLBP/CNP were used to investigate the characteristics of proliferation, embryogenicity and the cell differentiation into neurons, astrocytes and oligodendrocytes. The percentage of BrdU positive cells over the BLBP positive cells, the perimeter and area of BLBP positive cells and the percentage of BLBP/nestin, BLBP/MAP-2, BLBP/GFAP, BLBP/CNP Double-labeling cells over the BLBP positive cells in two groups were deteced. Comparing analysis between both groups were analyzed by Statal0.0 statistical software.
     Results Immunofluorescence assay of BLBP showed that we acquired nearly 100% RGCs by our purified method. BLBP expressed in the cytoplasm, nuclei and processes. The percentage of BrdU positive cells in the transection group was higher than the normal group (the transection group:56.86±8.52%; the normal group:31.11±4.28%; P< 0.01). On the 1 day after cell seeding, the cell bodies were small in both groups, the processes of both groups were also short and thin; On the 3rd day, compared to the normal group, the cell bodies of the transection group were slightly larger and the processes were also longer and thicker; On the 7th day, the cell bodies of RGCs in the transection group were significantly larger than the normal group, and the cell processes became much more longer and thicker, and interlaced into networks; on the 14th day, the cell bodies of both groups decreased slightly, and the processes also became shorter and thinner slightly. The statistical analysis of two groups'BLBP positive cells in the perimeter and area showed that the transection group is significant higher than the normal group (P<0.01) except the 1st day (P> 0.05). The percentage of nestin positive cells over the BLBP positive cells in the transection group was also higher than the normal group (the transection group:57.92±17.93%; the normal group: 23.26±9.85%; P< 0.01). And we observed more RGCs differentiated into MAP-2 positive neurons in the transection group (the transection group:46.13±14.92%; the normal group:29.13±10.07%; P< 0.01). Although there was no significant difference in the cell numbers between two groups when they differentiated into GFAP positive astrocytes and CNP positive oligodendrocyte, the cell bodies in the transection group were larger and the processes were also longer and thicker than the normal group.
     Conclusions The results indicate that the denervated fimbria-fornix transected hippocampal extracts can significantly promote the proliferation of RGCs, enlarge the cell bodies, thicken and elongate the processes of BLBP positive RGCs which presenting the state of "activation" and containing the embryogenicity, and also can make RGCs present the identity of neural stem cells and differentiate into neurons, astrocytes and oligodendrocytes.
     PartⅡTHE DIFFERENTION OF HIPPOCAMPAL RADIAL GLIAL CELLS INTO CHOLINERGIC NEURONS IN VITRO BY DENERVATED HIPPOCAMPAL EXTRACTS
     Objective Fimbria-fornix transected hippocampal extracts were added into the cell culture medium to simulate the hippocampal internal environment in vitro, and to observe the situation of the RGCs differentiation into cholinergic neurons.
     Methods Purified RGCs were divided into transection group and normal group. The DMEM/F12 medium supplemented with 5%(vol/vol) fimbria-fornix transected hippocampal extracts was added into the transection group, while the normal group the DMEM/F12 medium contains 5%(vol/vol) normal hippocampal extracts. BLBP/ChAT double-labeling immunofluorescence, Real-time PCR, and Western blot were used to observe the differentiation into cholinergic neurons, the levels of ChAT mRNA and protien in RGCs after 7 day inoculation.
     Results Immunofluorescence assay of ChAT showed that the percentage of ChAT positive cholinergic neurons over the BLBP positive cells in the transection group(41.62±9.97%) was higher than the normal group(16.08±7.31%)(P< 0.01), and the cholinergic neuron bodies of transection group were larger and the processes were also longer and thicker than the normal group. The level of ChAT mRNA in the transection group was 5 times higher than the normal group (P< 0.01). The relative amount of ChAT protein in the transection group(0.1141±0.0380)was significant higher than that in the normal group(0.0423±0.0106)(P< 0.05), although both groups had low expression.
     Conclusions The results indicate that the denervated hippocampal extracts after fimbria-fornix transection can significantly promote BLBP positive RGCs differentiate into cholinergic neurons.
引文
[1]Ghashghaei HT, Weimer J M, Ralf S, et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes & Dev,2007,21(24): 3258-3271.
    [2]Barry D and McDermott K. Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord. Glia,2005,50(3):187-197.
    [3]Kolliker AV and Turner WA. The minute anatomy of the spinal cord and cerebellum demonstrated by golgi's method. J Anat Physiol,1891,25(3):443-460.
    [4]Delaunay D, Heydon K, Cumano A, et al. Early neuronal and glial fate restriction of embryonic neural stem cells. J Neurosci,2008,28(10):2551-2562.
    [5]Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol,1972,145(1):61-83.
    [6]Rakic P. Radial versus tangenital migration of neuronal clones in the developing cerebral cortex. PNAS,1995,92(25):11323-11327.
    [7]Barrett P, Ivanova E, Graham ES, et al. Photoperiodic regulation of cellular retinoic acid-binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the siberian hamster. J Endocrinol,2006,191(3):687-698.
    [8]Gervasi C, Stewart CB and Szaro BG. Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J Comp Neurol, 2000,423(3):512-531.
    [9]Dieudonne S. Glycinergic synaptic currents in golgi cells of the rat cerebellum. PNAS, 1995,92(5):1441-1445.
    [10]Koenderink MJ and Uylings HB. Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis. Brain Res,1995,678(1-2):233-243.
    [11]Murdoch B and Roskams AJ. A novel embryonic nestin-expressing radial glia-like progenitor gives rise to zonally restricted olfactory and vomeronasal neurons. J Neurosci, 2008,28(16):4271-4282.
    [12]Zecevic N. Specific characteristic of radial glia in the human fetal telencephalon. Glia,2004, 48(1):27-35.
    [13]Elkabetz Y, Panagiotakos G, Shamy GA, et al. Human es cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes & Dev,2008,22(2):152-165.
    [14]Gal JS, Morozov YM, Ayoub AE, et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci,2006,26(3): 1045-1056.
    [15]Sharif A, Legendre P, Prevot V, et al. Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene,2007, 26(19):2695-2706.
    [16]Girouard H, Lessard A, Capone C, et al. The neurovascular dysfunction induced by angiotensin Ⅱ in the mouse neocortex is sexually dimorphic. Am J Physiol Heart Circ Physiol,2008,294(1):156-163.
    [17]Zhicheng M, Anna R, Moore, et al. Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci,2007,27(15):4132-4145.
    [18]Cai C, Thorne J and Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells,2008,26(5):1097-1108.
    [19]Shapiro LA, Korn MJ, Shan Z, et al. GFAP-expressing radial glia-like cell bodies are involved in a one-to-one relationship with doublecortin-immunolabeled newborn neurons in the adult dentate gyrus. Brain Res,2005,1040(1-2):81-91.
    [20]Liu X, Bolteus AJ, Balkin DM, et al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia, 2006,54(5):394-410.
    [21]Borrell V, Kaspar BK, Gage FH, et al. In vivo evidence for radial migration of neurons by long-distance somal translocation in the developing ferret visual cortex. Cereb Cortex,2006, 16(11):1571-1583.
    [22]Chang Yh, Ostling P, Akerfelt M, et al. Role of heat-shock factor 2 in cerebral cortex formation and as a regulatorof p35 expression. Genes & Dev,2006,20(7):836-847.
    [23]Anthony TE, Mason HA, Gridley T, et al. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes & Dev,2005,19(1):1028-1033.
    [24]Shibata T, Yamada K, Watanabe M, et al. Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci,1997,17(23): 9212-9219.
    [25]Yuasa S. Development of astrocytes in the mouse embryonic cerebrum tracked by tenascin-C gene expression. Arch Histol Cytol,2001,64(1):119-126.
    [26]Podgornyi OV, Aleksandrova MA. BLBP-Immunoreactive Cells in the Primary Culture of Neural Precursors from Embryonic Mouse Brain. Bulletin of Experimental Biology and Medicine,2009,147(1):125-131.
    [27]White RE, McTigue DM, Jakeman LB. Regional Heterogeneity in Astrocyte Responses Following Contusive Spinal Cord Injury in Mice. Journal of Comparative Neurology,2010, 518(8):1370-1390.
    [28]Hebsgaard JB, Nelander J, Sabelstrom H, et al. Dopamine Neuron Precursors Within the Developing Human Mesencephalon Show Radial Glial Characteristics. Glia,2009, 57(15):1648-1659.
    [29]White RE, McTigue DM, Jakeman LB. Brain Lipid Bind Protein (BLBP) Expression Reveals a Diverse Astrocyte Population in Response to Contusive Spinal Cord Injury. Journal of Neurochemistry,2009,108:118.
    [30]Bramanti Vincenzo, Tomassoni Daniele, Avitabile Marcello, et al. Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci,2010,2:558-70.
    [31]Sevc J, Daxnerova Z, Miklosova M. Role of Radial Glia in Transformation of the Primitive Lumen to the Central Canal in the Developing Rat Spinal Cord. Cellular and Molecular Neurobiology,2009,29(6-7):927-936.
    [32]Berninger, Benedikt. Making neurons from mature glia:a far-fetched dream? Neuropharmacology,2010,58(6):894-902.
    [33]Hansen David V, Lui Jan H, Parker, et al. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature,2010,464(7288):554-561.
    [34]Kondo T and Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science,2000,289(5485):1754-1757.
    [35]Hartfuss E, Galli R, Heins N, et al. Characterization of CNS precursor subtypes and radial glia. Dev Biol,2001,229(1):15-30.
    [36]Noctor SC, Flint AC, Weissman TA, et al. Neurons derived from radial glial cells establish radial units in neocortex. Nature,2001,409(6821):714-720.
    [37]Noctor SC, Flint AC and Weissman TA. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci,2002,22(8):3161-3173.
    [38]Gotz M, Hartfuss E and Malatesta P. Radial glial cells as neuronal precursors:a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull,2002,57(6):777-788. [39] Malatesta P, Hartfuss E and Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development,2000,127(24):5253-5263. [40] Huang H, Yamamoto A, Hossain MA, et al. Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci,2008,28(6):1427-1433. [41] Cameron RS and Rakic P. Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells. J Neurosci,1994, 14(5 Pt 2):3139-3155.
    [42]Fricker RA, Carpenter MK, Winkler C, et al. Site specific migration and neural differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci,1999,19(14):5990-6005.
    [43]金国华,张新化,田美玲,等.大鼠海马内移植神经干细胞的存活和迁移.神经解剖学杂志,2003,19(4):378-382.
    [44]张新化,金国华,秦建兵,等.穹窿海马伞切割侧海马对植入神经干细胞分化为神经元的影响.神经解剖学杂志,2004,20(4):360-364.
    [45]Xinhua Zhang, Guohua Jin, Meiling Tian, et al. The denervated hippocampus provides proper microenvironmet for the survival and differentiation of neural progenitors. Neurosci Letter,2007,414(2):115-120.
    [46]金国华,张新化,田美玲,等.穹窿海马伞切割侧海马提取液对神经干细胞分化为神经元的促进作用.解剖学报,2004,35(2):137-141.
    [47]Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol.2000,164(1):209-214.
    [48]Fukuda S, Kato F, Tozuka Y, et al. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. Neurosci,2003,23(28):9357-9366.
    [49]Sohur US, Emsley JG, Mitchell BD, et al. Adult neurogenesis and cellular brain brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci, 2006,361(1473):1477-1497.
    [50]Stettler EM and Galileo DS. Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain. J Comp Neurol,2004,468(3):441-451.
    [51]朱蕙霞,秦建兵,田美玲,等.切割海马伞海马中56KD差异蛋白的质谱分析.南通大学学报医学版,2006,26(6):408-413.
    [52]徐璐璐,王磊,衣昕等.切割穹窿海马伞大鼠海马内BLBP的表达变化.神经解剖学杂志,2008,24(6):570-574.
    [53]朱蕙霞,陈蓉,金国华,等.非变性聚丙烯酰胺凝胶电泳在大鼠海马组织蛋白分离中的应用.南通医学院学报,2003,23(4):373-374.
    [541陈蓉,金国华,田美玲,等.海马中56 kD蛋白诱导人神经干细胞迁移的作用.神经解剖学杂志,2005,21(4):372-376.
    [55]金国华,陈蓉,田美玲,等.海马中56 kD蛋白诱导神经干细胞向神经元分化的作用.神经解剖学杂志,2006,22(4):389-393.
    [56]Delaunay D, Heydon K, Cumano A, et al. Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells. J Neurosci,2008,28(10):2551-2562.
    [57]Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci.1986,6(8):2155-2162..
    [58]Paxinos G and Watson C. The Rat Brain in Stereotaxic Coordinates,6th Ed, Elsevier, San Diego,2007.
    [59]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.2001,29(9):e45.
    [60]Mckay R. Stem cells in the central nervous system. Scinece,1997,276 (5309):66-71.
    [61]Gage FH. Mammalian neural setm cells. Scinece,2000,287(5457):1433-1438.
    [62]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science,1992,255 (5052):1707-1710.
    [63]Richards LJ, Kilpatrick TJ, Bartlett PF. De nove generation of neuronal cells from the adult mouse brain[J]. Proc Natl Acad Sci USA,1992,89(18):8591-8595.
    [64]Ourednik V, Ourednik J, Flax JD. Segregation of human neural stem cells in the developing primate forebrain[J]. Science,2001,293 (5536):1820-1822.
    [65]Nakamura M, Toyama Y, Okano H. Transplantation of neural stem cells for spinal cord injury [J]. Rinsho Shinkeigaku,2005,45(11):874-876.
    [66]Wang Q, Matsumoto Y, Shindo T, et al. Neural stem cells transplantation in cortex in a mouse model of Alzheimer's disease[J]. J Med Invest,2006,53 (1-2):61-69.
    [67]Chu K, Kima M, J unga KH, et al. Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats[J]. Brain Res,2004,1023:213-221.
    [68]Zhao C, Fancy SP, Kotter MR, et al. Mechanisms of CNS remyelination-the key to therapeutic advances. Neural Sci,2005,233(1-2):87-91.
    [69]罗其中,包映晖.中枢神经损伤后的神经再生与修复策略.中国微侵袭神经外科杂志.2004,9(2):49-53.
    [70]赵善廷,邓锦波,大鼠海马结构的组成、细胞类型及神经纤维联系Ⅰ.齿状回.神经解剖学杂志,1999,15(1):82-88.
    [71]龙大宏,杨丹迪,李佳楣,等.穹窿海马伞损伤对大鼠学习记忆和海马GFAP阳性神经胶质细胞的影响.神经解剖学杂志,2002,18(1):63-66.
    [72]Mori T, Yuxin Z, Takaki H, et al. The LIM homeobox gene, L3/Lhx8, is necessary for proper development of basal forebrain cholinergic neurons. Eur J Neurosci,2004,19(12): 3129-3141.
    [73]Weidner N, Grill RJ, Tuszynski MH. Elimination of basal lami-na and the collagen"scar"after spinal cord injury fails to aug-ment corticospinal t ract regeneratio[J]. Exp Neurol,1999,160(1):40-50.
    [74]Michael TF, Jerry S. Activated macrophages and the blood-brainbarrier:inflammation after CNS injury leads to increases in puta-tive inhibitory molecules[J]. Neurol,1997, 148:587-603.
    [75]Garcia-Verdugo JM, Ferron S, Flames N, et al. The proliferative ventricular zone in adult vertebrates:a comparative study using reptiles, birds, and mammals. Brain Res Bull,2002, 57(6):765-775.
    [76]Nancy J, Woolf. Possible Role for Cholinergic Neurons of the Basal Forebrain and Pontomesencephalon in Consciousness.Consciousness and Cognition,1997,14(6):574-596.
    [77]Ignacio Lo'piz-Coviella, BrygidaBerse. Upregulation of acetylcholine synthesis by bone morphogenetic protein 9 in a murine septal cell line. Journal of Physionlogy-Praris,2002, 17(96):53-59.
    [78]Yasuhide Furuta, David W. Piston, Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development,1997,23(124):2203-2212.
    [1]Ridet JL, Malhotra SK, Privat A, et al. Reactive astrocytes:cellular and molecular cues to biological function. Trends Neurosci,1997,20(12):570-577.
    [2]Morest DK, Silver J. Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going? Glia,2003, 43(1):6-18.
    [3]Shein HM. Propagation of human fetal spongioblasts and astrocytes in dispersed cell cultures. Exp Cell Res,1965,40(3):554-569.
    [4]Von Kolliker A, Turner WA. The Minute Anatomy of the Spinal Cord and Cerebellum Demonstrated by Golgi's Method. J Anat Physiol,1891,25(Pt 3):443-460.
    [5]Roisen FJ, Klueber KM, Lu CL, et al. Adult human olfactory stem cells. Brain Res,2001, 890(1):11-22.
    [6]Liour SS, Yu RK. Differentiation of radial glia-like cells from embryonic stem cells. Glia, 2003,42(2):109-117.
    [7]Mokry J, Karbanova J. Foetal mouse neural stem cells give rise to ependymal cells in vitro. Folia Biol (Praha),2006,52(5):149-155.
    [8]Barrett P, Ivanova E, Graham ES, et al. Photoperiodic regulation of cellular retinol binding protein, CRBP1 [corrected] and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster. J Endocrinol,2006,191(3):687-698.
    [9]Angelov DN, Walther M, Streppel M, et al. Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury:a new role in neuronal protection. J Neurosci,1998,18(16):6218-6229.
    [10]Kim WG, Mohney RP, Wilson B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain:role of microglia. J Neurosci, 2000,20(16):6309-6316.
    [11]Brown DR, Kretzschmar HA. Microglia and prion disease:a review. Histol Histopathol, 1997,12(3):883-892.
    [12]Silver DJ, Steindler DA. Common astrocytic programs during brain development, injury and cancer. Trends Neurosci,2009,32(6):303-311.
    [13]Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol,1996,25(2):147-170.
    [14]Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res,1999, 32(5):619-631.
    [15]Reilly JF, Maher PA, Kumari VG. Regulation of astrocyte GFAP expression by TGF-beta1 and FGF-2. Glia,1998,22(2):202-210.
    [16]Vitarella D, Kimelberg HK, Aschner M. Regulatory volume decrease in primary astrocyte cultures:relevance to methylmercury neurotoxicity. Neurotoxicology,1996,17(1):117-123.
    [17]Biran R, Noble MD, Tresco PA. Characterization of cortical astrocytes on materials of differing surface chemistry. J Biomed Mater Res,1999,46(2):150-159.
    [18]Abbott NJ, Revest PA, Romero IA. Astrocyte-endothelial interaction:physiology and pathology. Neuropathol Appl Neurobiol,1992,18(5):424-433.
    [19]Adlard PA, West AK, Vickers JC. Increased density of metallothionein Ⅰ/Ⅱ-immunopositive cortical glial cells in the early stages of Alzheimer's disease. Neurobiol Dis,1998, 5(5):349-356.
    [20]Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science,1994,263(5154):1768-1771.
    [21]Wang GJ, Chung HJ, Schnuer J, Lea E, Robinson MB, Potthoff WK et al. Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. Eur J Neurosci,1998, 10(8):2523-2531.
    [22]Giaume C, Koulakoff A, Roux L, et al. Astroglial networks:a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci,2010,11(2):87-99.
    [23]Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem,2000,74(4):1434-1442.
    [24]Brown DR. Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci,1999,13(5):379-389.
    [25]Deschepper CF. Peptide receptors on astrocytes. Front Neuroendocrinol,1998,19(1):20-46.
    [26]Dow KE, Wang W. Cell biology of astrocyte proteoglycans. Cell Mol Life Sci,1998, 54(6):567-581.
    [27]Dreyer EB, Leifer D, Heng JE, et al. An astrocytic binding site for neuronal Thy-1 and its effect on neurite outgrowth. Proc Natl Acad Sci U S A,1995,92(24):11195-11199.
    [28]Dugan LL, Bruno VM, Amagasu SM, et al. Glia modulate the response of murine cortical neurons to excitotoxicity:glia exacerbate AMPA neurotoxicity. J Neurosci,1995, 15(6):4545-4555.
    [29]Cornet A, Bettelli E, Oukka M, et al. Role of astrocytes in antigen presentation and naive T-cell activation. J Neuroimmunol,2000,106(1-2):69-77.
    [30]Raivich Q Bohatschek M, Kloss CU, et al. Neuroglial activation repertoire in the injured brain:graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev,1999,30(1):77-105.
    [31]Saghatelyan A. Role of blood vessels in the neuronal migration. Semin Cell Dev Biol,2009, 20(6):744-750.
    [32]Bovolenta P, Wandosell F, Nieto-Sampedro M. CNS glial scar tissue:a source of molecules which inhibit central neurite outgrowth. Prog Brain Res,1992,94:367-379.
    [33]Weidner N, Grill RJ, Tuszynski MH. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration. Exp Neurol,1999, 160(l):40-50.
    [34]Fitch MT, Silver J. Activated macrophages and the blood-brain barrier:inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol,1997, 148(2):587-603.
    [35]Sugawara T, Lewen A, Noshita N, et al. Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CAl subregion in rats. J Neurotrauma,2002,19(1):85-98.
    [36]Pang Y, Zheng B, Campbell LR, et al. IGF-1 can either protect against or increase LPS-induced damage in the developing rat brain. Pediatr Res,2010.
    [37]Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto N, Kikkawa Y, Takeshima M et al. Neuroprotective effects of zonisamide target astrocyte. Ann Neurol,2009,67(2):239-249.
    [38]Miyazaki H, Nagashima K, Okuma Y, et al. Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res,2001, 922(2):165-172.
    [39]DeWitt DA, Perry G, Cohen M, et al. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Exp Neurol,1998,149(2):329-340.
    [40]Reilly PL. Brain injury:the pathophysiology of the first hours.'Talk and Die revisited'. J Clin Neurosci,2001,8(5):398-403.
    [41]Ledoux SP, Shen CC, Grishko Ⅵ, et al. Glial cell-specific differences in response to alkylation damage. Glia,1998,24(3):304-312.
    [42]Moon LD, Brecknell JE, Franklin RJ, et al. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol,2000,161(1):49-66.
    [43]Gutowski NJ, Newcombe J, Cuzner ML. Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathol Appl Neurobiol,1999, 25(3):207-214.
    [44]Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci,2004,24(9):2143-2155.
    [45]Panchision DM, Martin-DeLeon PA, Takeshima T, et al. An immortalized, type-1 astrocyte of mesencephalic origin source of a dopaminergic neurotrophic factor. J Mol Neurosci, 1998, 11(3):209-221.
    [46]Aldskogius H, Liu L, Svensson M. Glial responses to synaptic damage and plasticity. J Neurosci Res,1999,58(1):33-41.
    [47]Blitzblau R, Gupta S, Djali S, et al. The glutamate transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate indirectly evokes NMDA receptor mediated neurotoxicity in rat cortical cultures. Eur J Neurosci,1996,8(9):1840-1852.
    [48]Pepper MS, Sappino AP, Montesano R, et al. Plasminogen activator inhibitor-1 is induced in migrating endothelial cells. J Cell Physiol,1992,153(1):129-139.
    [49]Fuller S, Munch G, Steele M. Activated astrocytes:a therapeutic target in Alzheimer's disease? Expert Rev Neurother,2009,9(11):1585-1594.
    [50]Ghashghaei HT, Weimer JM, Schmid RS, et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev,2007,21(24): 3258-3271.
    [51]Barry D, McDermott K. Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord. Glia,2005,50(3):187-197.
    [52]Delaunay D, Heydon K, Cumano A, et al. Early neuronal and glial fate restriction of embryonic neural stem cells. J Neurosci,2008,28(10):2551-2562.
    [53]Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol,1972,145(1):61-83.
    [54]Rakic P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci U S A,1995,92(25):11323-11327.
    [55]Huang H, Yamamoto A, Hossain MA, et al. Quantitative cortical mapping of fractional anisotropy in developing rat brains. J Neurosci,2008,28(6):1427-1433.
    [56]Garcia-Moreno F, Lopez-Mascaraque L, de Carlos JA. Early telencephalic migration topographically converging in the olfactory cortex. Cereb Cortex,2008,18(6):1239-1252.
    [57]Siegenthaler JA, Tremper-Wells BA, Miller MW. Foxgl haploinsufficiency reduces the population of cortical intermediate progenitor cells:effect of increased p21 expression. Cereb Cortex,2008,18(8):1865-1875.
    [58]Johansen LD, Naumanen T, Knudsen A, et al. IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci,2008, 121(Pt 6):854-864.
    [59]Ortega JA, Alcantara S. BDNF/MAPK/ERK-Induced BMP7 Expression in the Developing Cerebral Cortex Induces Premature Radial Glia Differentiation and Impairs Neuronal Migration. Cereb Cortex,2009.
    [60]Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci,2004,27(7):392-399.
    [61]Noctor SC, Martinez-Cerdeno V, Ivic L, et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci,2004, 7(2):136-144.
    [62]Gubert F, Zaverucha-do-Valle C, Pimentel-Coelho PM, et al. Radial glia-like cells persist in the adult rat brain. Brain Res,2009,1258:43-52.
    [63]Wen Y, Planel E, Herman M, et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci,2008, 28(10):2624-2632.
    [64]Chang Q, Fischbach GD. An acute effect of neuregulin 1 beta to suppress alpha 7-containing nicotinic acetylcholine receptors in hippocampal interneurons. J Neurosci, 2006,26(44):11295-11303.
    [65]Gervasi C, Stewart CB,Szaro BG. Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. J Comp Neurol,2000, 423(3):512-531.
    [66]Dieudonne S. Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A,1995,92(5):1441-1445.
    [67]Koenderink MJ, Uylings HB. Postnatal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis. Brain Res,1995,678(1-2):233-243.
    [68]Murdoch B, Roskams AJ. A novel embryonic nestin-expressing radial glia-like progenitor gives rise to zonally restricted olfactory and vomeronasal neurons. J Neurosci,2008, 28(16):4271-4282.
    [69]Mo Z, Moore AR, Filipovic R, et al. Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci,2007,27(15):4132-4145.
    [70]Cai C, Thorne J, Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells,2008,26(5):1097-1108.
    [71]Chang Y, Ostling P, Akerfelt M, Trouillet D, et al. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev,2006,20(7):836-847.
    [72]Park D, Xiang AP, Zhang L, et al. The radial glia antibody RC2 recognizes a protein encoded by Nestin. Biochem Biophys Res Commun,2009,382(3):588-592.
    [73]Anthony TE, Mason HA, Gridley T, et al. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev,2005,19(9):1028-1033.
    [74]Shibata T, Yamada K, Watanabe M, et al. Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci,1997, 17(23):9212-9219.
    [75]Yuasa S. Development of astrocytes in the mouse embryonic cerebrum tracked by tenascin-C gene expression. Arch Histol Cytol,2001,64(1):119-126.
    [76]Radakovits R, Barros CS, Belvindrah R, et al. Regulation of radial glial survival by signals from the meninges. J Neurosci,2009,29(24):7694-7705.
    [77]Hartfuss E, Galli R, Heins N, et al. Characterization of CNS precursor subtypes and radial glia. Dev Biol,2001,229(1):15-30.
    [78]Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development,2000,127(24):5253-5263.
    [79]Noctor SC, Flint AC, Weissman TA, et al. Neurons derived from radial glial cells establish radial units in neocortex. Nature,2001,409(6821):714-720.
    [80]Podgornyi OV, Aleksandrova MA. BLBP-immunoreactive cells in the primary culture of neural precursors from embryonic mouse brain. Bull Exp Biol Med,2009,147(1):125-131.
    [81]Noctor SC, Flint AC, Weissman TA, et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci,2002,22(8):3161-3173.
    [82]Silva J, Chambers I, Pollard S, et al. Nanog promotes transfer of pluripotency after cell fusion. Nature,2006,441(7096):997-1001.
    [83]Pollard SM, Conti L. Investigating radial glia in vitro. Prog Neurobiol,2007,83(1):53-67.
    [84]Lin Y, Chen L, Lin C, et al. Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol,2009, 329(1):44-54.
    [85]Furukawa T, Mukherjee S, Bao ZZ, et al. rax, Hesl, and notch 1 promote the formation of Muller glia by postnatal retinal progenitor cells. Neuron,2000,26(2):383-394.
    [86]Morrison SJ, Perez SE, Qiao Z, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell,2000, 101(5):499-510.
    [87]Scheer N, Groth A, Hans S, et al. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development,2001,128(7):1099-1107.
    [88]Lowell S. Stem cells:You make me feel so glial. Curr Biol,2000,10(16):R595-597.
    [89]Wang S, Barres BA. Up a notch:instructing gliogenesis. Neuron,2000,27(2):197-200.
    [90]Dawson MR, Polito A, Levine JM, et al. NG2-expressing glial progenitor cells:an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci,2003,24(2):476-488.
    [91]Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci, 2001,21(4):1302-1312.
    [92]Belachew S, Chittajallu R, Aguirre AA, et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol, 2003,161(1):169-186.
    [93]Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev,2001,81(2):871-927.
    [94]Meyer-Franke A, Shen S, Barres BA. Astrocytes induce oligodendrocyte processes to align with and adhere to axons. Mol Cell Neurosci,1999,14(4-5):385-397.
    [95]Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays,2000,22(1):64-71.
    [96]Schoonover CM, Seibel MM, Jolson DM, et al. Thyroid hormone regulates oligodendrocyte accumulation in developing rat brain white matter tracts. Endocrinology,2004, 145(11):5013-5020.
    [97]Nygard M, Wahlstrom GM, Gustafsson MV, et al. Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol,2003,17(1):79-92.
    [98]Du Y, Dreyfus CF. Oligodendrocytes as providers of growth factors. J Neurosci Res,2002, 68(6):647-654.
    [99]McKerracher L, Winton MJ. Nogo on the go. Neuron,2002,36(3):345-348.
    [100]Wilkins A, Majed H, Layfield R, et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms:a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci,2003,23(12):4967-4974.
    [101]Dawson MR, Levine JM, Reynolds R. NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res,2000,61(5):471-479.
    [102]Homer PJ, Power AE, Kempermann G, et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci,2000,20(6):2218-2228.
    [103]Levison SW, Young GM, Goldman JE. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J Neurosci Res,1999,57(4):435-446.
    [104]Mabie PC, Mehler MF, Marmur R, et al. Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci,1997,17(11): 4112-4120.
    [105]Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science,2000,289(5485):1754-1757.
    [106]Bylund M, Andersson E, Novitch BG, et al. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci,2003,6(11):1162-1168.
    [107]Alcock J, Sottile V. Dynamic distribution and stem cell characteristics of Sox 1-expressing cells in the cerebellar cortex. Cell Res,2009,19(12):1324-1333.
    [108]Kondo T, Raff M. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev,2004,18(23):2963-2972.
    [109]Zhao X, He X, Han X, et al. MicroRNA-Mediated Control of Oligodendrocyte Differentiation. Neuron,2010,65(5):612-626.
    [110]Tang DG, Tokumoto YM, Apperly JA, et al. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science,2001,291(5505):868-871.
    [111]Choi YS, Lee MC, Kim HS, et al. Neurotoxicity screening in a multipotent neural stem cell line established from the mouse brain. J Korean Med Sci,2010,25(3):440-448.
    [112]Barres BA, Raff MC. Axonal control of oligodendrocyte development. J Cell Biol,1999, 147(6):1123-1128.
    [113]Trapp BD, Nishiyama A, Cheng D, et al. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J Cell Biol,1997,137(2):459-468.
    [114]Fernandez PA, Tang DG, Cheng L, et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron,2000,28(1):81-90.
    [115]Frost EE, Buttery PC, Milner R, et al. Integrins mediate a neuronal survival signal for oligodendrocytes. Curr Biol,1999,9(21):1251-1254.
    [116]Wang S, Sdrulla AD, diSibio G, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron,1998,21(1):63-75.
    [117]Barres BA, Raff MC. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature,1993,361(6409):258-260.
    [118]Rivera FJ, Siebzehnrubl FA, Kandasamy M, et al. Mesenchymal stem cells promote oligodendroglial differentiation in hippocampal slice cultures. Cell Physiol Biochem,2009, 24(3-4):317-324.
    [119]Kaplan MR, Meyer-Franke A, Lambert S, et al. Induction of sodium channel clustering by oligodendrocytes. Nature,1997,386(6626):724-728.
    [120]Colello RJ, Pott U, Schwab ME. The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. J Neurosci,1994,14(5-1): 2594-2605.
    [121]Griffiths I, Klugmann M, Anderson T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science,1998,280(5369):1610-1613.
    [122]Yin X, Baek RC, Kirschner DA, et al. Evolution of a neuroprotective function of central nervous system myelin. J Cell Biol,2006,172(3):469-478.
    [123]Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med,1998,338(5):278-285.
    [124]Bandtlow C, Zachleder T, Schwab ME. Oligodendrocytes arrest neurite growth by contact inhibition. J Neurosci,1990,10(12):3837-3848.
    [125]Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature,2001,409(6818):341-346.
    [126]Domeniconi M, Cao Z, Spencer T, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron,2002,35(2):283-290.
    [127]Wang KC, Koprivica V, Kim JA, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature,2002,417(6892):941-944.
    [128]Kim JE, Li S, GrandPre T, et al. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron,2003,38(2):187-199.
    [129]Pot C, Simonen M, Weinmann O, et al. Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J Cell Biol,2002,159(1):29-35.
    [130]Tozaki H, Kawasaki T, Takagi Y, et al. Expression of Nogo protein by growing axons in the developing nervous system. Brain Res Mol Brain Res,2002,104(2):111-119.
    [131]Mukhopadhyay G, Doherty P, Walsh FS, et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron,1994,13(3):757-767.
    [132]Cai D, Shen Y, De Bellard M, et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron,1999, 22(l):89-101.
    [133]Schachner M, Bartsch U. Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia,2000,29(2):154-165.
    [134]Bartsch U, Bandtlow CE, Schnell L, et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron,1995, 15(6):1375-1381.
    [135]Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J Neurochem,2002,82(6):1566-1569.
    [136]Habib AA, Marton LS, Allwardt B, et al. Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J Neurochem,1998, 70(4):1704-1711.
    [137]Ong WY, Levine JM. A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience,1999,92(1):83-95.
    [138]Huang JK, Phillips GR, Roth AD, et al. Glial membranes at the node of Ranvier prevent neurite outgrowth. Science,2005,310(5755):1813-1817.
    [139]Schwab ME, Schnell L. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J Neurosci,1991,11 (3):709-721.
    [140]Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis,2000, 7(6 Pt B):574-585.
    [141]Meyer-Franke A, Kaplan MR, Pfrieger FW, et al. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron,1995,15(4):805-819.
    [142]Wilkins A, Chandran S, Compston A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia,2001,36(1):48-57.
    [143]Dai X, Lercher LD, Clinton PM, et al. The trophic role of oligodendrocytes in the basal forebrain. J Neurosci,2003,23(13):5846-5853.
    [144]Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science,1997, 277(5332):1684-1687.
    [145]Kermer P, Klocker N, Labes M, et al. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci,2000,20(2):2-8.
    [146]Lin LF, Doherty DH, Lile JD, et al. GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science,1993,260(5111);1130-1132.
    [147]Dai X, Qu P, Dreyfus CF. Neuronal signals regulate neurotrophin expression in oligodendrocytes of the basal forebrain. Glia,2001,34(3):234-239.
    [148]Nakamura S, Todo T, Motoi Y, et al. Glial expression of fibroblast growth factor-9 in rat central nervous system. Glia,1999,28(1):53-65.
    [149]Raabe TD, Clive DR, Wen D, et al. Neonatal oligodendrocytes contain and secrete neuregulins in vitro. J Neurochem,1997,69(5):1859-1863.
    [150]Minghetti L, Levi G. Microglia as effector cells in brain damage and repair:focus on prostanoids and nitric oxide. Prog Neurobiol,1998,54(1):99-125.
    [151]Schwartz M, Moalem G. Beneficial immune activity after CNS injury:prospects for vaccination. J Neuroimmunol,2001,113(2):185-192.
    [152]Zeev-Brann AB, Lazarov-Spiegler O, Brenner T, et al. Differential effects of central and peripheral nerves on macrophages and microglia. Glia,1998,23(3):181-190.
    [153]Chessell IP, Michel AD, Humphrey PP. Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells. Br J Pharmacol,1997,121(7):1429-1437.
    [154]Giulian D, Baker TJ, Shih LC, et al. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med,1986,164(2):594-604.
    [155]Graeber MB, Streit WJ, Kreutzberg GW. Identity of ED2-positive perivascular cells in rat brain. J Neurosci Res,1989,22(1):103-106.
    [156]Kohsaka S, Hamanoue M, Nakajima K. Functional implication of secretory proteases derived from microglia in the central nervous system. Keio J Med,1996,45(3):263-269.
    [157]Mor G, Nilsen J, Horvath T, et al. Estrogen and microglia:A regulatory system that affects the brain. J Neurobiol,1999,40(4):484-496.
    [158]Sawada M, Kondo N, Suzumura A, et al. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res,1989,491(2):394-397.
    [159]Schoen SW, Graeber MB, Kreutzberg GW.5-Nucleotidase immunoreactivity of perineuronal microglia responding to rat facial nerve axotomy. Glia,1992,6(4):314-317.
    [160]Schilling T, Quandt FN, Cherny VV, et al. Upregulation of Kvl.3 K(+) channels in microglia deactivated by TGF-beta. Am J Physiol Cell Physiol,2000,279(4):1123-1134.
    [161]Stence N, Waite M, Dailey ME. Dynamics of microglial activation:a confocal time-lapse analysis in hippocampal slices. Glia,2001,33(3):256-266.
    [162]Kreutzberg GW. Microglia, the first line of defence in brain pathologies. Arzneimittelforschung,1995,45(3A):357-360.
    [163]Rogove AD, Lu W, Tsirka SE. Microglial activation and recruitment, but not proliferation, suffice to mediate neurodegeneration. Cell Death Differ,2002,9(8):801-806.
    [164]Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci,2003,23(8): 3234-3242.
    [165]Toku K, Tanaka J, Fujikata S, et al. Distinctions between microglial cells and peripheral macrophages with regard to adhesive activities and morphology. J Neurosci Res,1999, 57(6):855-865.
    [166]Mandrekar S, Landreth GE. Microglia and Inflammation in Alzheimer's Disease. CNS Neurol Disord Drug Targets,2010.
    [167]Streit WJ, Sparks DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med,1997,75(2):130-138.
    [168]Bonetti B, Pohl J, Gao YL, et al. Cell death during autoimmune demyelination:effector but not target cells are eliminated by apoptosis. J Immunol,1997,159(11):5733-5741.
    [169]ODonnell SL, Frederick TJ, Krady JK, et al. IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia,2002,39(1):85-97.
    [170]Achour SB, Pascual O. Glia:The many ways to modulate synaptic plasticity. Neurochem Int,2010.
    [171]Mentlein R, Ludwig R, Martensen I. Proteolytic degradation of Alzheimer's disease amyloid beta-peptide by a metalloproteinase from microglia cells. J Neurochem,1998, 70(2):721-726.
    [172]Wilcock DM, DiCarlo G, Henderson D, et al. Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci,2003,23(9):3745-3751.
    [173]Bruce-Keller AJ. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res,1999,58(1):191-201.
    [174]Ono K, Suzuki H, Sawada M. Delayed neural damage is induced by iNOS-expressing microglia in a brain injury model. Neurosci Lett,2010.
    [175]Ouchi Y, Yagi S, Yokokura M, et al. Neuroinflammation in the living brain of Parkinson's disease. Parkinsonism Relat Disord,2009,15 (3):200-204.
    [176]Hashioka S, McGeer PL, Monji A, et al. Anti-inflammatory effects of antidepressants: possibilities for preventives against Alzheimer's disease. Cent Nerv Syst Agents Med Chem, 2009,9(1):12-19.
    [177]Mun-Bryce S, Lukes A, Wallace J, et al. Stromelysin-1 and gelatinase A are upregulated before TNF-alpha in LPS-stimulated neuroinflammation. Brain Res,2002,933(1):42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700