进口预旋条件下涡扇发动机波瓣射流掺混机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波瓣混合器在中小涵道比涡扇发动机中有着广泛的应用前景,其对于提高尾气掺混效率、增加输出推力、降低耗油率、减少排气噪音和抑制红外辐射等都具有十分重要的意义。长期以来,学者们一直致力于研究轴向均匀进气条件下波瓣射流的掺混机理及其几何参数的优化设计,但对上游尾迹及进口预旋作用下波瓣射流的掺混过程及作用机理,研究成果甚少见诸报道。本文以某真实发动机波瓣混合器为研究对象,以能提供不同上游尾迹和进口气流切向气流角度的低速同心双环流风洞实验台(隶属于加拿大国家研究理事会燃气透平实验室,GTL-NRC)为载体,以七孔探针、热线及表面油流显示技术为测试手段,并辅之以数值计算,在深入理解波瓣射流掺混机理的基础上,探讨了进口有无预旋条件下波瓣射流掺混过程的具体变化,重点分析了上游尾迹和进口预旋影响射流涡系结构形成、发展及相互作用直到破碎的全过程,并详细评估了进口预旋对射流掺混气动性能的影响。在对常规波瓣研究工作的基础上,通过对波瓣切凹扇形处理,探讨了凹扇形缺口对波瓣射流掺混机理的影响机制,并分析了上游尾迹、进口预旋及掺混长度对切凹扇形波瓣射流掺混过程及气动性能的影响。
     对波瓣射流掺混机理的研究表明,波瓣特殊的几何外形诱导形成了大尺度流向涡,流向涡与正交涡的相互作用及自身破碎过程产生大量的小尺度湍流斑,这对加速波瓣射流掺混过程起着决定性的作用,导致大部分波瓣射流掺混过程能在波瓣下游2倍等效水力直径的范围内完成。在进口预旋作用下,流向涡及正交涡强度都有所增强,它们之间的相互作用依然支配着波瓣射流的掺混过程。波谷附近的外涵刺入气流一方面拉伸、扭曲正交涡,一方面在强进口预旋工况下与内涵气流形成逆时针旋转的附加流向涡,进一步改善了常规波瓣混合器的射流掺混过程。中心锥与波谷之间的有旋泄漏流动卷吸了大量的高能内涵气流,并借助径向扩散挤压外围流体的方式强化了外围涡系之间的相互作用,有利于加速波瓣射流的掺混过程。随着进口预旋的增强,有旋泄漏流加速射流掺混的作用变得越来越重要。但在较大的进口预旋条件下,波瓣吸力面出现的流动分离及中心锥下游形成的大范围环形回流区,将导致射流总压损失的增加及发动机输出推力的大幅下降。
     在切凹扇形波瓣射流中,流向涡从凹扇形缺口顶点开始被逐步引入,由此引起的射流预掺混过程抑制了正交涡的发展。正交涡在凹扇形缺口下游的不同扩散速度造成其自身的拉伸及扭曲,进而诱导形成了小尺度附加流向涡,该附加流向涡与大尺度流向涡的相互作用,虽然不一定增强流向涡强度,但有利于加速波瓣射流的掺混过程。在较强的进口预旋作用下,沿径向向内的外涵刺入气流与径向向外的内涵气流相互作用是附加流向涡形成的主要原因。切凹扇形处理虽然不影响中心锥附近的有旋泄漏流及其下游回流区,但降低了波瓣的抗预旋能力,导致波瓣吸力面较大范围的流动分离。
     当进口切向气流角小于20。时,进口预旋有利于加速波瓣混合器的射流掺混,且不会导致过高的总压和推力损失。在弱进口预旋条件下,切凹扇形处理有利于波瓣总体性能的提升;在强进口预旋条件下,给予波瓣一定的进口几何角或者对波谷进行斜切处理,将有利于提高波瓣适应强进口预旋的能力。
The lobed mixer is entensive used in the low and intermediate bypass ratio turbofan engines, resulting in enhancement in jet mixing efficiency, increase in net thrust, a reduction in fuel consumption, decrease in jet noise and, in some cases,reduced infrared signature. Since 1960s, considerable researches have been carried out on the jet mixing mechanism of the lobed mixer and geometry optimization at the design point of the turbofan engine, which means the inlet condition is uniform flow with the axial direction. While, at the off-design points, i.e. take-off, landing or with high inlet swirling flow due to the usage of high loading turbine blade, it is rarely to find the relative paper which studies the effect of inlet swirl on the mixing and performance of the lobed mixer. Therefore, this paper works on the lobed mixer of a real turbofan engine on a co-annular, low speed, open circuit wind tunnel at the Gas Turbine Laboratory of the National Research Council of Canada. The seven-hole probe, hot-wire and surface oil-flow visualization was used to measure the flow field at inlet planes, downstream of the lobed mixer or lobe's surface, and the simulation was also carried out to offer the detailed information of the jet mixing flow as an assistant of the measurement.
     In this paper, the jet mixing mechanism of the loed mixer is studied with the uniform inlet flow without swirl, firstly. And then, the swirl vanes were used to generate the inlet swirling flow with different swirl angle to stuty the effect of inlet swirl on the formation, development, interaction and break-down of the vortical system downstream of the lobed mixer, the aerodynamic performance of the lobed jet flow is estimated under the inlet swirl condition. Further more, this paper also studied the mixing mechanism of the scalloped lobed mixer with/without inlet swirl, and the effect of swirl vanes'wakes and the length of the mixing tube on the performance of the scalloped lobed mixer is discussed in this paper too.
     Based on the analysis on the jet mixing mechanism of the lobed mixer, the special 3D contour of lobed mixer induces the large scale streamwise vortices, with the length sacle of height of the lobe. With the diffusion of the jet flow, the interaction between streamwise vortices and normal vortices and their break-down generates lots of turbulent eddies, which dominate the jet mixing of the lobed mixer. Most of the jet mixing happens in the range of two equivalent hydraulic diameter downstream of the lobed mixer. Under the highly inlet swirl conditions, the interaction between the streamwise vortices and normal vortices, which are enhanced by the inlet swirl, still dominates the lobed mixing flow. The penetration flow around the lobe's trough stretches and deforms the normal vortices, even generates counter-clockwise rotating additional streamwise vortices by interaction with the core flow, and improves the jet mixing of un-scalloped lobed mixer. The leakage swirling flow between the centre-body and lobe's trough entrains considerable core fluids with high momentum, and enhances the self-interaction of outer vortical system by extruding the outer fluid. All of thses phenomena enhance the lobed jet mixing, and the effect of the leakage flow becomes more important with the increasing inlet swirl. However, under highly inlet swirl conditions, the separation bubble presenting on the the suction surface of the lobe and the large-scale recirculation zone appearing downstream of the centre-body due to the high swirling leakage flow causes increasing total pressure loss and thrust loss.
     The streamwise vortices is introduced gradually from the tip point of the scalloping curve, and the induced flow mixing bates the strength of the normal vortices. The normal vortices are stretched and deformed by the scalloped notch due to their own different diffusion rate downstream of the trailing edge of scalloped lobed mixer, and induced the formation of the small-scale additional streamwise vortices. The interaction between the addition streamwise vortices and the large-scale streamwise vortices may not increase the streamwise vorticity, but it really enhance the jet mixing due to the generation of considerable turbulent eddies during their interaction. Under highly inlet swirl conditon, the additonal streamwise voritces near the lobe's trough induced by the interaciton between the penetration flow and the core flow due to their opposite radial velocity. The leakage flow around the centre-body is not sensitive to the scalloping notch of the scalloped lobed mixer. On ther other hand, the scalloping notch decrease the resistance of scalloped lobed mixer to the inlet swirl, resulting in the larger separation bubble on the suction surface of the lobe.
     Anyway, when the inlet swirl angle is less than 20°, the inlet swirl enhances the jet mixing of lobed mixer, and the penelty of total pressure loss or thrust loss is acceptable. For the low inlet swirl, the scalloping cut can increase the aerodynamic performance of the lobed mixer; for the high inlet swirl, the lobe with a certain degree of metal angle or scarfing the lobe's trough may increase the resistance of lobe mixer to the high inlet swirl.
引文
[1]Lau, J. C., Morris, P. J. and Fisher, M. J.,1976, "Turbulence Measurements in Subsonic and Supersonic Jets Using a Laser Velocimeter", AIAA paper, AIAA-1976-348.
    [2]Schetz, J. A.,1980, "Injection and mixing in Turbulent Flow", AIAA J.,68, pp.216.
    [3]Simonich, J. C.,1986, "Isolated and Interacting Round Parallel Heated Jets", AIAA paper, AIAA-1986-0281.
    [4]Blevins, R. D.,1984, "Applied Fluid Dynamics Handbook", Book, Van Nostrand Reinhold Co., New York.
    [5]Kuchar, A. P. and Chamberlin, R., "Scale Model Performance Test Investigation of Mixed Flow Exhaust Systems for an Energy Efficient Engine (E3) Propulsion System", AIAA paper, AIAA-1983-0541.
    [6]Babbitt, R. R., Cohn, J. A. and Fleming, K. J.,1991, "Advanced High Bypass Mixed-Flow Exhaust System Design Study", AIAA paper, AIAA-1991-2242.
    [7]Ho, C. M. and Huang, L. S.,1982, "Subharmonics and Vortex Merging in Mixing Layers", Journal of Fluid Mechanics,119, pp.443-473.
    [8]Dimotakis, P. E. and Brown, G. L.,1976, "The Mixing Layer at High Reynolds Number: Large-Structure Dynamics and Entrainment", Journal of Fluid Mechanics,78(3), pp.535-560.
    [9]Bernal, L. P. and Roshko, A.,1986, "Streamwise Vortex Structure in Plane Mixing Layers" Journal of Fluid Mechanics,170, pp.499-525.
    [10]Konrad, J. H.,1976, "An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Applications to Diffusion-Limited Chemical Reactions", Intern. Rep. CIT-8-PU, Calif. Inst. Technol., Pasadena.
    [11]Ho, C. M. and Huerre, P.,1984, "Perturbed Free Shear Layers", Annual Review of Fluid Mechanics,16, pp.365-422.
    [12]Hussein, A. K. M. F.,1986, "Coherent Syructures and Turbulence", Journal of Fluid Mechanics,173, pp.303-356.
    [13]Fiedler, H. E.,1988, "Coherent Structures in Turbulent Flows", Progress in Aerospace Sciences,25(3), pp.231-269.
    [14]Liu, J. T. C.,1989, "Coherent Structures in Transitional and Turbulent Free Shear Flows", Annual Review of Fluid Mechanics,21, pp.285-315.
    [15]Crow, S. C. and Champagne, F. H.,1971, "Orderly Structure in Jet Turbulence", Journal of Fluid Mechanics,48(3), pp.547-591.jet
    [16]Winant, C. D., Browand, F. K.,1974, "Vortex Pairing, the Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds Number", J. Fluid Mech., Vol.63, pp.237-255.
    [17]Davies, P. O. A. L., Yule. A. J.,1975, "Coherent Structures in Turbulence", J. Fluid Mech., Vol.69, pp.517-537.
    [18]Murthy, S. N. B.,1975, "Turbulent Mixing in Nonreactive and Reactive Flows", Plenum Press, a Book, New York.
    [19]Smith,C. R., Abbott, D. E.,1978, "Coherent Structure of Turbulent Boundary Layers", Bethlehem:Lehigh University, a Book.
    [20]Gatski, T. B., Liu, J.T. C.,1980, "On the Interactions between Large-Scale Structure and Fine-Grained Turbulence in a Free Shear Flow. Ⅲ. A Numerical Solution", Phil. Trans. R. Soc. Lond. Vol.293, pp.473.
    [21]Mankbadi, R., Liu, J. T. C.,1981, "A Study of the Interactions between Large-Scale Coherent Structures and Fine-Grained Turbulence in a Round Jet", Phil. Trans. R. Soc. Lond. Vol. 298, No.1443, pp.541-602.
    [22]Dimotakis, P. E.,1991, "Turbulent Free Shear Layer Mixing and Combustion", AIAA paper, AIAA-89-0262.
    [23]Gutmark, E. J., Schadow, K. C. and Yu, K. H.,1995, "Mixing Enhancement in Supersonic Free Shear Flows", Annual Review of Fluid Mechanics,27, pp.375-417.
    [24]Gutmark, E. J. and Grinstein, F. F.,1999, "Flow Control with Noncircular Jets", Annual Review of Fluid Mechanics,31, pp.239-272.
    [25]Knowles, K. and Saddington, A. J.,2006, "A Review of Jet Mixing Enhancement for Aircraft Propulsion Applications", Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,220(2), pp.103-127.
    [26]Ho, C. M. and Gutmark, E.,1987, "Vortex Induction and Mass Entrainment in a Small-Aspect-Ratio Elliptic Jet", Journal of Fluid Mechanics,179, pp.383-405.
    [27]Herzberg, J. R. and Ho, C. M.,1995, "Three-Dimension Vortex Dynamics in a Rectangular Sudden Expansion", Journal of Fluid Mechanics,289, pp.1-27.
    [28]Quinn, W. R.,1992, "Turbulent Free Jet Flows Issuing from Sharp-Edged Rectangular Slots: The Influence of Slot Aspect Ratio", Experimental Thermal and Fluid Science,5(2), pp. 203-215.
    [29]Schadow, K. C., Gutmark, W., Parr, D. M. and Wilson, K. J.,1988, "Selective Control of Flow Coherence in Triangular Jets", Exp. Fluids,6, pp.129-135.
    [30]Alvi, F. S., Washinton, D., and Krothapalli, A.,1995, "The Flowfield Characteristics of a Mach 2 Diamond Jet", In ASME FED, high speed jet flow (Eds S. Kaji, G. Raman, and C. J. Freitas),214, pp.127-132.
    [31]Liepmann, D. and Gharib, M.,1992, "The Role of Streamwise Vorticity in the Near-Field Entrainment of Round Jets", Journal of Fluid Mechanics,245, pp.643-668.
    [32]New, T. H., Lim, K. M. K. and Tsai, H. M.,2005, "Vortical Structures in a Laminar V-notched Indeterminate-Origin Jet", Physics of Fluids,17(5), pp.054108-054108-14.
    [33]Saddington, A. J., Knowles, K. and Wong, R. Y. T.,2002, "Numerical Modelling of Mixing in Jets from Castellated Nozzles", Aeronaut. J.,106(1066), pp.643-652.
    [34]Longmire, E. K., Eaton, J. K. and Elkins, C. J.,1992, "Control of Jet Structure by Crown-Shaped Nozzles", AIAA J.,30(2), pp.505-512.
    [35]Elangovan, S., Solaiappan, A. and Rathakrishnan, E.,1996, "Studies on Twin Elliptic Jets", Aeronaut. J.,100(997), pp.295-296.
    [36]Kaushik, M., Thakur, P. S. and Rathakrishnan, E.,2001, "Studies of the Effect of Notches on Circular Jet Mixing. AIAA paper, AIAA-2001-3609.
    [37]Krothapalli, A., King, C. J. and Strykowski, P. J.,1993, "The Role of Streamwise Vorticese on Sound Generation of a Supersonic Jet", AIAA paper, AIAA-93-4320.
    [38]Singh, N. K. and Rathakrishnan, E.,2002, "Sonic Jet Control with Tabs", Int. J. TurboJeeEngines,19(1), pp.107-118.
    [39]Wlezien, R. W and Kibens, V.,1984, "Passive Control of Jets with Indeterminate Origins", AIAA paper, AIAA-84-2299.
    [40]Wlezien, R. W and Kibens, V.,1988, "Influence of Nozzle Asymmetry on Supersonic Jets", AIAA J.,26(1), pp.27-33.
    [41]Webster, D. R. and Longmire, E. K.,1996, "Vortex Dynamics in Jets from Inclined Nozzles", Phys. Fluids,9(3), pp.655-666.
    [42]Brown, W. H. and Ahuja, K. K.,1990, "Jet mixing Enhancement by Hydrodynamic Excitation", AIAA paper, AIAA-1990-4005.
    [43]Ahuja, K. K., Manes, J., and Massey, K. C.,1995, "Control of Jet Mixing and Supersonic Jet Noise by Resonance Effects in Wake Shedding from Parallel Plates", AIAA paper, AIAA-1995-018.
    [44]Fernando, E. M. and Menon, S.,1993, "Mixing Enhancement in Compressible Mixing Layers:an Experimental Study", AIAA J.,31(2), pp.278-285.
    [45]Nedungadi, A., Barber, T. J., Nishimura, M., and Kudo, T.,2001, "The Effects of Pulsed Blowing on Jet Mixing and Noise Generation", AIAA paper, AIAA-2001-0665.
    [46]Freund, J. B. and Moin, P.,2000, "Jet Mixing Enhancement by High-Amplitude Fluidic Actuation", AIAA J.,38(10), pp.1863-1870.
    [47]Mahadevan, R., Loth, E., and Chand, K.,1995, "Tone Excitation of a Supersonic Bounded Jet", In ASME FED, high speed jet flows (Eds S. Kaji, G. Raman, and C. J. Freitas),214, pp. 133-138.
    [48]Kim, J. H., Kim, J. H., and Yoo, J. Y.,2003, "Enhancement of Mixing in an Underexpanded Sonic Round Jet by an Elliptic Jet Screech Reflector", AIAA paper, AIAA-2003-1274.
    [49]Krothapalli, A., Karamcheti, K., Hsia, Y., and Baganoff, D.,1983, "Edge Tones in High-Speed Flows and Their Application to Multiple-Jet Mixing", AIAA J.,21(7), pp.937-938.
    [50]Raman, G. and Rice, E. J.,1995, "Supersonic Jet Mixing Enhancement Using Impingement Tones from Obstacles of Various Geometries", AIAA J.,33(3), pp.454-462.
    [51]Glass, D. R.,1968, "Effects of Acoustic Feedback on the Spread and Decay of Supersonic Jets", AIAA J.,6(10), pp.1890-1897.
    [52]Raman, G., Panda, J., and Zaman, K. B. M. Q.,1997, "Feedback and Receptivity during Jet Screech:Influence of an Upstream Reflector", AIAA paper, AIAA-1997-0144.
    [53]Viets, H.,1975, "Flip-Flop Jet Nozzle", AIAA J.,13(10), pp.1375-1379.
    [54]Hill, W. G. and Greene, P. R.,1977, "Increased Turbulent Jet Mixing Rates Obtained by Self-Acoustic Oscillations", Trans. ASME J. Fluids Eng.,99, pp.520-525.
    [55]Rockwell, D. O.,1972, "External excitation of planar jets", Trans. ASME J. Appl. Mech.,39, pp.883-890.
    [56]Strykowski, P. J. and Wilcoxon, R. K.,1992, "Self-Excitation and Mixing in Axisymmetric Jets with Counterflow", AIAA paper, AIAA-1992-0538.
    [57]King, C. J., Krothapalli, A., and Strykowski, P. J.,1995, "The Effect of Annular Counterflow on Supersonic Jet Noise", AIAA paper, AIAA-1995-169.
    [58]Kirkham, L.,1996, "Coaxial Jet Flows for Astovl Applications", MPhil Thesis, Cranfield University, RMCS Shrivenham.
    [59]Frost, T. H.,1966, "Practical Bypass Mixing Systems for Fan Jet Aero Engines", Aeronautical Quarterly,17, pp.141-160.
    [60]Kuchar, A. P. and Chamberlin, R.,1980, "Scale Model Performance Test Investigation of Exhaust System Mixers for an Energy Efficient Engine (E3) Propulsion System", AIAA paper, AIAA-1980-0229.
    [61]Elliott, J. K., Manning, T. A., Qiu, Y. J., Greitzer, E. M. and Tan, C. S.,1992, "Computational and Experimental Studies of Flow in Multi-lobed Forced Mixers", AIAA paper, AIAA-1992-3568.
    [62]McCormick, D. C. and Jr. Bennett, J. C.,1994, "Vortical and Turbulent Structure of a lobed Mixer Free Shear Layer", AIAA J.,32(9), pp.1852-1859.
    [63]Mengle, V. G. and Dalton, W. N.,2002, "Lobed Mixer Design for Noise Suppression: Acoustic and Aerodynamic Test Data Analysis", NASA report, NASA/CR-2002-210823/VOL1.
    [64]Belovich, V. M. and Samimy, M.,1997, "Mixing Processes in a Coaxial Geometry with a Central Lobed Mixer-Nozzle", AIAA J.,35(5), pp.838-841.
    [65]Shumpert, P. K.,1980, "An Experimental Model Investigation of Turbo fan Engine Internal Exhaust Gas Mixer Configurations", AIAA paper, AIAA-1980-0228.
    [66]Crouch, R. W., Coughlin, C. L. and Paynter, G. C.,1977, "Nozzle Exit Flow Profile Shaping for Jet Noise Reduction", J. Aircraft,14(9), pp.860-867.
    [67]Hu, H., Kobayashi, T., Saga, T., Segawa, S. and Taniguchi, N.,2000, "Particle Image Velocimetry and Planar Laser-Induced Fluorescence Measurements on Lobed Jet Mixing Flows", Experiments in Fluids,29, pp.141-157.
    [68]Hartmann, A.,1969, "Studies of Mixing in Ducted Fanjet Engines", NASA Report TTF-12562.
    [69]Packman, A. B. and Eiler, D. C.,1977, "Internal Mixer Investigation for JT8D Engine Jet Noise Reduction, Volumes Ⅰ and Ⅱ", Federal Aviation Administration Report RD-77-132.
    [70]Kozlowski, H. and Kraft, G.,1980, "Experimental Evaluation of Exhaust Mixers for an Energy Efficient Engine", AIAA paper, AIAA-1980-1088.
    [71]Anderson, B. H. and Povinelli, L. A.,1981, "Factors Which Influence The Behavior of Turbo fan Forced Mixer Nozzles", NASA Technical Report, NASA-TM-81668.
    [72]Rowe, R. K. and Kuchar, A. P.,1982, "Energy Efficient Engine-Scaled Mixer Performance Report (Final)", NASA Contractor Report, NASA-CR-167947.
    [73]Kozlowski, H. and Larkin, M.,1982, "Energy Efficient Engine-Exhaust Mixer Model Technology Report", NASA Contractor Report, NASA-CR-165459.
    [74]Birch, S. F., Paynter, G. C., Spalding, D. B. and Tatchell, D. G.,1978, "Numerical Modeling of Three-Dimensional Flows in Turbo fan Engine Exhaust Nozzles", Journal of Aircraft,15(8), pp.489-496.
    [75]Povinelli, L. A., Anderson, B. H. and Gerstenmaier, W.,1980, "Computation of Three-Dimensional Flow in Turbofan Mixers and Comparison with Experimental Data", AIAA paper, AIAA-1980-0227.
    [76]Paterson, R. W. and Werle, M. J.,1979, "Turbofan Forced Mixer Flow Field", United Technologies Research Center, Monthly Progress Report, UTRC/R79-912924-24.
    [77]Anderson, B., Povinelli, L. and Gerstenmaier, W.,1980, "Influence of Pressure Driven Secondary Flows on the Behavior of Turbofan Forced Mixers", NASA Technical Report, NASA-TM-81541.
    [78]Paterson, R. W.,1982, "Turbofan Forced Mixer-Nozzle Internal Flowfield I-A Benchmark Experimental Study", NASA Contractor Report, NASA-CR-3492.
    [79]Paterson, R. W.,1984, "Turbofan Mixer Nozzle Flow Field-A Benchmark Experimental Study", Journal of Engineering for Gas Turbines and Power,106, pp.692-698.
    [80]Kreskovsky, J. P., Briley, W. R. and McDonald H.,1984, "Investigation of Mixing in a Turbofan Exhaust Duct, Part Ⅰ:Analysis and Computational Procedure", AIAA Journal,22(3), pp. 374-382.
    [81]Povinelli, L. A. and Anderson, B. H.,1984, "Investigation of Mixing in a Turbofan Exhaust Duct, Part I:Computer Code Application and Verification", AIAA Journal,22(4), pp.518-525.
    [82]Yu, S. C. M. and Xu, X. G.,1997, "Flow Characteristics of a Confined Co-axial Nozzle with a Central Lobed Mixer at Different Velocity Ratios", AIAA paper, AIAA-1997-1811.
    [83]Yu, S. C. M. and Xu, X. G.,1998, "Confined Coaxial Nozzle Flow with Central Lobed Mixer at Different Velocity Ratios", AIAA J.,36(3), pp.349-358.
    [84]Barber, T. J. and Murman, E. M.,1986, "Three-Dimensional Inviscid Flow in Mixers, Part Ⅰ: Mixer Analysis Using a Cartesian Grid", J. Propulsion,2(3), pp.275-281.
    [85]Skebe, S. A., Paterson, R. W. and Barber, T. J.,1988, "Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Fields", AIAA paper, AIAA-1988-3785.
    [86]Eckerle, W. A., Sheibani, H. and Awad, J.,1992, " Experimental Measurement of the Vortex Development Downstream of a Lobed Forced Mixer", J. Eng. Gas Turb. Power,114, pp.63-71.
    [87]Manning, T. A.,1991, "Experimental Studies of Mixing Flows with Streamwise Vorticity" M. S. Thesis, Massachusetts Institute of Technology.
    [88]Qiu, Y. J.,1992, "A Study of Streamwise Vortex Enhanced Mixing in Lobed Mixer Devices", PhD Thesis, Massachusetts Institute of Technology.
    [89]Tsui, Y. Y. and Wu, P. W.,1996, "Investigation of the Mixing Flow Structure in Multilobe Mixers", AIAA J,34(7), pp.1386-1391.
    [90]Abolfadl, M. A. and Metwally, M. A.,2001, "Experimental Investigation of Lobed Mixer Performance", Journal of Propulsion and Power,17(5), pp.1109-1116.
    [91]Werle, M. J. and Paterson, R. W.,1987, "Flow Structure in a Periodic Axial Vortex Array", AIAA paper, AIAA-1987-0610.
    [92]Yu, S. C. M., Yeo, J. H., and Teh, J K. L.,1995, "Velocity measurements Downstream of a Lobed-Forced Mixer with Different Trailing-Edge Configurations", Journal of Propulsion and Power,11(1), pp.87-97.
    [93]Koutmos, P. and McGuirk, J. J.,1989, "Isothermal Velocity and Turbulence Measurements downstream of a Model Multilobed Turbo fan Mixer", Experiments in Fluids,8, pp.183-191.
    [94]Hu, H., Saga, T., kobayashi, T. and Taniguchi, N.,2001, "A Study on a Lobed Jet Mixing Flow by Using Stereoscopic Particle Image Velocimetry Technique', Physics of fluids,13(11), pp. 3425-3441.
    [95]Hu, H., Saga, T., and kobayashi, T.,2005, "Dual-Plane Stereoscopic PIV Measurements in a Lobed Jet Mixing Flow", AIAA paper, AIAA-2005-443.
    [96]Nastase I., and Meslem, A.,2010, "Vortex Dynamics and Mass Entrainment in Turbulent Lobed Jets with and without Lobe Deflection Angles", Exp. Fluids,48, pp.693-714.
    [97]Yuan, Y. Q.,2000, "Jet Fluid Mixing Control Through Manipulation of Inviscid Flow Structures", PhD thesis, Virginia Polytechnic Institute and State University.
    [98]Waitz, I. A., Qiu, Y. J., Manning, T. A., et al.,1997, "Enhanced Mixing with Streamwise Vorticity", Prog. Aerospace Sci.,33, pp.323-351.
    [99]Yu, S. C. M. and Yip, T. H.,1997, "Measurements of Velocities in the near Field of a Lobed Forced Mixer Trailing Edge", The Aeronautical Journal,10, pp.121-129.
    [100]Mao, R. H., Yu, S. C. M. and Chua, L. P.,2006, "Kelvin-Helmholtz and Streamwise Vortices in the near Wake of a Single-Lobe Forced mixer", Proc. IMechE, Vol.220, Part G:J. Aerospace Engineering, pp.279-298.
    [101]Hu, H., Wu, S. S., and Shen, G. X.,1996, "Experimental Investigation on the Jet Mixing Flows of Lobed Nozzles Using laser Induced Fluorescence", AIAA paper, AIAA-1996-1937.
    [102]Hu, H., Kobayashi, T., Saga, T., Segawa, S. and Taniguchi, N.,2000, "Particle Image Velocimetry and Planar Laser-Induced Fluorescence measurements on Lobed Jet Mixing Flows", Experiments in Fluids,29, pp.141-157.
    [103]Hu, H., Saga, T., Kobayashi, T. and Taniguchi, N.,2000, "Research on the Vortical and Turbuent Structures in the Lobed Jet Flow Using Laser Induced Fluorescence and Particle Image Velocimetry Techniques", Meas. Sci. Technol.,11, pp.698-711.
    [104]Ukeiley, L., Varghese, M., Glauser, M., and Valentine, D.,1992, "Multifractal Analysis of a Lobed Mixer Flowfield Utilizing the proper Orthogonal Decomposition", AIAA J.,30(5), pp. 1260-1267.
    [105]Ukeiley, L., Glauser, M. and Wick, D.,1993, "Downstream Evolution of Proper Orthogonal Decomposition Eigenfunctions in a Lobed Mixer", AIAA J.,31(8), pp.1392-1397.
    [106]O'Sullivan, M. N., Krasnodebski, J. K., Waitz, I. A., Greitzer, E. M. and Tan, C. S.,1996, "Computational Study of Viscous Effects on Lobed Mixer Flow Features and Performance", Jorunal of Propulsion and Power,12(3), pp.449-456.
    [107]Mickelsen, J., Yarrington, C., Bons, J., and Snyder, D.,2006, "The Effect of Core Flow Turbulence on Planar Lobed-Mixer Nozzle Effectiveness", AIAA paper, AIAA-2006-18.
    [108]Sheoran, Y., Hoover, R., Schuster, W. Anderson, M. and Weir, D. S.,1999, "Forced Mixer Nozzle Optimization", NASA report, NASA/CR-1999-209160.
    [109]Skebe, S. A., McCormick, C. D., and Presz, W. M., Jr.,1988, "Parameter Effects on Mixer-Ejector Pumping Performance", AIAA paper, AIAA-1988-0188.
    [110]Mao, R., Yu, S. C. M., Zhou, T. and Chua, L. P.,2009, "On the Vorticity Characteristics of Lobe-Forced Mixer at Different Configurations", Experiments in Fluids,46, pp.1049-1066.
    [111]Yu, S. C. M., Yip, T. H. and Liu, C. Y.,1996, "The Mixing Characteristics of Forced Mixers with Scalloped Lobes", AIAA paper, AIAA-1996-0117.
    [112]Yu, S. C. M.,2004, "Some Flow Characteristics of Lobed Forced Mixers at Higher Velocity Ratios", Experiments in Fluids,20, pp.234-237.
    [113]Yu, S. C. M., Hou, Y, and Chan, W. K.,2000, "Scarfing and Scalloping Effects on Lobed Forced Mixer at Low-Speed Conditions", Journal of Propulsion and Power,16(3), pp.440-448.
    [114]Saiyed, N. H., Bridges, J. E. and Krejsa, E. A.,1996, "Core and Fan Streams' Mixing Noise Outside the Nozzle for Subsonic Jet Engines with Internal Mixers", NASA report, NASA-TM-107237.
    [115]Mengle V. G., Dalton, W. N., Bridges, J. C., and Boyd, K. C.,1997, "Noise Reduction with Lobed Mixers:Nozzle-Length and Free-Jet Speed Effects", AIAA paper, AIAA-1997-1682.
    [116]Pinker, R. A. and Strange, P. J. R.,1998, "The Noise Benefits of Forced Mixing", AIAA paper, AIAA-1998-2256.
    [117]Tester, B. J., Fisher, M. J. and Dalton, W. N.,2004, "A Contribution to the Understanding and Prediction of Jet Noise Generation in Forced Mixers", AIAA paper, AIAA-2004-2897.
    [118]Mengle, V. G.,1999, "Anomalous Effect of Nozzle Length Reduction on Jet Noise of Forced Mixers", AIAA paper, AIAA-1999-27973.
    [119]Mengle, V. G.,2005, "Relative Clocking of Enhanced Mixing Devices for Jet Noise Benefit", AIAA paper, AIAA-2005-0996.
    [120]Lee, S. S. and Bridges, J.,2006, "Phased-Array Study of Dual-Flow Jet Noise:Effect of Nozzles and Mixers", AIAA paper, AIAA-2006-2647.
    [121]Underwood, D. S. and Waitz I. A.,1996, "Effect of Heat Release on Streamwise Vorticity Enhanced Mixing", Journal of Propulsion and Power,12(4), pp.638-645.
    [122]Srikrishnan, A. R., Kurian, J. and Sriramulu, V.,1996, "Experimental Study on Mixing Enhancement by Petal Nozzle in Supersonic Flow", Journal of Propulsion and Power,12(1), pp. 165-169.
    [123]Majamaki, A. J., Smith, O. I., and Karagozian, A. R.,2001, "Passive Mixing Control via Lobed Injectors in High Speed Flow", AIAA paper, AIAA-2001-3737.
    [124]Hu, H., Kobayashi, T., Saga, T., Taniguchi, N., Liu, H. X. and Wu, S. S.,1999, "Research on the Rectangular Lobed Exhaust Ejector/Mixer Systems", Trans. Japan Soc. Aero. Space Sci., 41(34), pp.187-194.
    [125]Presz, W. M., Jr. and Greitzer, E. M.,1988, "A Useful Similarity Principle for Jet Engine Exhaust System Performance", AIAA paper, AIAA-1988-3001.
    [126]Munk, M., and Prim, R.,1947, "On the Multiplicity of Steady Gas Flows Having The Same Streamline Pattern", Proc. N. A. S.,33, pp.137-141.
    [127]Greitzer, E. M., Paterson, R. W. and Tan, C. S.,1985, "An Approximate Substitution Principle for Viscous Heat Conducting Flows", Proc. R. Soc. Lond,A401, pp.163-193.
    [128]Presz, W. M., Jr., Morin, B. L. and Gousy, R. G.,1986, "Forced Mixer Lobes in Ejector Designs", Journal of Propulsion,4(4), pp.350-355.
    [129]Presz, W. M., Jr., Blinn, R. F. and Morin, B.,1987, "Short Efficient Ejector Systems", AIAA paper, AIAA-1987-1837.
    [130]Waitz, I. A. and Underwood, D. S.,1995, "Effect of Heat Release on Streamwise Vorticity Enhanced Mixing", AIAA paper, AIAA-1995-2471.
    [131]Pierce, C. D. and Moin, P.,1998, "Large Eddy Simulation of a Confined Coaxial Jet with Swirl and Heat Release", AIAA paper, AIAA-1998-2892.
    [132]Goebel, S. G. and Dutton, J. C.,1991, "Experimental Study of Compressible Turbulent Mixing Layers", AIAA J.,29(4), pp.538-546.
    [133]Tew, D. E., Waitz, I. A. and Hermanson, J. C.,1995, "Streamwise Vorticity Enhanced Co,pressible Mixing Downstream of Lobed Mixers", AIAA paper, AIAA-1995-2746.
    [134]Pantano, C. and Sarkar, S.,2002, "A Study of Compressibility Effects in the High-Speed Turbulent Shear Layer Using Direct Simulation", J. Fluid Mech.,451, pp.329-371.
    [135]Lilley, D. G.,1977, "Swirl Flows in Combustion:a Review", AIAA J.,15(8), pp. 1063-1078.
    [136]Singh, S. N., Agrawal, D. P., Malhotra, R. C. and Raghava, A. K.,1991, "Effect of Swirl on Mixing of Co-axial Jets", The Aeronautical Journal,95(943), pp.95-102.
    [137]Tanna, H. K.,1973, "On the Effect of Swirling Motion of Sources on Subsonic Jet Noise" Journal of Sound and Vibration,29(3), pp.281-293.
    [138]Lighthill, M. J.,1962, "On Sound Generated Aerodynamically, Ⅱ:Turbulence as a Source of Sound", Proceedings of the Royal Society, A267, pp.147-182.
    [139]Schwartz, I. R.,1973, "Jet Noise Suppression by Swirling the Jet Flow", AIAA paper, AIAA-1973-1003.
    [140]Schwartz, I. R.,1975, "Minimization of Jet and Core Noise of a Turbojet Engine by Swirling the Exhaust Flow", AIAA paper, AIAA-1975-503.
    [141]Carpenter, P. W. and Johannesen, N. H.,1975, "an Extension of One-Dimensional Theory to Inviscid Swirling Flow through Choked Nozzles", Aeronautical Quarterly,26, pp.71-87.
    [142]Lu, H. Y, Ramsay, J. W. and Miller, D. L.,1977, "Noise of Swirling Exhaust Jets", AIAA J.,15(5), pp.642-646.
    [143]Knowles, K. and Carpenter, P. W.,1989, "Subcritical Swirling Flows in Convergent, Annular Nozzles", AIAA J.,27(2), pp.184-191.
    [144]Wu, C., Farokhi, S. and Taghavi, R.,1992, "Spatial Instability of Swirling Jet-Theory and Experiment", AIAA J.,30(6), pp.1545-1552.
    [145]Farokhi, S., Taghavi, R., and Rice, E. J.,1989, "Effect of Initial Swirl Distribution on the Evolution of a Turbulent Jet", AIAA J.,27(6), pp.700-706.
    [146]Cutler, A. D., Levey, B. S. and Kraus, D. K.,1995, "Near-Field Flow of Supersonic Swirling Jets", AIAA J,33(5), pp.876-881.
    [147]Kraus, D. K. and Cutler A. D.,1996, "Mixing of Swirling Jets in a Supersonic Duct Flow", Journal of Propulsion and Power,12(1), pp.170-177.
    [148]Liscinsky, D. S., True, B. and Holdeman, J. D.,1996, "Effects of Inlet Flow Conditions on Crossflow Jet Mixing", NASA report, NASA-TM-107258.
    [149]Knowles, K. and Carpenter, P. W.,1990, "Use of Swirl for Flow Control in Propulsion Nozzles", Journal of Propulsion and Power,6(2), pp.158-164.
    [150]Roach, P. E.,1987, "The Generation of Nearly Isotropic Turbulence by means of Grids", International Journal of Heat and Fluid Flow,8(2), pp.82-92.
    [151]Ye, Z. -Q.,1984, "A Systematic Computational Design System for Turbine Cascades, Airfoil Geometry, and Blade-to-Blade Analysis", J. Eng. Gas Turbines Power,106(3), pp. 598-605.
    [152]Scanivalve Corp.,2005, "Instruction and service manual of DSA3000-3200 series modules", http://www.scanivalve.com/pdf/manual_dsa3000_3200.pdf, http://www.scanivalve.com/pdf/prod_dsa3217_18_0702.pdf
    [153]Yaras, M. I.,1990, " Measurements and prediction of tip-clearance effects in a linear turbuine cascade", PhD thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
    [154]National Instruments Corp.,2009, "DAQ S series user manual", http://www.ni.com/pdf/manuals/370781h.pdf.
    [155]Dantec Dynamics, "Measurement principles of CTA", http://www.dantecdynamics.com/Default.aspx?ID=1057.
    [156]Gallington, R. W.,1980, "Measurement of very large flow angles with non-nulling seven-hole probes", USAFA paper TR-80-17.
    [157]Gerner, A. A. And Maurer, C. L.,1981, "Calibration of seven-hole probes suitable for high angles in subsonic compressible flows", USAFA paper TR-81-4.
    [158]W. Merzkirch,1987, "Flow Visualization (2nd edition)", Academic Press.
    [159]Gregory-Smith, D.G., Graves, C.P., and Walsh, J.A.,1988, "Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade," ASME Journal of Turbo machinery,110, pp.1-8.
    [160]Yaras, M. I. and Sjolander, S. A.,1990, "Development of the Tip-Leakage Flow Downstream of a Planar Cascade of Turbine Blades:Vorticity Field," ASME Transactions, Journal of Turbo machinery, Vol.112, pp.609-617.
    [161]Moffat, R. J.,1988, "Describing the uncertainties in experimental results", Experimental Thermal and fluid Science,1, pp.3-17.
    [162]Dritschel, D. G. and Waugh, D. W.,1992, "Quantification of the Inelastic Interaction of Unequal Vortices in Two-Dimensional Vortex Dynamics", Phys. Fluids A,4(8), pp.1737-1744.
    [163]Lei, Z., Mahallati, A., Cunningham, M.H., and Germain, P.,2010, "Influence of Inlet Swirl on the Aerodynamics of a Model Turbofan Lobed Mixer", ASME paper, IMECE2010-39116.
    [164]Escudier, M. P. and Keller, J. J.,1985, "Recirculation in Swirling Flow:a Manifestation of Vortex Breakdown"AIAA J.,23(1), pp.111-116.
    [165]Sheen, H.J., Chen, W.J., and Jeng, S.Y.,1996, "Recirculation Zones of Unconfined and Confined Annular Swirling Jets", AIAA Journal,34, pp.572-579.
    [166]Power, G.D., McClure, M.D., and Vinh, D.,1994, "Advanced IR Suppressor Design Using a Combined CFD/Test Approach", paper AIAA-94-3215, Reno, NV, Jan.10-13.
    [167]Yu, S.C.M., Xu, X.G., and Yip, T.H.,1996, "The Effects of Initial Boundary Layer Thickness to the Lobed Forced Mixer Trailing Streamwise Vorticity", AIAA Journal of Propulsion and Power,12, pp.440-442.
    [168]Hui Hu, Tetsuo Saga, Toshio Kobayashi, and Nubuyuki Taniguchi,2002, "Simultaneous Measurements of All Three Components of Velocity and Vorticity Vectors in a Lobed Jet Flow by Means of Dual-Plane Stereoscopic Particle Image Velocimetry", Physics of Fluids,14(7), pp. 2128-2138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700