刀具槽型结构及表面涂层对切削过程影响的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代技术的飞速进步,机械制造工业不断地向柔性化、集成化、自动化和智能化方向发展。先进的制造技术、高效率的数控机床的使用,要求切削加工所用的刀具具有高效率、高精度、高可靠性和专用化,而良好的断屑是达到这一要求的重要手段和关键技术。利用断屑槽进行断屑是目前最为经济也是应用最为广泛的一种断屑方法。
     本文阐述了断屑槽研究的意义,综述了国内外切屑控制和断屑槽的研究概况。通过采用有限元模拟的方法,详细的分析了断屑槽对切削过程的影响,槽型几何参数(凸台高度、槽宽深比)以及涂层这些因素对切削力、应力、应变及温度的影响规律。然后按照实际切削加工来设置边界条件,把优化后的槽型参数刀具进行切削模拟后的结果与试验值进行比较,试验结果与预期目的基本一致。结果表明:凸台高度的增加(在允许范围内)有助于切屑的折断;圆弧曲线型槽型比直线型槽型的主切削力要低;断屑槽槽宽比Wn/H=9.0左右时,切屑的应力应变最大,切屑最容易折断;涂层刀具与没有涂层的刀具相比,能降低切削力,但涂层刀具表面与切屑接触处温度相对要高。
     这些结论有助于我们更加深入了解切削机理,槽型各参数在切削过程中的作用,为复杂槽型的设计、优化和选用提供理论指导,并对设计和制造过程中可能出现的问题进行分析与预测,提出改进措施,实现刀具槽型结构参数从开发到制造整个过程的优化。这有助于解决传统的用“试错法”研究断屑槽型所带来的研究开发周期长、耗材量大、工作效率低、加工成本高的问题,达到提高经济效益的目的。
     文章最后进行了总结,并对切屑折断数学模型的研究和切削过程有限元方法的研究前景进行了展望。
With the development of modern technology, the machinery manufacturing is continuously developing towards the flexibility, integration, robotization and intelligentization. Application of the advanced manufacturing technology and the numerical control machining of higher efficiency, it requires tools applied to machining with higher efficiency, higher precision, higher reliability and specialization. Good breaking chip is a kind of important method and key technology to reach the request. At present, using broken grooves to break chips is the most economical and prevalent method.
     In this paper, it presents the significance of chip-breaking groove studies, summarizes the background of chip controlling and chip-breaking groove at home and abroad. Simulating by the finite element method, this paper detailedly analyzed the influence of broken grooves on cutting process and researched the disciplinarian of the influence of geometrical parameters of chip-breaking groove (height of boss, the ratio of the groove width to depth) and coating on cutting forces, stress, strain and temperature. Then simulation was set up boundary condition mainly according to the case of actual cutting machining. And the consequence was consistent with the expected aim comparing cutting simulation by using optimized groove parameters with experimentation values. Investigations show that the increasing height of boss in permission range can help the chips to be broken. The host cutting force is lower comparing the groove of arc curve with the groove of line. When the ratio of the groove width to depth is about 9. 0, the stress and strain of chips are the most value and the chips are easily broken. The coating tool may decrease cutting forces comparing without coating, but the temperature of the place contacting with the chips is higher in the surface of coating tool.
     These conclusions help to go deep into know cutting mechanism, understand the action of every groove parameter during cutting process, and afford theory direction for the design, optimization and selection of the complex groove. At the same time, the problems coming forth during designing and manufacturing are analyzed and forecasted, and it also could bring forward mending measure. The structure parameters of groove are realized optimization from research to manufacturing. This helps to resolve the problems such as long exploitation periods, excessive material wastage, inefficient work and high machining cost that are brought forth using Trial-and-error Method to study chip-break of groove, and reach to improve economy profit.
     In the end, this paper concludes the research, and expects about the researching of groove mathematic model and the FEM of the cutting process.
引文
[1] 敖晓春.难加工材料3Cr-1Mo-1/4V钢的切削及刀具破损机理的研究[D].哈尔滨理工大学,2005(3)
    [2] 吴玉华.金属切削加工技术[M].机械工业出版社,1998:3~6
    [3] 袁哲俊、王先逵.精密和超精密加工技术[M].北京机械工业出版社,1999:9~11
    [4] 陈耀楠.三维复杂槽型铣刀片槽型优选技术的研究[D].哈尔滨理工大学,2004
    [5] Jawabiris, Lutterveltca. Recent developments in chip control research and applications[J]. Annals of the CIRP, 1993, (2): 659~693
    [6] 刘开源.断屑槽的断屑研究[J].鞍山师范学院学报,1994(3):58~61
    [7] 李振加等.切屑折断过程研究[M].机械工业出版社,1996:120~134
    [8] 宁芊,殷国富等.虚拟制造中虚拟环境建模技术与方法[J].计算机应用,2002,(4):37~39
    [9] 孙宇.我国虚拟制造技术发展策略浅析[J].CAD/CAM与制造业信息化,2005,(1):81~82
    [10] 方宁等.可转位硬质合金刀片断屑槽形的研究与设计[J].硬质合金,1993,(1):21~25
    [11] 裴永臣.微小孔钻头的动态应力研究[D].吉林大学,2005
    [13] 龙新延.硬质合金刀具槽型结构对切屑的影响[J].工具技术,2007,(1):83~88
    [12] 左敦稳等.现代加工技术[M].北京航空航天大学出版社.2005,3
    [14] 中山一雄.金属切屑加工理论[M].李云芳译.机械工业出版社,1985
    [15] Nakayama K. Basic on the Form of Chip in Metal Cutting[J]. Annals of the CIRP, 1978, 27(1): 78~82
    [16] B. Worthington, M.H. Rahman. Predicting breaking with groove type breakers[J]. Int. J. MTDR, 1979, (19): 121~132
    [17] 方宁.硬质合金刀片新型断屑槽形及其CAD技术的研究[D].华中理工大学,1994
    [18] P. Albrect, New development in the theory of the metal-cutting process, Part2:thetheory of chip formation[J]. Trans. ASME, Series B, 1961,83: 557-571
    [19] P.D. giu, R.S. Hu, H.T. Zhang and X.S. Wu, Why chip curls a new cutting modelwith bending moment[J].A paper for Int. conf. of Mach. Tools Manufact. 1993
    [20] Ning Fang;Influence of the geometrical parameters of the chip groove on chip breaking perfomance using new-style chp formers[J]. Journal of Materials Processing Technology,1998, (74)268~275
    [21] 李良福.两种新型断屑装置[J].刀具,2003,(3):36
    [22] Klamecki B E. Incipient chip formation in metal cutting-a three dimension finite analysis.[Ph.D, dissertation], Urbana:University of Illions at Urbana-Champaign,1973: 1~10
    [23] Usui E, Shirakashi T. Mechanics of mashining-form descriptive to predictive theory, On the art of cutting metals-75 years later a tribute to F W Taylor, ASME PED-7 1982: 13~30
    [24] Strebjiwsjum H S, Carroll J T. A finite element model of orthogonal metal cutting [A]. Proceeding of the North American Manufacturing Research Conference[C],Bethlehem, Pennsylvan5a, 1987: 506~509
    [25] Strenkowski J S, Moon K J. Finite element predicition of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting. Tran ASME J Eng Ind, 1990, (127): 313~318
    [26] M. Rahman, K.H.W. Seah, X.P. Li and X.D. Zhang A three-dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters Int. J. Mach. Tools Manufact. Vol. 35 No. 7 0890-6955(94)00042-5
    [27] Uedak, Manabek, Nozakis. rigidplastic FEM of three dimensional cutting mechanism(2nd report)-simulation of plain milling process[J].Japan Soc. Prec.Eng, 1996, (4): 526~531
    [28] Jeff A. Degenhardt,Richard E. DeVor,Shiv G. Kapoor;6eneralized groove-type chip breaker effects on drilling for different drill diameters and flute shapes[J].International Journal of Machine &Manufacture, 2005(45),1588~1597
    [29] Y.B. Guo, David W. Yen A FEM study on mechanisms of discontinuous chip formation in hard machining[J].Journal of Materials Processing Technology, 2004: 1350~1356
    [30] 邓文君等.有限元法在切削加工过程分析中的应用[J].工具技术,2004,(11):20~26
    [31] 方刚、曾攀.切削加工过程数值模拟的研究进展[J].力学进展,2001(3):394~403
    [32] 方刚.金属正交工艺切削的有限元模拟[J].机械科学与技术,2003,(04):1003~8728
    [33] 黄丹.金属正交切削加工过程的有限元分析[J].机械强度.2003,(3):294~297
    [34] 郑敏利等.三维槽型刀片典型儿何单元断屑效应的理论分析[J].哈尔滨理工大学学报,2004,(06):1007~2683
    [35] 李军辉等.硬质合金可转位刀片槽型有限元分析及研究[J].硬质合金,2003,20(1):20~24
    [36] 刘献礼等.六种刀片槽型断屑性能试验分析[J].机械制造,1995,(4):7~9
    [37] 陈永洁,黄威武.切屑三维卷曲的运动学分析[J].中国机械工程.2000,(5):513~515
    [38] 胡荣生,王频.流屑角预报理论[M].中国高校金属切削研究会第四界学术年会科研论文集,北京,机械工业出版社,1991:55~60
    [39] 刘新胜.精车不锈钢可转位刀片三维断屑槽槽型研究[D].昆明理工大学,2006
    [40] 郑敏利等.三维槽型刀片典型几何单元断屑效应的理论分析[J].哈尔滨理工大学学报,2004:1007~1010
    [41] K.C. Ee, O.W. Dillon Jr.,I.S. Jawahir, Finite element modeling of residual stesses in maching induced by cutting using a tool with finite edge radius[J]. International Journal of Mechanical Science, 2005, (47):1611~1628
    [42] Taylan Altan, Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J].International Journal of Machine Tools & Manufacture 2000, (40): 713~738
    [43] I.S. Jawahir, J.P, Zhang, An analysis of chip curl development,chip DEFORMation and chip breaking in orthogonal maching[J].Transaction of NAMRI/SME, 1995, (23): 109~114
    [44] J.Q.xie等著,吴希让译,有限元分析建模和模拟金属切削时剪切区切屑的形成[M]国外金属加工,1999,(2):41~52
    [45] Juipen Tang, W.T. Wu, Hohn Waiters. Recent Development and Applications of Finite Element Method in Metal Forming[J]. Materials Processing Techonology, 1994, (46): 117~126
    [46] 罗凡.导气箍模锻计算机辅助分析及优化设计[D].四川大学,2006
    [47] 闭磊.虚拟制造技术在凸轮轴模具加工中的应用[D].四川大学,2005
    [48] 许香谷等.金属切削原理与刀具[M].重庆大学出版社,1992,(1):112~113
    [49] Leading Edge Group. Industry News: Machine Tool Markets Analyzed. Cutting Tool Engineering, 1996, 48(5): 2~4
    [50] 李振加.切屑折断机理及其应用[M].大连理工大学出版社.1990
    [51] 李振加.切屑折断过程研究[M].机械工业出版社,1996:120~134
    [52] 张中民等.刀片槽型对断屑性能的实验[J].哈尔滨工业大学学报,2001
    [53] 吴克忠.可转位刀片三维断屑槽的研究及设计[D].华中科技大学,2005:28
    [54] 汤爱民等.粗加工槽型的设计分析和探讨[J].硬质合金.2004,(21):99~104
    [55] 陈日曜.金属的切削原理[M].机械工业出版社,1993
    [56] 曹鼎.添加超细Ti(C,N)制备具有脱β相剃度结构硬质合金的研究[D].四川大学,2006
    [57] 庞思勤.涂层硬质合金刀具的切削机理与性能特点[J].北京理工大学报,1994:10
    [58] 李企芳.难加工材料的加工技术[M].北京科学技术出版社,1992:38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700