磷酸盐/Si_3N_4复合陶瓷相组成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Ca_3(PO_4)_2、AlPO_4和Si_3N_4为原料,采用热压烧结和无压烧结工艺,在不同温度烧结制备了Ca_3(PO_4)_2/Si_3N_4和AlPO_4/Si_3N_4两个系列复合陶瓷。采用XRD、SEM和TEM等技术和三点弯曲、单边切口等方法,研究了原料组成、烧结工艺对复合陶瓷相组成、显微结构,力学、热学性能和抗热震性的影响规律及机理。
     复合陶瓷中,Ca_3(PO_4)_2、AlPO_4均能与Si_3N_4稳定共存,烧结后未发现有新相生成。β-Si_3N_4的相对含量和致密度均随着烧结温度的升高而提高。Ca_3(PO_4)_2作为添加剂加入时更利于Si_3N_4的α-β相变和陶瓷致密化。采用了埋粉和N2保护进行无压烧结时,较热压烧结更有利于α-Si_3N_4向β-Si_3N_4的转变。
     提高烧结温度,柱状β-Si_3N_4晶粒的生长更加充分,晶粒相互搭接、交织;TEM分析表明Ca_3(PO_4)_2与Si_3N_4浸润良好,界面结合紧密。对于Ca_3(PO_4)_2/Si_3N_4复合陶瓷,1700℃无压烧结与热压烧结相比,更利于β-Si_3N_4柱晶的生长。复合陶瓷的力学性能随着烧结温度的提高而升高,Ca_3(PO_4)_2/Si_3N_4复合陶瓷的力学性能高于AlPO_4/Si_3N_4复合陶瓷。对于Ca_3(PO_4)_2/Si_3N_4复合陶瓷,1700℃烧结时无压烧结工艺有利于弯曲强度和断裂韧性的提高。断口照片中可以观察到β-Si_3N_4晶粒的拔出和桥联作用。
     两种复合陶瓷的热学性能变化规律相似:热膨胀系数和比热随着温度的升高而增大,热导率随温度的升高而减小。烧结温度的升高使复合陶瓷的热膨胀系数、比热和热导率均有所升高。Ca_3(PO_4)_2/Si_3N_4复合陶瓷的热学性能优于AlPO_4/Si_3N_4复合陶瓷。热压烧结制备的复合陶瓷,热膨胀系数高于无压烧结制备的复合陶瓷。
     烧结温度提高,复合陶瓷的临界热震温差有所升高。Ca_3(PO_4)_2/Si_3N_4复合陶瓷的抗热震性能优于AlPO_4/Si_3N_4复合陶瓷。热压烧结复合陶瓷的抗热震性能总体上高于无压烧结复合陶瓷,但1700℃无压烧结Ca_3(PO_4)_2/Si_3N_4复合陶瓷的抗热震性最优,实测临界热震温差T=1200℃。计算得到了热应力断裂抵抗因子R和R,R和R′变化规律与实测临界热震温差的变化规律基本一致。
     对热震后试样表面的观察发现,热应力引起的裂纹扩展是复合陶瓷剩余弯曲强度下降的主要原因。热震后试样断口的观察分析表明,试样表面生成致密SiO_2膜会阻止内部Si_3N_4发生氧化。
Selecting Ca_3(PO_4)_2 AlPO_4 and Si_3N_4 as original materials, hot pressure sintered and pressurelessly sintered Ca_3(PO_4)_2/Si_3N_4 and AlPO_4/Si_3N_4 ceramic matrix composite which were sintered at different temperature was prepared in this thesis. With XRD SEM TEM techniques and three points bending SEBN tests, the influences of sintering technology on the phase composition and micro-structure, as well as the variations of mechanical properties thermal properties and thermal shock resistance are also studied.
     In the ceramics, Ca_3(PO_4)_2 AlPO_4 and Si_3N_4 could steadily exist. There is no new phase after sintering. The content ofβ-Si_3N_4 and the relative density increased with the sintering temperature. Ca_3(PO_4)_2 is beneficial to theα-βphase transformation of Si_3N_4 and the densification. Because of the burying power and N2 technology, pressureless sintering is beneficial to the phase transformation.
     As the sintering temperature elevating, The growth of rodlikeβ-Si_3N_4 was much finer, the grains were kinked and connected. The Ca_3(PO_4)_2 and Si_3N_4 were well imbibited and intergrated on the interface area, analyzed by TEM. For Ca_3(PO_4)_2/Si_3N_4 ceramic sintered at 1700℃, pressureless sintering was better comparing to hot pressure sintering.
     The mechanical properties enhanced as the sintering temperature elevating. The mechanical properties of Ca_3(PO_4)_2/Si_3N_4 ceramic are better than AlPO_4/Si_3N_4 ceramics. For Ca_3(PO_4)_2/Si_3N_4 ceramic sintered at 1700℃, pressureless sintering technology is beneficial to the enhancement of flexural strength and fracture toughness. The reinforcement of fracture toughness is contributed by the pull-out and bridging effort of rodlikeβ-Si_3N_4, and that could be found from the images of fracture.
     The two ceramics have samiliar phenomenons on thermal properties. Thermal expansion and specific heat increased when the temperature increased, the heat conductivity decreased correspondingly. As sintering temperature elevating, the relative density increased, and thermal expansion, specific heat and heat conductivity became better. The thermal properties of Ca_3(PO_4)_2/Si_3N_4 ceramic are better than AlPO_4/Si_3N_4 ceramics. The relative density and the phase composition both have influences. The thermal expansion of hot pressure sintered ceramics were higher than pressureless sintered ceramics.
     As the sintering tempureture increasing, the thermal shock resistent properties of the ceramics became higher. The Ca_3(PO_4)_2/Si_3N_4 ceramic has better thermal shock resistent property. The thermal shock resistent properties of the hot pressured ceramics are better than pressurelessly sintered ceramics mainly, yet the 1700℃pressurelessly sintered Ca_3(PO_4)_2/Si_3N_4 ceramic had the most excellent thermal shock resistent property, T=1200℃. The thermal stress fracture resistant factor R and R′were calculated, and the change of R and R′corresponded to experimental result.
     During the observations of thermal shock samles, It can be concluded that the crackles on the surface of the sample caused the descend of the residue flexural strength. The observation of the fracture also manifested that the oxidation a compact SiO2 film could prevent the inner Si_3N_4 from oxidizing.
引文
1.张大海,黎义,高文.高温天线罩材料研究进展.宇航材料与工艺. 2001, 6: 1~3
    2.齐共金,张长瑞,胡海峰.陶瓷基复合材料天线罩制备工艺进展.硅酸盐学报. 2005, 5: 632~638
    3.江东亮.精细陶瓷材料.中国物资出版社. 2000: 125
    4. J. C. Bressiani, V. Izhevskyi, Ana H. A. Bressiani. Development of the Microstructure of the Silicon Nitride Based Ceramics. Materials Research. 1999, 2: 165~172
    5.胡连成,黎义,于翘.俄罗斯航天透波材料现状考察.宇航材料工艺. 1994: 48~52
    6. Talmy et al. Electromagnetic Window. United States Patent 5,573,986. 1996, 11
    7.栾恩杰,汪亚卫.国防科技名词大典.航空工业出版社. 2002: 422~426
    8.金志浩,周敬恩.工程陶瓷材料.建筑工业出版社. 2000:177~182
    9.李俊寿.新材料概论.国防工业出版社. 2004: 58~64
    10.王零森.特种陶瓷.中南工业大学出版社. 2005: 265~280
    11.徐鑫.低成本氮化硅基陶瓷研究.中国科学院上海硅酸盐研究所[博士学位论文]. 2000: 1~17
    12. Lingling Wang, Tseng-Ying Tien, I-Wei Chen. Formation of Beta-Silicon Nitride Crystals from (Si,Al,Mg,Y)(O,N) Liquid. J Am Ceram Soc. 2003, 9: 1586~1591
    13.杨大正.热压方法制备Si3N4研究.北京科技大学[硕士学位论文]. 2001: 5~15
    14.刘国昌.烧结工艺对氮化硅基陶瓷显微结构和性能的影响.机械制造与研究. 2005, 6: 32~34
    15.罗学涛,张立同.氮化硅陶瓷自增韧技术进展.复合材料学报. 1997, 8: 1~8
    16. Hirosaki. N, Akimune. Y, Mitomo. M. Effect of Grain Growth ofβ-silicon Nitride on Strength, Webull Modulus, and Fracture Toughness. J. Am. Ceram. Soc. 1993, 76: 1892~1894
    17. M. Kramer, M. J. Hoffmann, G. Petzow. Grain Gro wth Study of Silicon NitrideDispersed in an Oxynitride Glass. J Am Ceram Soc. 1993, 76: 2778~2784
    18. Mitomo. M, Tsutsumi. M, Tanaka. H. Grain Growth During Gas-Pressure Sintering ofβ-Si3N4 Nitride. J Am Ceram Soc. 1990, 73: 2441~2445
    19. A. J. Pyzik, D. R. Beaman. Microstructure and Properties of Self-Reinforced Silicon Nitride. J Am Ceram Soc. 1993, 76: 2737~2744
    20. W. Dressler, H. Kleebe, M. J. Hoffmann. Model Experiments Concerning Abnormal Grain Growth in Silicon Nitride. J Euro Ceram Soc. 1996, 16: 3~14
    21. Xin Xu, Liping Huang, Xuejian Liu. Effects ofα/βRatio in Starting Powder on Microstructure and Mechanical Properties of Silicon Nitride Ceramics. Ceramics International. 2002, 28: 279~281
    22. Hirao. K, Nagaoka. T, Brito M. E. . Microstructure Control of Silicon Nitride by Seeding with Rodlikeβ-Silicon Nitride Particles. J Am Ceram Soc. 1994, 7: 1857~1862
    23.邹强,徐廷献. Si3N4陶瓷烧结中烧结助剂的研究进展.硅酸盐通报. 2004, 1: 81~84
    24. Becher. P. F, Sun. E. Y, Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effect of Grain Shape and Size. J Am Ceram Soc. 1998, 81: 2821~2851
    25.杨海涛,汤宇凌.氮化硅陶瓷烧结过程中的致密化与相变.中国有色金属学报. 1996, 12: 150~153
    26. Matsuhiro. K, Takahashi. T, The Effect of Grain Size on the Toughness of Sintered Si3N4. Ceram Eng Sci Proc. 1989, 10: 807
    27. Hirosaki. N, Akimune. Y, Mitomo. M. Microstructure Characterization of Gas-Pressure-Sinteredβ-Silicon Nitride Containing Largeβ-Silicon Nitride Seeds. Journal of the American Ceramic Society. 1994, 4: 1093~1097
    28.周公度.化学辞典.化学工业出版社. 2004: 371~378
    29.刘光启.化学化工务性数据手册无机卷.化学工业出版社. 2002: 207~225
    30.杨小波,黄玉东.磷酸盐基耐热复合材料的制备与性能.化学与黏合. 2005, 27: 67~70
    31.贡长生.现代工业化学概论.湖北科技出版社. 2003: 131~139
    32. Lau A H, Kuk J M, Franson K L. Phosphate-Binding Capacities of Calcium and Aluminum Formulations. Int J Artif Organs. 1998, 1: 19~22
    33.贺效先,晏成栋,孙争光.无机胶黏剂.化学工业出版社. 2003
    34. Andre Boulle, F. B. Yvoire. Thenmal Evolution of Aluminum Phosphates of group P2O5/Al2O3. Compt. rend. 1950: 231~234
    35.田焕芳.石英增强磷酸盐复合材料制备和组织结构及力学性能[硕士学位论文].哈尔滨工业大学. 2003: 11~12
    36. S. Raynaud, E. Champion. Calcium Phosphate Apatites with Variable Ca/P Atomic RatioⅢ. Mechaical Properties and Degradation in Solution of Hot Pressed Ceramics. Biomaterials. 2002, 23: 1081~1089
    37. Kasuga T, Abe Y. Novel. Calcium Phosphate Ceramics Prepared by Powder-Sintering and Crystallization of Glasses in the Pyrophosphate Region. J Mater Res. 1998, 13: 3357~3360
    38. K. Park, T. Vasilosa. Microstructore and Mechanical Properities of Silicon Carbide Whisker/Calcium Phosphate Composites Produced by Hot Pressing. Materials Letters. 1997, 9: 229~233
    39. J. Hwang, R. A. Newman. Silicon Nitride Ceramics with Celsian as an Additive. J. Maer. sci. 1996, 31(1): 2521~2526
    40. Kingery W D. Densification during sintering in the presence of a liquid phase I theory. J Appl Phys. 1959, 30(3): 301~306
    41.杨海涛,杨国涛,袁润章. Si3N4-MgO-CeO2陶瓷烧结过程中的致密化与相变.清华大学学报自然科学版. 1999, 39(5): 126~128
    42.周长灵,邢政鹏,范景林.β-Si3N4陶瓷烧结致密化的研究.硅酸盐通报. 2004, 6: 52~55
    43.袁力建,严东生,茅志琼.低温热压氮化硅的烧结机理.硅酸盐学报. 1989, 17(6): 530~536
    44.甄玉花,尹衍生,李爱菊. Si3N4及其复合材料强韧化研究进展.现代技术陶瓷. 2003, 4: 13~18, 22
    45. Abe H. Mechanical properities of engineering ceramics. Am Ceram Soc Bull. 1985, 64(12): 1594~1596
    46.周玉.陶瓷材料学.哈尔滨工业大学出版社, 1995: 315~327
    47.夏国栋,孙康宁,纪娟. Fe-Al/Al2O3复合材料与ZTA陶瓷的抗热震性研究.现代技术陶瓷. 2003, 4: 6~8
    48.张彪,郭景坤,诸培南. [NPZ]材料热膨胀性能研究.中国科学(E辑). 1996, 2: 86~90
    49.曹爱红.钛酸铝复相陶瓷的制备及其抗热震性能的研究[博士学位论文].天津大学. 2004: 61~63
    50.关振铎,张中太,焦金生.无机材料物理性能.清华大学出版社. 2003: 110~119
    51. A. J Pyzik, D. F Carroll. Technology of Self-reinforced Silicon Nitride. Annu Rev Mater Sci. 1994, 24: 189~212
    52.马彬. SiC基复相陶瓷的抗氧化及抗热震性能研究[硕士学位论文].哈尔滨工业大学. 2006: 56~63
    53.李艳征.先进陶瓷材料的强韧性及抗热震性研究[硕士学位论文].山东大学. 2006: 3~4,38~40
    54.张其土,李旭平. Si3N4材料氧化的热力学分析.耐火材料. 1997, 5: 256~259, 262
    55.张其土. Si3N4陶瓷材料氧化行为及其抗氧化性研究.陶瓷学报. 2000, 3: 23~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700