穹窿海马伞切割大鼠海马内Brn-4 mRNA的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察切割穹窿海马伞大鼠海马与正常海马内Brn-4 mRNA表达的差异,探讨穹窿海马伞切割后海马内神经再生与修复的分子生物学机制。方法:(1)RT-PCR:42只SD大鼠随机分成7组,每组6只。1组为正常对照组,其余6组分别为切割双侧穹窿海马伞后1、3、7、14、21和28d组。取各组大鼠的海马组织,提取总RNA,采用半定量RT-PCR法分析穹窿海马伞切割后海马内Brn-4 mRNA表达水平的变化。以各泳道中Brn-4与GAPDH条带的光密度比值表示Brn-4 mRNA的相对表达量,使用Stata7.0统计学软件进行单因素方差分析和两两比较。(2)原位杂交:取6只SD大鼠,切割右侧穹窿海马伞。切割后14d,灌注固定,制备海马部位冰冻切片;采用体外转录法制备地高辛标记的Brn-4 RNA探针,进行原位杂交,观察两侧海马组织内Brn-4 mRNA的表达变化。每只动物取前、中、后3张切片,分别对每张切片切割侧和正常侧Brn-4 mRNA阳性细胞进行计数和光密度值检测,并应用Stata7.0统计学软件对两侧Brn-4 mRNA阳性细胞的数量和平均光密度值进行配对t检验分析。结果:(1)海马内Brn-4 mRNA的表达量在正常组为0.138±0.06,在切割后第3d(0.256±0.54)开始升高,14d(0.719±0.124)达到最高水平,随后下降,28d(0.189±0.059)左右恢复至正常水平。(2)切割侧和正常侧海马锥体细胞层和齿状回颗粒层细胞均有Brn-4 mRNA表达,Brn-4 mRNA阳性细胞数量无明显差异,但切割侧Brn-4 mRNA阳性细胞的平均光密度值(0.27±0.06)较正常侧(0.14±0.02)明显增加,t值为11.4709,P<0.01。在切割侧齿状回门区和颗粒下层中观察到Brn-4 mRNA阳性细胞(40.5±9.37),平均光密度值为0.28±0.05,而正常侧仅有少量阳性细胞(6.5±2.07),且平均光密度值仅为0.09±0.02,两侧阳性细胞数和平均光密度值相比较,P均<0.01。结论:切割穹窿海马伞后的海马组织内Brn-4 mRNA表达明显上调,并且呈现由低到高再逐渐恢复正常,切割后14d时最高的时相性特点;Brn-4 mRNA的表达见于切割侧和正常侧海马锥体细胞层和齿状回颗粒层细胞,但Brn-4 mRNA的表达量切割侧明显高于正常侧;Brn-4 mRNA的表达还见于切割侧和正常侧齿状回门区和颗粒下层的细胞中,其阳性细胞数和表达量切割侧远较正常侧明显升高。提示切割穹窿海马伞后海马中Brn-4 mRNA表达的增高可能与促进其中的神经干细胞向神经元分化有关。
Objective: To observe the difference of Brn-4 mRNA expression inhippocampus between the fimbria/fornix-transected rats and normal ones,and to investigate the molecular biology mechanism of neural regenerationand reparation after fimbria/fornix-transection. Methods: (1) RT-PCR:Forty-two SD rats were randomly divided into 7 groups, 6 rats in each group.One group served as normal control and the others served as fimbria/fornixtransected 1st, 3rd, 7th, 14th, 21st and 28th day group, respectively. Thenhippocampi were isolated and total RNA was extracted. Semi-quantitativereverse transcriptase-polymerase chain reaction (RT-PCR) method was usedin detection of the expression of Brn-4 mRNA in hippocampus. The relativeexpression level of Brn-4 mRNA was indicated by the ratio of the opticaldensity value of Brn-4 to that of GAPDH. The Stata7.0 software was used inone-factor analysis of variance and comparison between every two groups.(2) In Situ Hybridization: Six SD rats' right fimbrias were transected. Onthe 14th day after transection, the rats were perfused and fixed, then cryostatsections of hippocampus were prepared. Digoxigenin-labeled Brn-4 RNAprobe was prepared and used in hybridization to observe expression changeof Brn-4 mRNA in hippocampus after operation. Three sections were takenfrom each rat in anterior, middle and posterior location, respectively. Thenumber and the mean optical density value of Brn-4 mRNA positive cells intransected and normal sides was measured, respectively. Paired t test analysiswas used in statistic analysis of the number and the mean optical densityvalue of Brn-4 mRNA positive cells with Stata7.0 software. Results: (1) RT-PCR: In normal group, The relative expression level of Brn-4 mRNAwas 0.138±0.06.It started to increase on day3(0.256±0.54) aftertransection, and the peak appeared on day 14(0.719±0.124) , then decreasedslowly to pre-transection level on day28(0.189±0.059) . (2) In SituHybridization: Brn-4 mRNA was expressed in pyramidal layer ofhippocampus and granular layer of dentate gyrus in both sides. The numberof Brn-4 mRNA positive cells has no discrepancy between two sides. But themean optical density value of Brn-4 mRNA positive cells in transectedside(0.27±0.06) was higher than that in normal side(0.14±0.02) , t=11.4709,P<0.01.Brn-4 mRNA positive cells was also seen in hilus and subgranularlayer of dentate gyrus. In transected side, the number of Brn-4 mRNApositive cells was 40.5±9.37, the mean optical density value was 0.28±0.05.In normal side, there was only few Brn-4 mRNA positive cells (6.5±2.07) , and the mean optical density value was 0.09±0.02.For the twoobjects, P values were both less than 0.01.Conclusion: The expressionlevel of Brn-4 mRNA increases after fimbria/fornix transection. Theexpression of Brn-4 mRNA is changed with time, that is, it increases at firstand then decreases to normal level, and reaches peak on day 14; Brn-4mRNA is expressed in pyramidal layer of hippocampus and granular layer ofdentate gyrus in both sides. The expression level of Brn-4 mRNA issignificantly higher in transected side than that in normal side; Brn-4 mRNAis also expressed in hilus and subgranular layer of dentate gyrus in both sides.The number and the mean optical density value of Brn-4 mRNA positivecells were both significantly higher in transected side than these in normalside. The results suggest that the process in which the expression of Brn-4mRNA increases after fimbria/fornix transection mights be related to theneural stem cells differentiating into neurons in hippocampus.
引文
1 Altman J. Are new neurons formed in the brains of adult mammals? Science, 1962, 135:1127-1128
    
    2 Altman J and Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965, 124(3):319-335
    
    3 Reynolds BA and Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992,255(5052):1707-1710
    
    4 Richards LJ, Kilpatrick TJ and Bartlett PF. De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA, 1992, 89(18):8591-8595
    
    5 Roisen FJ, Klueber KM, Lu CL, et al. Adult human olfactory stem cells. Brain Res, 2001, 890(1): 11-22
    
    6 Roy NS, Wang S, Jing L, et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med, 2000, 6(3):271-277.
    
    7 Svendsen C, Caldw ell M, shen J, et al. Long-term progenitor cells transplanted into a rat model of Parkinson's disease. Exp Neurol, 1997, 148(1):135-146
    
    8 Akamatsu W and Okano H. Neural stem cell, as a source of graft material for transplantation in neuronal disease. No To Hattatsu, 2001, 33(2):114-120.
    
    9 Gage FH. Mammalian neural stem cells. Science, 2000, 287(5457): 1433-1438
    
    10 Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol, 2000, 164(1):209-214
    11 Fricker RA, Carpenter MK, Winkler C, et al. Site-specific migration and neural differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci, 1999, 19(14):5990-6005
    12 Brewer GJ. Regeneration and proliferation of embryonic and adult rat hippocampal neurns in culture. Exp Neurol, 1999, 159(1):237-247
    13 Carpenter MK, Cui X, Hu ZY, et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol, 1999, 158(2): 265-278
    14 Vicario-Abejon C, Collin C, Tsoulfas P, et al. Hippocampal stem cells differentiate into excitatory and inhibitory neurons. Eur J Neurosci, 2000, 12(2):677-688
    15 Ling ZD, Potter ED, Lipton JW, et al. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol, 1998, 149(2):411-423
    16 Josephson R, Muller T, Pickel J, et al. POU transcription factors control expression of CNS stem cell-specific genes. Development, 1998, 125(16): 3087-3100
    17 Mihailescu D, Kury P and Monard D. An octamer-binding site is crucial for the activity of an enhancer active at the embryonic met-/mesencephalic junction. Mech Dev, 1999, 84(1-2):55-67
    18 Shimazaki T, Arsenijevic Y, Ryan AK, et al. A role for the POU-Ⅲ transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. The EMBO Journal, 1999, 18(2):444-456
    19 Monuki ES, Kuhn R, Weinmaster G, et al. Expression and activity of the POU transcription factor SCIP. Science, 1990, 249(4974): 1300-1303
    20 Jaegle M, Mandemakers W, Broos L, et al. The POU factor Oct-6 and Schwann cell differentiation. Science, 1996, 273(5274):507-510
    21 金国华,张新化,田美玲,等.大鼠海马内移植神经干细胞的存活和迁移.神经解剖学杂志,2003,19(4):378-382
    22 张新化,金国华,秦建兵,等.穹窿海马伞切割侧海马对植入神经干 细胞分化为神经元的影响.神经解剖学杂志,2004,20(4):360-364
    23 金国华,张新化,田美玲,等.穹窿海马伞切割侧海马提取液对神经干细胞分化为神经元的促进作用.解剖学报,2004,40(2):141-145
    24 Mathis JM, Simmons DM, He X, et al. Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression. EMBO J, 1992, 11(7):2551-2561
    25 McGinnis W, Levine MS, Hafen E, et aI. A conserved DNA sequence in homoeotic genes of the Drosophila Antermapedia and hlthorax complexes, Nature, 1984, 308(5958):428-433
    26 Riddibough G. Homing in on the homeobox. Nature, 1992, 357(6386): 643-645
    27 Gehring WJ. The homeobox in perspective. Trends Biochem Sci, 1992, 17(8): 277-280
    28 Lewis EB. Clusters of master control genes regulate the development of higher organisms. JAMA, 1992, 267(11):1524-1531
    29 Andersen B and Rosenfeld MG. POU Domain Factors in the Neuroendocrine System: Lessons from Developmental Biology Provide Insights into Human Disease. Endocr Rev, 2001, 22(1):2-35
    30 Hobert O and Westphal H. Functions of LIM-homeobox genes. Trends in Genetics, 2000, 16(2):75-83
    31 Le Moine C and Young WS 3rd. RHS2, A POU domain-containing gene, and its expression in developing and adult rat. Proc Natl Acad Sci USA, 1992, 89(8):3285-3289
    32 王平宇.大白鼠中枢神经系统解剖学基础.北京:人民卫生出版社,1986:141-157
    33 朱长庚.化学神经解剖学.上海科学技术出版社,1992:207-208
    34 Weskamp G, Gasser UE and Dravid AR. Fimbria-fornix lesion increases nerve growth factor content in adult rat septum and hippocampus. Neurosci Lett, 1986, 70(1): 121-126
    35 Larkfors L, Stromberg I and Ebendal T. Nerve growth factor protein level increases in the adult rat hippocampus after a specific cholinergic lesion. J Neurosci Res, 1987, 18(4):525-531
    
    36 Cellerino A. Expression of messenger RNA coding for the nerve growth factor receptor trkA in the hippocampus of the adult rat. Neuroscience, 1996, 70(3):613-616
    
    37 Goodall J, Wellbrock C, Dexter TJ, et al. The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol, 2004, 24(7):2923-2931
    
    38 Murray B, Alessandrini A, Lu CL, et al. Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc Natl Acad Sci USA, 1998, 95(20): 11975-11980
    
    39 Hussain MA, Miller CP, Habener JF, et al. Brn-4 transcription factor expression targeted to the early developing mouse pancreas induces ectopic glucagon gene expression in insulin-producing beta cells. J Biol Chem, 2002, 277(18):16028-16032
    
    40 Sobol SE, Teng X and Crenshaw EB 3rd. Abnormal mesenchymal differentiation in the superior semicircular canal of brn4/pou3f4 knockout mice. Arch Otolaryngol Head Neck Surg, 2005, 131(1):41-45
    
    41 Samadi DS, Saunders JC and Crenshaw EB 3rd. Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse. Hear Res, 2005, 199(1-2):11-21
    
    42 Phippard D, Lu L, Lee D, et al. Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J Neurosci, 1999, 19(14):5980-5989
    1. Latchman DS. Activation and repression of gene expression by POU family transcription factors. Philos Trans R Soc, 1996, 351(1339): 511-515
    2. Treacy MN and Rosenfeld MG. Expression of a family of POU-domain protein regulatory genes during development of the central nervous system. Annu Rev Neurosci, 1992, 15:139-165
    3. Riddibough G. Developmental biology. Homing in on the homeobox. Nature, 1992, 357(6380):643-644
    4. Pellerin I, Schnabel C, Catron KM, et al. Hox proteins have different affinities for a consensus DNA site that correlate with the positions of their genes on the hox cluster. Mol Cell Biol, 1994, 14(7):4532-4545
    5. Redline RW, Neish A, Holmes LB, et al. Homeobox genes and congenital malformations. Lab Invest, 1992, 66(6):659-670
    6. Apiou F, Flagiello D, Cillo C, et al. Fine mapping of human HOX gene clusters. Cytogenet Cell Genet, 1996, 73(1-2):114-115
    7. Scott MP. A rational nomenclature for vertebrate homeobox (HOX) genes. Nucleic Acids Res, 1993, 21 (8): 1687-1688
    8. Li P, He X, Gerrero MR, et al. Spacing and orientation of bipartite DNA-binding motifs as potential functional determinants for POU domain factors. Genes Dev, 1993, 7(12B):2483-2496
    9.张力,贾弘提.POU蛋白调节中枢神经系统发育.生物化学与生物物理进展,1994,21(5):400-403
    10.杨岐生,吴敏.POU同源域蛋白的结构及发育中的功能.生物化学与生物物理进展,1999,26(2):114-117
    11. Gehring WJ, Muller M, Affolter M, et al. The structure of the homeodomain and its functional implications. Trends Genet, 1990, 6(10):323-329.
    12.蔡文琴,李海标.发育神经生物学.科学出版社.1999:15-18
    13.王秩,邓洁英.Pit-1基因突变与生长激素缺乏症.国外医学内分泌学 分册. 1999, 19(1):1-4
    14.Klemm JD and Paboc O. Oct-1 POU domain-DNA interactions: CooPerative binding of isolated SubdomainS and effects of covalent linkage. Genes Dev, 1996, 10(1):27-36
    15.Dekker N, Cox M, Boelens R, et al. Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature, 1993, 362(6423):852-855
    16.Kissinger CR, Lir B, Martin-Bianco E, et al. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell, 1990, 63(3): 579-590
    17.Jacobson EM, Li P, Leon-del-Rio MG. Structure of Pit-1 POU domain bound to DNA as a dimer: Unexpected arrangement and flexibility. Genes Dev, 1997, 11(2): 198-212
    18.Stancekova K, Vasicek D, Peskovicova D, et al. Effect of genetic variability of the porcine pituitary-specific transcription factor (PIT-1) on carcas traits in pigs. Animal Genetics, 1999, 30(4):313-315
    19.Yu TP, Rothschild MF and Tuggle CK. Rapid communication: a MspI restriction fragment length polymorphism at the swine PIT-1 locus. J Anim Sci, 1993, 71(8):2275
    20.Tanaka M and Herr W. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell, 1990, 60(3):375-386
    21.Tanaka M, Lai JS, Herr W, et al. Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter. Cell, 1992, 68(4):755-767
    22.Tanaka M, Clouston WM and Herr W. The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription. Mol Cell Biol, 1994, 14(9):6046-6055
    23.Muller-Immergluck MM, Schaffner W can Matthias P. Transcription factor Oct-2A contains functionally redundant activating domains and works selectively from a promoter but not from a remote enhancer position in non-lymphoid (HeLa) cells. EMBO, 1990, 9(5): 1625-1634
    24.Huang CC and Herr W. Differential control of transcription by homologous homeodomain coregulators. Mol Cell Biol, 1996, 16(6):2967-2976
    25.Berger SL. Gene activation by histone and factor acetyltransferases. Curr Opin Cell Biol, 1999, 11(3):336-341
    26.Huang EY, Zhang J, Miska EA, et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev, 2000, 14(l):45-54
    27.Heinzel T, Lavinsky RM, Mullen TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 1997, 387(6628):43-48
    28.Horlein AJ, Naar AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature, 1995, 377(6548): 397-404
    29.Laherty CD, Billin AN, Lavinsky RM, et al. SAP30, a component of the mSin3 corepressor complex involved in N-CoR- mediated repression by specific transcription factors. Mol Cell, 1998, 2(1):33-42
    30.Zanger K, Cohen LE, Hashimoto K, et al. Anovel mechanism for cyclic adenosine 39, 59-monophosphate regulation of gene expression by CREB-binding protein. Mol Endocrinol, 1999, 13(2):268-275
    31.Xu L, Lavinsky RM, Dasen JS, et al. Signal-specific co-activator domain requirements for Pit-1 activation. Nature, 1998, 395(6699):301-306
    32.Li S, Crenshaw EB, Rawson E, et al. Dwarf locus mutants lacking three pituitary cell types results from mutations in the POU-domain gene pit-1. Nature, 1990, 347(6293):528-533
    33.Morris AE, Kloss B, McChesney RE, et al. An alternatively spliced Pit-1 isoform altered in its ability to transactivate. Nucleic Acids Res, 1992, 20(6):1355-1361
    
    34.Majumdar S, Irwin DM and Elsholtz HP. Selective constraints on the activation domain of transcription factor Pit-1. Proc Natl Acad Sci USA, 1996, 93(19): 10256-10261
    
    35.Haugen BR, Gordon DF, Nelson AR, et al. The combination of Pit-1 and Pit-1T have a synergistic stimulatory effect on the thyrotropin beta-subunit promoter but not the growth hormone or prolactin promoters. Mol Endocrinol, 1994, 8(11):1574-1582
    
    36.Andersen B and Rosonfeld MG. Pit-1 determines cell types during development of the anterior pituitary gland:A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. JBiol Chem, 1994, 269(47):29335-29338
    
    37.Bertherat J, Chanson P and Montminy M, The cyclic adenosine 3',5'-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol, 1995,9(7):777-783
    
    38.Andersen B, Pearse II RV, Jenne K, et al. The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol, 1995, 172(2):495-503
    
    39.Friedl EM and Matthias P. Mapping of the transcriptional repression domain of the lymphoid- specific transcription factor oct-2A. J Biol Chem, 1996, 271(24): 13927-13930
    
    40.Gaiddon C, de Tapia M and Loeffler JP. The tissue-specific transcrip-tion factor Pit-1/GHF-1 binds to the c-fos serum response element and activates c-fos transcription. Mol Endocrinol, 1999, 13(5):742-751
    
    41.Miller TL, Godfrey PA, Dealmeida VI, et al. The rat growth hormone-releasing hormone receptor gene: structure, regulation, and generation of receptor isoforms with different signalingproperties. Endocrinology, 1999, 140(9):4152-4165
    
    42.Petersenn S, Rasch AC, Heyens M, et al. Structure and regulation of the human growth hormone-releasing hormone receptorgene. Mol Endocrinol, 1998, 12(2):233-247
    43.Kambe F, Tsukahara S, Kato T, et al. The POU-domain protein Oct-1 is widely expressed in adult rat organs. Biochim Biophys Acta, 1993, 1171(3):307-310
    44.La Bella F and Heintz N. Histone gene transcription factor binding in extracts of normal human cells. Mol Cell Biol, 1991, 11(12):5825-5831
    45.Murphy S, Yoon JB, Gerster T, et al. Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol Cell Biol, 1992, 12(7):3247-3261
    46.Cooper GM. The Cell: A molecular approach. ASM Press, 1997, Washington, DC
    
    47.刘燕明.snRNA、siRNA和scRNA. 生物学通报, 2004, 39(8): 11-13
    48.Eraly SA, Nelson SB, Huang KM, et al. Oct-1 binds promoter elements required for transcription of the GnRH gene. Mol Endocrinol, 1998, 12(4):469-481
    49.Clark ME and Mellon PL. The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron- specific enhancer. Mol Cell Biol, 1995, 15(11):6169-6177
    50.Hahm SH and Eiden LE. Five discrete cis-active domains direct cell type-specific transcription of the vasoactive intestinal peptide (VIP) gene. J Biol Chem, 1998, 273(27): 17086-17094
    51.Kim MK, Lesoon-Wood LA, Weintraub BD, et al. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain. Mol Cell Biol, 1996, 16(8):4366-4377
    52.Lin HK and Penning TM. Cloning, sequencing, and functional analysis of the 59-flanking region of the rat 3 a-hydroxysteroid/dihydrodiol dehydrogenase gene. Cancer Res, 1995, 55(18):4105-4113
    53.Malone CS, Patrone L, Buchanan KL, et al. An upstream oct-1- and oct-2-binding silencer governs B29 (Igb) gene expression. J Immunol, 2000, 164(5):2550-2556
    54. Stoykova AS, Sterrer S, Erselius JR, et al. Mini-Oct and Oct-2c: two novel, functionally diverse murine Oct-2 gene products are differentially expressed in the CNS. Neuron, 1992, 8(3):541-558
    55. Hatzopoulos AK, Stoykova AS, Erselius JR et al. Structure and expression of the mouse Oct2a and Oct2b, two differentially spliced products of the same gene. Development, 1990, 109(2):349-362
    56. Lillycrop KA and Latchman DS. Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem, 1992, 267 (35):24960-24965
    57. Parslow TG, Blair DL, Murphy WJ, et al. Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci USA, 1984, 81(9):2650-2654
    58.张文发.免疫球蛋白基因的转录调控.生物化学和生物物理进展,1994,21(6):482-485
    59. Ojeda SR, Hill J, Hill DF, et al. The Oct-2 POU domain gene in the neuroendocrine brain: a transcriptional regulator of mammalian puberty. Endocrinology, 1999, 140(8):3774-3789
    60. Anagnostopoulos AV. A compendium of mouse knockouts with inner ear defects. Trends Genet, 2002, 18(10):499
    61. He X, Treacy MN, Simmons DM, et al. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature, 1989, 340(6228):35-41
    62. Josephson R, Muller T, Pickel J, et al. POU transcription factors control expression of CNS stem cell-specific genes. Development, 1998, 125 (16):3087-3100
    63. Mihailescu D, Kury P and Monard D. An octamer-binding site is crucial for the activity of an enhancer active at the embryonic met-/mesencephalic junction. Mech Dev, 1999, 84(1-2):55-67
    64.Andersen B and Rosenfeld MG. POU Domain Factors in the Nelzroendocfine System: Lessons from Developmental Biology Provide Insights into Human Disease. Endocr Rev, 2001, 22(1):2-35
    65.Schonemann MD, Ryan AK, McEvilly RJ, et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev, 1995, 9(24):3122-3135
    66.Le Moine C and Young WS 3rd. RHS2, a POU domain-containing gene, and its expression in developing and adult rat. Proc Natl Acad Sci USA, 1992, 89(8):3285-3289
    67.Nakai S, Kawano H, Yudate T, et al. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev, 1995, 9(24):3109-3121
    68.Shimazaki T, Arsenijevic Y, Ryan AK, et al. A role for the POU-III transcription factor Brn-4 in the regulation of striatal neuron precursor differentiation. EMBO J. 1999, 18(2):444-456
    69.Phippard D, Lu L, Lee D, et al. Targeted mutagenesis of the POU-domain gene Bm4/Pou3f4 causes developmental defects in the inner ear. J Neumsci, 1999, 19(14):5980-5989
    70.Monuki ES, Kuhn R, Weinmaster G, et al. Expression and activity of the POU transcription factor SCIP. Science, 1990, 249(497): 1300-1303
    71.Monuki ES, Weinmaster G, Kuhn R, et al. SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron, 1989, 3(6):783-793
    72.Jaegle M, Mandemakers W, Broos L, et al. The POU factor Oct-6 and Schwann cell differentiation. Science, 1996, 273(5274):507-510
    73.Suzuki N, Rohdewohld H, Neuman T, et al. Oct-6: a POU transcription factor expressed in embryonal stem cells and in the developing brain. EMBO J, 1990, 9(11):3723-3732
    74.Wierman ME, Xiong X, Kepa JK, et al. Repression of gonadotropinreleasing hormone promoter activity by the POU homeodomain transcription factor SCIP/Oct-6 /Tst-1: a regulatory mechanism of phenotype expression? Mol Cell Biol, 1997, 17(3): 1652-1665
    75.Xiang M, Zhou L, Macke JP, et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci, 1995, 15 (7 Pt 1): 4762-4785
    76.Trieu M, Ma A, Eng SR, et al. Direct autoregulation and gene dosage compensation by POU-domain transcription fac tor Brn3a. Development, 2003, 130(1):111-121
    77.Frydman M, Vreulgde S, Nageris B, et al. Clinical characterization of genetic heating loss caused by a mutation in the POU4F3 transcription factor. Arch Otolaryngol Head Neck Surg, 2000, 126(5):633-637
    78.Keithley EM, Erkman L, Bennett T, et al. Effects of a hair cell transcription factor, Brn-3.1, gene deletion on homozygous and heterozygous mouse cochleas in adulthood and aging. Hear Res, 1999, 134(1-2):71-76
    79.Vahava O, Morell R, Lynch ED, et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science, 1998, 279(5358): 1950-1954
    80.Steel KP and Kros CJ. A genetic approach to understanding auditory function. Nat Genet, 2001, 27(2):143-149
    81.Pesce M, Gross MK and Scholer HR. In line with our ancestors :Oct4 and the mammalian germ. Bioessays, 1998, 20(9):722-732
    82.Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95(3):379-391
    83.Niwa H, Miyazaki J and Smith AG. Quantitative expression of Oct-3/4
    defines differentiation , dedifferentiation or selfrenewal of ES cells. Nat Genet, 2000, 24(4):372-376
    84.Looijenga LH, Stoop H, de Leeuw HP, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 2003, 63(9):2244-2250
    85. Weber RJ, Pedersen RA, Wianny F, et al. Polarity of the mouse embryo is anticipated before implantation. Development, 1999,126(24):5591-5598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700