微磨料水射流加工装置设计与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃、硅片、陶瓷等硬脆材料是制造电子元件、光学元件的基本材料,对这些高硬度、高脆性、高熔点的材料进行微细加工的需求正在不断增长。微磨料水射流技术(Micro Abrasive Water Jet Machining Technology MAWJ)是在传统磨料水射流加工技术的基础上发展起来的一种全新的微型加工技术,在冲蚀加工过程中不改变材料的力学、物理和化学性能,已经逐渐成为硬脆性材料精密微细加工的重要基础技术。
     本文设计了一套微磨料水射流加工装置,并利用该装置研究脆性材料的加工工艺,详细分析了喷射压力、喷射时间、喷射靶距、喷射角度以及磨料浓度等因素对去除质量、钻孔深度、钻孔直径的影响,并对比磨料水射流力工工艺,分析微磨料水射流加工与磨料水射流加工技术的异同点。主要结论如下:
     (1)基于微磨料水射流加工理论自行设计制造了一套微磨料水射流加工装置,该装置可连续工作,可对脆、塑性材料切割、钻孔加工,并且在更换喷嘴后具备抛光功能,其喷嘴直径可在低于0.25mm范围内选择,工作压力可在0~35MPa内连续调节。
     (2)应用上述装置,在喷射压力1MPa时可对2.5mm石英玻璃进行通孔加工,在5MPa压力下可对0.6mm不锈钢进行切槽(切穿)加工,且加工的孔型、切口质量较好。
     (3)提出了—种通过叠加覆盖件的加工方法,可实现更小孔径、更小切宽的钻孔和切槽加工。
     (4)微磨料水射流对石英玻璃钻孔工艺实验表明,喷射压力、喷射时间、磨料浓度的增大均会加大微磨料水射流加工去除质量,靶距反之。各工艺参数中对去除质量影响显著的因素是喷射时间,对钻孔深度影响显著的因素是喷射时间和喷射靶距,对钻孔直径影响显著的因素是喷射时间和喷射压力。喷射时间的变化对对钻孔深度、钻孔直径以及钻孔形状影响最大。对石英玻璃加工时,喷射压力和磨料浓度较低、喷射角度为90°、喷射靶距较小时加工的孔更细长。加工过程中,减小靶距和延长喷射时间是提高微磨料水射流加工去除质量的有效方法。
     (5)磨料水射流对钢板切槽加工工艺实验表明,对顶部切口宽度和切口锥度影响显著的因素是喷射靶距,对切口光滑段高度影响较为显著的因素是走刀速度。通过减小靶距来减小工件顶部切口宽度是最佳方式,而适当降低走刀速度可提高切口光滑段高度和降低切口锥度。
     (6)对比微磨料水射流与磨料水射流两种加工工艺,喷射时间、磨料浓度对二者加工能力和加工精细度的影响一致,而喷射压力和喷射靶距对二者影响不同。微磨料水射流的喷嘴结构须做进一步改进方可满足微磨料加工的性能和寿命要求,微磨料水射流加工精细度高、加工效率低。
The hard brittle materials such as glass, silicon wafer and ceramics etc. are basic materials for electronic components and optical components. Demand for the processing of such materials with high hardness, high brittleness, high melting point just increases continuously.
     Micro Abrasive Water Jet (MAWJ) is a new micro processing technique developed based on the fundamental of traditional Abrasive Water Jet (AWJ), it doesn't change the mechanical, physical and chemical performance of the material. Now MAWJ has become a basal technology for micro processing of hard and brittle materials.
     A new MAWJ machining equipment and the research of the machining process for brittle materials are presented in this thesis. Detailed experiments are carried out to analyze the influence of the process parameters such as jet pressure, impacting time, impacting angle and abrasive concentration on the mass loss, depth and diameter of the hole, finally the similarities and differences of the MAWJ and AWJ are analyzed. The major results are as follows:
     (1) The diameter of nozzle of the MAWJ can be change from 0 to 0.25mm, working pressure can change from 0 to 35MPa, and the device can be used for cutting, drilling and polishing diffirent kinds of materials.
     (2) The glass with thickness of 2.5mm can be drilled through when the jet pressure reaches 1MPa, and the stainless steel with thickness of 0.6mm can be cut through when the jet pressure reaches 5MPa.
     (3) Furthermore, a new method to improve the machining precision that machining workpiece under a cladding material is discussed.
     (4) The experiment of drilling glass shows that the mass loss of wordpiece increases with the growth of jet pressure, impacting time and abrasive concentration, contrary with stand off distance. The most remarkable influence factor on mass loss and the depth of the hole is impacting time, the most remarkable influence factors on the diameter of the hole is impacting time and jet pressure. The impacting time is the most important factor for drilling brittle materials. The results shows that the drilling hole is more fine and deep with low jet pressure, abrasive concentration, small stand off distance and impacting angle of 90 degree. To decrease the stand off distance and increase the impacting time is an effective manner to increase the mass loss.
     (5) The experiment of cutting steel plate with AWJ shows that the most remarkable influence factor on top kerf width and kerf taper angle is stand off distance, the most remarkable influence factor on the smooth depth of cut is cutting speed. The top kerf width can be reduce by reducing the stand off distance, while reducing cutting speed can increase the smooth depth of cut and reduce the kert taper angle.
     (6) Comparing with MAWJ and AWJ, the impact time and abrasive concentration have the same infection on machining capability and fineness, impact pressure and stand off distance in reverse. The structure of MAWJ nozzle should be improved base on the structure of AWJ nozzle to satisfy the performance and life demands for MAWJ. MAWJ's processing precision is higher, while efficiency is lower.
引文
[1] Miller, D. S. Development of Micro-abrasive water-jets. BHR 15th International Conference on Jetting Technology, 2001: 35-45
    [2] Miller, D. S. Micromachining with abrasive waterjets. Journals of Materials Processing Technology, Vol. 149, 2004: 37-42
    [3] Miller, D. S. Developments in abrasive waterjets for micromachining. BHR 16th International Conference on Jetting Technology, 2003
    [4] Hashish, M. A, Craigen, S. J. Abrasive nozzle assembly for small hole drilling and thin kerf cutting. Publication number: 0391500A2, 1990
    [5] Chong Boon Ng. Development of micro abrasive water jetting technology. 内部交换资料,2003
    [6] J. Wang. Abrasive Jet Machining: Recent Development and Future Prospects. 学术报告,2004
    [7] New type of water and energy saving cleaning technique to improve the hygienic result. EU FP5 Project, RCN: 60359, Quality Validation Time: 2003-12-02
    [8] M. Hashish. Avrasive waterjet cutting of microelectronic components. 2005 WJTA American Waterjet Conference, Houston, Texas, 2005: 1A-1
    [9] Hou Rongguo, Huang Chuanzhen, Jun Wang. Simulation of Velocity Field of Two-Phase Flow for Gas and Liquid in the Abrasive Water Jet Nozzle. Key Engineering Materials, Vol: 315, 2006: 150-153
    [10] 刘小健,毕俊喜,俞涛.磨料浆体射流切割机床中切割质量研究.工艺与检测,2006(3):69-71
    [11] 刘小健,俞涛.磨料浆体射流中添加剂得性能及实验研究.磨料磨具通讯,2005(7):10-14
    [12] 刘小健,俞涛,刘林生.膨润土及其在磨料射流中得应用研究.新技术新工艺,2005(7):58-60
    [13] 王瑞和,王树江,步玉环.高分子添加剂射流结构特征.石油大学学报(自然科学版),1998(4)38-40
    [14] 柳永印,王瑞和,周卫东.PAM对磨料浆体射流速度得影响规律研究.石油钻探技术,2001(2)4-6
    [15] 孙家俊.磨料浆体射流切割技术及应用前景.高压水射流,1992(2):3-6
    [16] Miller, D. S. New abrasive waterjet systems to compete with lasers. 2005 WJTA American Waterjet Conference, Houston, Texas, 2005: 1A-2
    [17] 王建生.微型磨料射流加工技术的现状及应用前景.新技术新工艺·机械 加工及自动化2001(12),15-18.
    [18] Coleman, W. J., Hashish, M. The next generation of Water jet and Abrasive-Water jet Processing Technologies. Executive Overview of Program, National Center for Manufacturing Sciences, Inc, November 1992
    [19] Wang Jiansheng, Zhang Shangxian. Experimental study on cutting performance of a fine abrasive waterjet. Proceeding of the 7th international conference on frontiers of design and manufacturing, Vol. 1, 2006: 459-462; Frontiers of Design and Manufacturing, NSW, Australia
    [20] Miller, D. S. Fluid Abrasive Jets For Machining. International publication number: WO 99/14015, 1999
    [21] M. Hashish. Experimental studies of cutting with abrasive waterjets. WJTA American Waterjet Conference, Rolla, Missouri, 1983: SESSION 9-1
    [22] Miller, D. S. Abrasive Fluid Jet Machining Apparatus. International publication number: WO 02/087827 A1, 2002
    [23] 张尚先.小喷嘴磨料水射流的仿真与试验研究.五邑大学硕士研究生论文.2006年4月
    [24] 阎秋生,张自强,唐延辉.磨料喷射微细加工应用基础研究——喷嘴设计及加工试验.金刚石与磨料磨具工程.2002(2)128,19-22
    [25] 樊晶明,王成勇,王军.微磨料空气射流加工技术的发展.金刚石与磨料磨具工程.2005(1)145,25-30
    [26] 罗国胜.微磨料气射流加工工艺研究.广东工业大学硕士研究生论文.2006.06
    [27] Hua Liu. A stydy of the cutting performance in abrasive waterjet contouring of alumina ceramics and associated jet dynamic characteristics. A thesis submitted to the Queensland University of Technology for the degree of Doctor of Philosophy. 2004
    [28] 朱派龙.高压水射流切割机理与关键技术的研究.大连理工大学博士学位论文.1998.04
    [29] 冯衍霞,黄传真,Jun Wang,候荣国,安平.磨料水射流加工技术的研究状况.机械工程师.2005(6),17-19
    [30] 李宝玉,郭楚文,林柏泉.用于安全切割的磨料水射流喷嘴设计理论与方法.煤炭学报.2005(2)30,251-254
    [31] C. Z. Huang, R. G. Hou, J. Wang and Y. X. Feng. The effect of high pressure abrasive water jet cutting parameters on cutting performance of granite. Key Engineer Material. 2006, 304-305: 560-564
    [32] H. Liu, J, Wang, N. Kelson, R. J. BrownA study of abrasive waterjet characteristics by CFD simulation Journal of Materials Processing Technology, 2004, 153-154: 488-493
    [33] 卢义玉,李晓红.脉冲磨料射流主要参数对切割性能的影响.重庆大学学报(自然科学版).2002 05:116-118,123
    [34] 宋坚.磨料水射流切割机理的研究.长沙矿山研究院季刊.1992,12:55-60
    [35] 陈明,傅仕伟.超高压水射流切割喷嘴的研制与开发.机械科学与技术1997,08:31-36
    [36] 候荣国.磨料水射流切割性能和喷嘴内外流场的仿真研究.山东大学硕士学位论文.2006.05
    [37] 周熙熙.磨料喷射加工机理及其应用研究.汕头大学硕士学位论文.2003.05
    [38] 贾明峰.前混合磨料水射流技术应用及机理的研究.上海大学硕士学位毕业论文.2002.01
    [39] 董刚.材料冲蚀行为及机理研究.浙江工业大学硕士论文.2004.03
    [40] 程大中,邹长身,段雄,尤明庆编写.高压水射流新技术基础知识.徐州:中国矿业学院.1986.5
    [41] 薛胜雄著,高压水射流技术与应用,机械工业出版社,1998
    [42] 沈忠厚著.水射流理论与技术.东营:石油大学出版社.1998.3
    [43] 崔通慎,孙家骏.高压水射流技术.徐州:煤炭工业出版社.1992
    [44] 陈魁.试验设计与分析.清华大学出版社.1996.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700