切削刀具设计制造中若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代制造业的发展,对金属切削加工的要求也变的越来越高。刀具是切削加工中的一个关键环节,它直接关系到切削性能的好坏。本文在大量实验的基础上,主要对当前的刀具在设计制造中遇到的一些问题进行了研究。本文的内容分成两个方面,一个是刀具设计中的问题,主要针对断屑槽的设计问题与刀具使用中出现的问题进行研究,总结刀具设计中一些特点,对以后的刀片设计给予指导;另一个是刀具制造工艺中的问题,以对麻花钻的刃磨为例对空间直纹面的加工问题进行了研究。
     论文阐述了断屑槽研究的意义,对国内外切屑控制和断屑槽的研究概况进行了总结。
     论文提出了切削过程中经常遇到的飞溅问题,从原理上对飞溅产生的原因进行了分析,并进行了实验研究,对比了不飞溅刀具与飞溅刀具设计上的异同,论证了飞溅与三维断屑槽几何特征之间的关系。论文还论述了刀具几何特征及被加工材料与切削力之间的关系,对刀具的断屑范围、切削力、刀具耐用度与断屑槽设计之间的联系进行了深入的分析。
     从理论上分析了减摩槽作用的机理,并使用实验的方法,指出了减摩槽应用于三维断屑槽时对于切屑形态的影响,进一步确定了对切削力的影响,并论证了减摩槽对于刀具耐用度的影响。
     介绍了对国外刀片的切削实验研究,提出了实验中切削速度与工件直径对于切削的影响;在大量试验的基础上,重点分析了工件材料、刀片的结构与几何特征在切削时的不同影响,指出了现今不锈钢用切削刀片的设计特点。
     以刃磨麻花钻后刀面为例研究了切削刀具加工中的直纹面加工问题,并将这种方法应用到实际的数控磨床改造中,收到了良好的效果。
With the rapid development of the modern manufacture, modern cutting technology is demanded higher increasingly. Tools play an important role in the cutting manufacture because of their great effect on the performance of cutting. The paper studies some problems in the cutting tools design and manufacture experimentally. There are two parts in the paper. One studies the chip-breaking groove design, which is an important part of the turning tools design, and some problems in the using of the cutting tools. The other studies grinding ruled surface, which is an important part of grinding the twist drill, and the method can be applied into grinding the ruled surface of another cutting tool.
     The paper presents the significance of chip-breaking groove studies, and summarizes the background of chip control and chip-breaking groove at home and abroad.
     The analytical and experimental research presented here deals with the chip flying. The relationship between the chip flying and the geometrical feature of the groove is studied. The relationship of the geometrical feature of the groove, the material, and the cutting force is studied, and the relationship of the chip-breakability, the cutting force and the tool life is studied, too.
     The theory of the friction-reducing groove is presented here, and its effect on the chip form, the cutting force and the tool life are studied analytically and experimentally. The paper, based on the experiments, points two problems in the cutting test, which are the effects of the cutting speed and the radii of the workpiece in the cutting process. The paper analyzes the materials and the geometrical feature of the insert, and summarizes the characteristics of the chip-breaking groove for the stainless steel.
     The paper studies the method of grinding the ruled surface of the twist drill in the 6-axis CNC grinding machine with the conical grinding method, and the method is applied in the manufacture.
引文
[1] Jawahir, I S; Luttervelt, C A. Recent Developments in Chip Control Research and Applications, Annals of the CIRP, Vol. 42(2) , pp. 659-693, 1993
    [2] 方宁. 硬质合金刀片新型槽型断屑槽型及其CAD技术的研究. [博士学位论文], 华中理工大学,1994
    [3] Luttervelt, C A; Childs,T H C; Jawahir I S et al. Present Situation and Future Trends in Modeling of Machining Operations, Annals of the CIRP, Vol. 47, pp. 587-626, 1998
    [4] Fang, N; Jawahir, I S. Analytical predication of the chip back-flow angle in machining with restricted contact grooved tools, Journal of Manufacturing Science and Engineering (Transactions of the ASME), Vol. 125, pp. 210-219,May 2003
    [5] Maity, K P;Das, N S. A class of slipline field solutions for metal machining with slipping and sticking contact at the chip-tool interface, International Journal of Mechanical Sciences, Vol. 43, Iss. 10, pp. 2435-2452, Oct. 2001
    [6] Maity, K.P; Das N.S. A slip-line solution to metal machining using a cutting tool with a step-type chip-breaker, Journal of Materials Processing Technology, 79, pp. 217-223, 1998
    [7] Maity, K.P; Das. N.S. A class of slip-line field solutions for metal machining with elastic contact, Journal of Materials Processing Technology, 96, pp. 9-18, 1999
    [8] Fang, N; Jawahir, I S. Analytical predication and experimental validation of cutting force ratio, chip thickness, and chip back-flow angle in restricted contact machining using the universal slip-line model, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 681-694, 2002
    [9] Fang, N.; Jawahir, I.S. A new methodology for determining the stress state of the plastic region in machining with restricted contact tools. International Journal of Mechanical Science, Vol. 43, pp. 1747–1770, 2001
    [10] Fang, N., Jawahir, I.S. An analytical predictive model and experimental validation for machining with grooved tools incorporating the effects of strains, strain-rates, andtemperatures, Annals of the CIRP, Vol. 51(1), pp. 83–86, 2002
    [11] Fang, N. Machining with tool-chip contact on the tool secondary rake face—Part I: a new slip-line model. International Journal of Mechanical Science ,Vol. 44, pp. 2337-2354, November 2002
    [12] Fang, N. Machining with tool-chip contact on the tool secondary rake face—Part II: analysis and discussion. International Journal of Mechanical Science, Vol. 44, pp. 2355-2368, November 2002
    [13] Fang N. Slip-line modeling of machining with a rounded-edge tool-Part I: new model and theory, Journal of the Mechanics and Physics of Solids, 51, pp. 715-742, 2003
    [14] Rahman, M.; Seah, K. H. W.; Li, X. P.; Zhang, X. D. A Three-Dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters, International Journal of Machine Tools & Manufacture. Vol. 35, No. 7, pp. 1015-1031, July 1995
    [15] Seah, K. H. W.; Rahman, M.; Li, X. P.; Zhang, X. D. A three-dimensional model of chip flow, chip curl and chp breaking for oblique cutting, International Journal of Machine Tools & Manufacture (UK), Vol. 36, No. 12, pp. 1385-1400, Dec. 1996
    [16] Guo, Y. B.; Liu, C. R. 3D FEA Modeling of Hard Turning, Journal of Manufacturing Science and Engineering (Transactions of the ASME), Vol. 124, No. 2, pp. 189-199. May 2002
    [17] Leopold, J. The Application of Visioplasticaity in Predicative modeling the Chip Flow,Tool Loading and Surface Integrity in Turning Operations, 3rd CIRP INTERNATIONAL WORKSHOP ON ”MODELLING OF MACHINING OPERATIONS“; University of New South Wales; AUSTRALIA, August 20th, 2000
    [18] Nakayama, K, Ogawa, M. Basic rules on the form of chip in metal cutting, Annals of the CIRP, Vol. 27(1), pp. 87-92, 1978
    [19] Nakayama, K; Arai, M. Comprehensive chip form classification based on the chip cutting mechanism, Annals of the CIRP, Vol. 41(1), pp. 71-74, 1992
    [20] 陈永洁,黄威武. 切屑三维卷区的运动学分析,中国机械工程,2000,11(5),pp. 513-515,
    [21] 陈永洁,方宁,师汉民. 切屑的三维卷曲流动,华中理工大学学报,1993,21(4)
    [22] Fang, N. Kinematic Characterization of Chip Lateral-Curl—The Third Pattern of Chip Curl in Machining, Journal of Manufacturing Science and Engineering (Transactions of the ASME), Vol. 124, no. 3, pp. 667-675,Aug. 2002
    [23] 师汉民. 切屑的流动、卷曲与折断,华中工学院学报,1965,5:66-76
    [24] 师汉民. 切屑的流动、卷曲与折断,[硕士学位论文],武汉:华中工学院,1965
    [25] 师汉民,王阳生. 切屑的动态不稳定性与动力学断屑机理,华中工学院学报, 1985,13(5),pp. 71-78
    [26] 中山一雄著,李云芳译. 金属切削加工理论. 北京:机械工业出版社,1985
    [27] Fang, X D; Jawahir, I S. An analytical model for cyclic chip formation in 2-D machining with chip breaking, Annals of the CIRP, Vol. 45(1), pp. 53-58, 1998
    [28] M. Ibrahim Sadik; Bo Lindstr?m. A simple concept to achieve a rational chip form, Journal of Materials Processing Technology, 54, pp. 12-16, 1994
    [29] Balaji, A K; Sreeram, G; Jawahir I S et al. The effect of cutting tool thermal conductivity on tool-chip contact length and cyclic chip formation in machining with grooved tools, Annals of the CIRP, Vol. 48(1), pp. 33-38, 1999
    [30] Jawahir, I.S.; Ghosh, R; Fang, X.D.; et al. An investigation of the effects of chip flow on tool-wear in machining with complex grooved tools, Wear (Switzerland), Vol. 184, No. 2, pp. 145-154, May 1995
    [31] Kim, J.D.; Kweun, O.B. A Chip-Breaking System for mild steel in turning, International Journal of Machine Tools & Manufacture (UK). Vol. 37, no. 5, pp. 607-617. May 1997
    [32] Ee, K.C.; Dillon, O.W.; Jawahir, I.S. An Analysis of the Effects of Chip-groove Geometry on Machining Performance Using Finite Element Methods, Materials Processing and Design: Modeling, Simulation and Applications; Part One, pp. 129-134, 2004
    [33] Shinozuka J.; Obikawa T.; Shirakashi T. Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design, Journal of Materials Processing Technology, Volume 62, Number 4, December 1996, pp. 345-351(7)
    [34] 陈永洁,代真虎,陈仕魁等. 关于槽型产品系列结构问题的探讨, 硬质合金,2002,19(2),pp. 100-103
    [35] SANDVIK产品样本
    [36] 东芝公司产品样本
    [37] 住友电工产品样本
    [38] 方宁,罗正川,师汉民等. 可转位硬质合金刀片断屑槽型的研究与设计, 硬质合金,1993,10(1)
    [39] GE. 凯恩著,赵广兴,陆贲译. 切削刀具新的发展方向. 北京:机械工业出版社,1987
    [40] 陈日曜. 金属切削原理. 北京:机械工业出版社,1993
    [41] 何裕辉,陈永洁,陈仕魁. 硬质合金可转位刀片刀尖圆弧半径对切削过程的影响,硬质合金,2003,20(1)
    [42] 吴克忠. 可转位刀片三维断屑槽的研究及设计. [硕士毕业论文],华中科技大学,2005
    [43] 傅华,陈永洁,李斌. 带减摩槽刀片切削机理的研究,工具技术,1998,32(2)
    [44] 吴克忠,陈永洁,朱丹丹等. 减摩槽在三维槽型刀片中的应用,工具技术, 2005,39(5)
    [45] Mesquita, R M D; Soares, F A M; Barata Marques, M J M. An Experimental study of the effect of cutting speed on chip breaking, Journal of Materials Processing Technology (Netherlands), Vol. 56, No. 1-4, pp. 313-320, Jan. 1996
    [46] 代真虎. 刀具计算机辅助设计和制造的若干问题研究,[硕士学位论文],华中科技大学,2002
    [47] 陈永洁 陈仕魁 代真虎.三坐标数控磨床加工直纹面的刀位计算.机械与电子,2002(1),pp. 53-55,
    [48] 曹正铨等著. 钻尖的数学模型与钻削实验研究. 北京:北京理工大学出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700