基于拟实体数控车削加工仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,金属切削加工作为制造形状、尺寸精度和表面质量高的零件的最经济加工方法,在各国经济中都占有十分重要的地位。由于工件材料和工艺参数的多样性以及切削加工的复杂性,在很长时间内对切削加工的研究都局限在经验实验的范围内。这严重影响了切削加工的效率,并导致加工成本高、加工过程中错误甚至事故的频繁发生。切削加工仿真是计算机仿真技术在机械制造业的重要应用领域之一。该技术对减少制造成本、缩短产品制造周期和提高产品质量意义重大。
     本文针对现存切削加工仿真方法及模型的优点与不足,提出了切削加工拟实体仿真概念体系和模型体系,并基于拟实体对数控车削加工仿真关键技术进行了深入研究。
     1.对现存的切削加工仿真方法进行归纳,将其分为几何仿真、物理仿真和加工过程仿真三个方面,对每个方面的主要算法实现原理进行了介绍,总结了其优缺点,提出了切削加工仿真的发展趋势。
     2.基于金属切削加工的本质特性,提出了切削加工拟实体仿真概念体系。其中,拟实体是指模拟切削加工现实环境中物体的本质特性由计算机生成的“实在物体”。根据对切削加工结果的影响程度,将拟实体分为细化拟实体和整体拟实体两类。细化拟实体是由代表其根本性质的微粒组成,并称这种微粒为微实体。提出了微实体在细化拟实体中的构成原则及组织方式,将细化拟实体分为核心区和边缘区两个区域,并根据微实体在细化拟实体中不同位置,将其分为力学微实体和几何微实体两类。基于现实加工环境中物体的特点,将整体拟实体分为整体装配拟实体和整体零件拟实体两类。对基于拟实体的切削加工仿真过程及其实现原理进行了描述,并以数控车削加工为例,建立了切削加工拟实体仿真系统结构。
     3.基于切削加工拟实体仿真概念体系,对实现数控车削加工仿真的关键技术进行了深入探讨,建立了切削加工拟实体仿真模型体系。
     依据特征建模技术原理,对整体零件拟实体的几何特征和外观特征进行了详细描述,建立了整体零件拟实体模型;基于实际机床中部件的装配特征,整体零件拟实体按照一定位置关系进行组装即可形成整体装配拟实体。
     依据工件的材料特性及仿真要求,对工件拟实体核心区中力学微实体的组织方式进行了规划。设力学微实体为具有一定质量且可表现被加工工件材料基本属性的不可分割的刚体。基于Morse势能模型,建立了力学微实体之间的相互作用关系模型和力学微实体运动模型,实现了工件拟实体核心区车削加工过程仿真。
     将分形理论引入到工件拟实体边缘区建模中,建立了单元长度以2的幂次递增的工件拟实体边缘区分形组织结构模型。根据车削加工工件及其中间形体的回转体特征,将扇环体作为车削加工的基本分形体。基于上述分形组织结构及基本分形体,建立了车削加工工件拟实体边缘区模型,并实现了边缘区的加工过程仿真。
     基于正常卷曲切屑的螺旋形结构,将切屑拟实体中的几何微实体的基本形状也设为扇环体,通过对影响切屑生长及卷曲的各种因素进行深入的理论及试验研究,求解了控制其几何微实体形状的几何参数,得到了与实际切屑形状较为接近的不同切削参数下切屑的自
For a long time, as the most economic method to manufacturing products with high quality and surface integrity, machining plays an important role in the national economy. Due to the variety of work-piece material and the versatility of the process parameters, the study on the machining process is limited to empirical extent for a long time. It not only leads to low machining efficiency, but also results in high manufacturing cost and frequent errors even accidents in machining process. Machining simulation is one of the important applications of computer simulation in modern mechanical manufacturing industry. It is of great significance in producing quality parts more quickly and economically.Based on the characteristics of machining simulation, the imitated-solid conception system and modeling system for machining simulation is presented in this paper, and its key realizating technologies for NC turning simulation based on imitated-solid is studied in detail.1. Though extensive investigation, the existed methods of machining simulation can be divided into three acspects: geometric simulation, physical simulation, and process simulation. The principle of the dominating algorithms in these three acspects is introduced. The advantages and disadvantages for those algorithms are summarized, and the developing trends for machining simulation are also discussed.2. Based on the essence of metal cutting, the imitated-solid conception system for machining simulation is presented. Here, Imitated-Solid is the "actual object" formed by computer which can represent the intrinsical characteristics of the object in real machining environment. According to its influence to the machining result, the imitated-solid in the virtual machining environment can be devided into two kinds: divisible imitated-solid and indivisible imitated-solid. The divisible imitated-solid is supposed to be constructed by the particles which can represent its basic characteristics, and here named it as "Micro-solid". The constructing guideline and mode of micro-solids in divisible imitated-solid is presented. In term of the guideline, the divisible imitated-solid can be portioned into two zones: kernel and boundary, and the micro-solids in these zones are classified into geometric micro-solids and dynamic micro-solids respectively. Based on the character of object in real machining environment, the indivisible imitated-solid can be classified into two formats: indivisible part imitated-solid and indivisible assembly imitated-solid. The principle and process of machining simulation based on imitated-solid theory is presented. Take NC turning as an example, the structure of imitated-solid machining simulation system is presented.3. According to the imitated-solid conception system for machining simulation, the key technologies for its realization in NC turning is discussed thoroughly, the modeling system for machining simulation is established.Based on the feature modeling technology, the geometric and apparent features of undivisible part imitated-solid are described in detail, the model of undivisible part imitated-solid is
    developed. Based on the features of components in the real machine tools, the undivisible assembly imitated-solids can be formed by assembling undivisible part imitated-solids with certain positional relationship.According to the influence of cutting tool to the micrometric structure of workpiece in the machining process, the constructing structure of dynamic micro-solids in the workpiece imitated-solid kernel zone are determined. The dynamic micro-solid is supposed to be indiscerptible rigid body with certain mass which can reflect the essential characters of the workpiece material. Based on Morse potential energy function, the interacting relationship of dynamic micro-solids is developed. In terms of the second classical Newtonian equation of motion, the kinetic model of dynamic micro-solids is presented. Based on the aforementioned models, the turning simulation of workpiece imitated-solid kernel zone is realized.Introducing the fractal theory into the modeling of workpiece imitated-solid boundary zone, the fractal constructing structure model of boundary zone that unit length is increased in 2's exponents is developed. In terms of the revolving feature of the turning workpiece and its in-between shapes, the quasi-sector shape is determined to be the basic fractal shape for turning. Based on the constructing structure model and basic fractal shape, the model of workpiece imitated-solid boundary zone for turning is obtained, and the process simulation of boundary zone is realized.According to the twist shape of the natural curled chip, the basic shape for geometric micro-solid in chip imitated-solid is supposed to be quasi-sector shape. Though investigating the all kinds of factors affecting chips' forming and curling, the geometric parameters controlling the chip shape are caculated, and the natural curled chip model for different cutting parameter group which is resemble to the real circumstance is obtained. Based on the positional relationship of workpiece and cutting tool in the time of chip forming, the chip breaking model is presented, the function for chip classes judging is developed, the dynamic simulation for chip's forming, curling and breaking is realized.Aimed to the limitation of present NC code compiler, e.g. specialization and difficult tomaintain, a method of developing NC code compile module by using special compiling tools------Lex&Yacc is presented. By presenting the method of system customization, the compile module can adapt various codes from different NC system.Intergrated the aforementioned models together, the imitated-solid simulation system for NC turning is established. The 3D turning simulation which can describe the microscopical geometric and physical change of the material and its macroscopical interaction results is realized.
引文
[1] 顾曦,金光振.虚拟现实技术在CAD系统中的应用.武汉冶金科技大学学报(自然科学版),1999,22(2):161~163.
    [2] 周祖德.快速制造与虚拟制造.中国机械工程,1999,10(8):935~938.
    [3] Owen. J. V. Making Virtual Manufacturing Real. Manufacturing Engineering, 1994, 113(5): 33~37.
    [4] Technical Report of Virtual Manufacturing User Workshop. Dayton. Ohio, 1994. 6: 12~13.
    [5] 谢金阳,赵宏林.FMS仿真及其应用.虚拟制造技术研讨与演示会论文集.北京,1998:57~62.
    [6] 邵立,钟廷修.虚拟制造及其应用.上海交通大学学报,33(7):906~911.
    [7] 屠仁寿,李伯虎,王正中.当前仿真方法学发展中的若干问题.系统仿真学报,10(1),1998:8~13.
    [8] 黄雪梅,高国利,王启义.拟实制造的机械加工过程仿真.机械设计与制造,11(6),1999:18~19.
    [9] [美]M.E.摩藤森.几何造型学.莫金玉等.北京:机械工业出版社,1992.
    [10] 孙家广,杨长贵.计算机图形学(新版).北京:清华大学出版社,1997.
    [11] 胡宾,李鹤九,段玉澄等.NC程序检验仿真系统中虚形体的几何建模.华中理工大学学报,23(2),1995:91~95.
    [12] 王军安.刀具扫描体技术在NC加工图形验证中的应用.机械科学与技术,19(6),2000:959~961.
    [13] Abdel-Malek Karim, Yeh Harn-Jou. Geometric Representation of the Swept Volume Using Jacobian Rank-Deficiency Conditions. Compute Aided Design, 29(6), 1997: 457~468.
    [14] W. P. Wang, K. K. Wang. Geometric Modeling for Swept Volume of Moving Solids. IEEE CG&A, 6(12), 1986: 8~17.
    [15] D Blackmore, M. C. Leu, K. K. Wang. Application of flows and envelopes to NC Machining. Annals of CIRP, 41(1), 1992: 493~496.
    [16] H.P.L. Yang. Real-time 3D simulation of 3-axis milling using isometric projection. Computer-Aided Design, 1993, 25(4): 235~243.
    [17] Ming C. Leu, Liping Wang. Denis Blackmore. A Verification Program for 5-Axis NC Machining with General APT Tools. Annals of the CIRP, 46(1), 1997: 419~424.
    [18] D Blackmore, M. C. Leu and L P. Wang. The sweep-envelop differential equation algorithm and its application to NC machining verification. Computer-Aided Design, 29(9): 629~637.
    [19] R. B. Jerard, S. Z. Husssaini, R. L. Drysdale and B. Schaudt. Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer, 5(4), 1989: 329~348.
    [20] TIM Van Hook. Real-Time Shaded NC Milling Display. ACM, 20(4), 1986: 15~18.
    [21] 王洪成.数控加工三维图形动态仿真系统的研究与开发.东北大学硕士学位论文.1999.
    [22] Yunching Huang and James H. Oliver. NC Milling Error Assessment and Tool Path Correction. Computer Graphics Proceedings, Annual Conference Series, 1994.
    [23] NSF/ARPA Machine Tool Agile Manufacturing Research, http://mtamri.me.uiuc.edu/technical.programs/processmodeljuly95.html.
    [24] 周泽华.金属切削原理(第二版).上海:上海科学技术出版社,1993.
    [25] Balkrishna C. Rao, Yung C. Shin. A comprehensive dynamic cutting force model for chatter prediction in turning. Int. J of Machine Tools & Manufacture, 39(10), 1999: 1631~1654.
    [26] Won-Soo Yun, Dong-Woo Cho. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling. Int. J of Machine Tools & Manufacture, 41(4), 2001: 463~478.
    [27] G. M. Kim, P. J. Cho, C. N. Chu. Cutting force prediction of sculptured surface ball-end milling using Z-map. Int. J of Machine Tools & Manufacture, 40(2), 2000: 227~291.
    [28] His-Yung Feng, Ning Su. A Mechanistic Cutting Force Model for 3D Ball-end Milling. Transactions of the ASME: Journal of Manufacturing Science and Engineering, 123(1), 2001: 23~29.
    [29] Reddy. Rohit Gajjela. A mechanistic force model and stability analysis for contour turning. [PhD Dissertation of University of Illinois at Urbana-Champaign], 2001.
    [30] P. V. S. Suresh, P. Venkateswara Rao, S. G. Deshmukh, A genetic algorithmic approach for optimization of surface roughness prediction model. Int. J of Machine Tools & Manufacture, 42(6), 2002: 675~680.
    [31] M. H. El-Axir. A method of modeling residual stress distribution in turning for different materials. Int. J of Machine Tools & Manufacture, 42 (9), 2002: 1055~1063.
    [32] K. D. Bouzakis, R Aixhouh, K. Efstathiou. Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int. J of Machine Tools & Manufacture, 43(4), 2003: 499~514.
    [33] T. K. Lin, S. H. Lu, K. J. Stout, Model-based topography characterization of machined surfaces in three dimensions, Int. J of Machine Tools & Manufacture, 35 (2), 1995: 239~245.
    [34] J. M. Zhou, M. Andersson and J. E. Stahl. Cutting tool fracture prediction and strength evaluation by stress identification. Int. J of Machine Tools & Manufacture, 37 (12), 1997: 1691~1714.
    [35] Lu, Ming-Chyuan. Analysis of acoustic signals due to tool wear during machining. [PhD Dissertation of Michigan University], 2001.
    [36] J. Wang. Development of a general tool model for turning operations based on a variable flow stress theory. Int. J of Machine Tools & Manufacture, 35 (1), 1995: 71~90.
    [37] X. D. Fang. A hybrid algorithm for prediction chip form/chip breakability in machining. Int. J of Machine Tools & Manufacture, 36 (10), 1996: 1093~1607.
    [38] Li Zhou, Machining chip breaking prediction with grooved inserts in steel turning. PhD Dissertation of Worcester Polytechnic Institute. 2002.
    [39] 王先逵.机械制造工艺学.北京:清华大学出版社,1989.
    [40] J. S. Chen. Thermal error modeling for volumetric error compensation. ASME, 55, 1992:113~115.
    [41] Y. Hatamura, T. Nagao. Development of an intelligent machining center incorporating active compensation for thermal distortion. Ann CIRP, 42 (1), 1995: 549~552.
    [42] S. Li, Y. Zhang. A study of pre-compensation for thermal errors of NC machine tools. Int. J of Machine Tools & Manufacture, 37 (12), 1997: 1715~1719.
    [43] S. K. Choudhury, M. S. Sharath. On-line control of machine tool vibration during turning. J. Mater. Proc. Technol, 47, 1995: 251~255.
    [44] 葛研军.虚拟数控车削加工系统研究.东北大学博士学位论文.1998.
    [45] Merchant M E. Basic Mechanics of Metal Cutting Process. Transactions of ASME, Journal of Engineering for Industry, 66 (1), 1944: 65~71.
    [46] Lee E H, Shafer B W. The Theory of Plasticity Applied to a Problem of Machining. Transactions of ASME, Journal of Applied Mechanics, 18(4), 1951: 405~413.
    [47] Shaw M C. A Quantized Effect of Strain-hardening as Applied to Cutting of Metals. Journal of Applied Physics, 21(2), 1950: 599~606.
    [48] W B Palmer, Oxley P L B. Mechanics of Orthogonal Machining. Proceeding of the Institution of Mechanical Engineers, 173(24), 1959: 623~634.
    [49] J C Jaeger. Moving Sources of Heats and the Temperature at Sliding Contacts. Proceedings Royal Society of New South Wales, 76, 1942: 203~224.
    [50] Loewen E G, Shaw M C. On the Analysis of Cutting-tool Temperatures. Transactions of ASME, Journal of Engineering for Industry, 76 (2), 1954: 217~231.
    [51] Weiner J H. Shear-plane Temperture Distribution in Orthogonal Cutting. Transactions of ASME, Journal of Engineering for Industry, 77 (11), 1955: 1331~1341.
    [52] K Nakayama. Basic Rules on the Form of Chip in Metal Cutting. Annals of CIRP, 27(1), 1978: 17~22.
    [53] S Kaldor. On the Mechanism of Chip Breaking. Transaction of ASME, Joumal of Engineering for Industry, 101(2), 1979: 109~120.
    [54] C Y Jiang, Y Z Zhang, Z J Chi. Experimental Research of the Chip Flow Direction and its Application to the Chip Control. Annals of the CIRP, 33(1), 1984: 81~84.
    [55] 李振加.切屑折断过程研究.北京:机械工业出版社,1997.
    [56] Maity KP, Das NS. A Class of Slipline Field Solutions for Metal Machining with Slipping and Sticking Contact at the Chip-tool Interface. Int. J of Mechanical Sciences, 43(10), 2001: 2435~2452.
    [57] A Kharkevich, Patti K Venuvinod. Basic Geometric Analysis of 3-D Chip Forms in Metal Cutting. Part 1: Determining Up-curl and Side-curl Radii. Int. J of Machine Tools & Manufacture, 39(5), 1999: 751~769.
    [58] A Kharkevich, Patri K Venuvinod. Basic Geometric Analysis of 3-D Chip Forms in Metal Cutting. Part 1: implications. Int. J of Machine Tools & Manufacture, 39(5), 1999: 965~983.
    [59] 张铜生,张富德.简明有限元法及其应用.北京:地震出版社,1990.8.
    [60] Klamecki B E. Incipient Chip Formation in Metal Cutting: A Three Dimension Finite Element Analysis. PhD Dissertation of University of Illinois at Urbana-Champaign. 1973.
    [61] Tay A. O., Stevenson M. G., de Vahl Davis G., Oxley P. L. A Numerical Method for Calculating Temperature Distribution in Machining fi-om Force and Shear Angle Measurements. Int. J of Machining Tool Design Research, 16, 1976: 335~349.
    [62] Shirakashi T., Usui E. Simulation Analysis of Orthogonal Metal Cutting Mechanism. Proceedings of International Conference of Production Engineers, Tokyo, 1974: 535~540.
    [63] Iwata K, Osakada K, Terasaka Y., Process Modeling of Orthogonal Cutting by Rigid-Plastic Finite Element Method. Transaction of ASME: J. Eng. Materials and Tech., 106, 1984: 132~138.
    [64] Cocroft M. G, Latham D. J. Ductility and Workability of Metals. Journal of Institute of Metals, 96, 1968: 33~39.
    [65] Strenkowski J. S., Carol J. T. A Finite Element Model of Orthogonal Metal Cutting. Journal of Engineering for Industry, 109, 1985: 349~353.
    [66] Strenkowski J. S., Mcon K. J., A Finite Element Prediction of Chip Geometry and Tool/ Workpiece Temperature Distributions in Orthogonal Cutting. Transactions of ASME: Journal of Engineering for Industry, 112, 1990: 313~318.
    [67] 黄志刚,柯映林,王立涛.金属切削加工有限元模拟的相关技术研究.中国机械工程,14(10),2003:846~849.
    [68] T. Moriwaki, N. Sugimura, S. Luan, A rigid-plastic finite element analysis of micro cutting. Jap. Soc. Prec. Engng. 1991: 2163~2168.
    [69] T. Moriwaki, N. Sugimura, S. Luan, Combined stress, material flow and heat analysis of orthogonal micro-machining of copper. Annals CIRP 42, 1993: 75~78.
    [70] Z. C. Lin, S. P. Lo, Ultra-precision orthogonal cutting simulation for oxygen- free-high- conductivity copper. J. Mats. Proc. Tech. 65, 1997: 281~291.
    [71] Kug Weon Kim, Woo Young Lee, Hyo-Chol Sin. A finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect. Int. J of Machine Tools & Manufacture, 39(12), 1999: 1507~1524.
    [72] S Lei, Y C Shin, F P Incropera. Thermo-mechanical Modeling of Orthogonal Machining Process by Finite Element Analysis. Int. J of Machine Tools & Manufacture, 39(5), 1999: 731~750.
    [73] H X Liu, R D Yang, B Wu et al. FEM Simulation of Chip Formation Mechanism in NC Turning. Key Engineering Materials, 259-260, 2004: 389~394.
    [74] M. H. Dirikolu, T. H. C. Childs, K. Maekawa. Finite element simulation of chip flow in metal machining. Int. J. of Mechanical Sciences, 43, 2001: 2699~2713.
    [75] Leonid Chuzhoy. Microstructure-level machining modeling of ferrous alloys. [PhD Dissertation of University of Illinois at Urbana-Champaign], 2001.
    [76] Belak J, Stoawers I F. A Molecular Dynamics Model of the Orthogonal Cutting Process. In Proceedings of ASPE Annual Conference, Rochester, New York, 1990: 76~79.
    [77] Chandrasekaran Nagasubramaniyan. Molecular Dynamics Simulations of Machining, Materials Testing and Tribology at the Atomic Scale. [PhD Dissertation of Oklahoma State University], Feb. 2002.
    [78] R Komanduri, L M Raft. A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale. Proceeding of the Institution of Mechanical Engineers: Part B, J of Eng. Manu., 215(12), 2001: 1639~672.
    [79] Philip M Morse. Diatomic Molecules According to the Wave Mechanics. Ⅱ. Vibrational Levels. Phys. Rev., 34(7), 1929: 57~64.
    [80] Chandrasekaran N, Noori Khajavi A, Raft L M, Komanduri R. A New Method for MD Simulation of Nanometric Cutting. Philosophical Magazine B, 77 (1), 1998: 7~26.
    [81] Komanduri R, Chandrasekaran N, Raff L M. Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach. Wear, 1998, 219(1): 84~97.
    [82] Komanduri R, Chandrasekaran N, Raff L M. Some Aspects of Machining with Negative Rake Tools Simulating Grinding: an MD Simulation Approach. Philosophical Magazine B, 79(7), 1999: 955~968.
    [83] Komanduri R, Chandrasekaran N, Raff L M. Molecular Dynamics Simulation of Atomic Scale Friction. Phys. Rev. B, 61(20), 2000: 14, 007~14, 019.
    [84] Komanduri R, Chandrasekaran N, Raff L M. MD Simulation of Indentation and Scratching of Single Crystal Aluminum. Wear, 240(1-2), 2000: 113~143.
    [85] Komanduri R, Chandrasekaran N, Raff L M. MD Simulation of Nanometric Cutting of Single Crystal Aluminum: Effect of Crystal Orientation and Direction of Cutting. Wear, 242(1-2), 2000: 60~88.
    [86] Komanduri R, Chandrasekaran N, Raff L M. MD Simulation of Exit Failure in Nanometric Cutting. Material Science Engineering A, 311 (1-2), 2001: 1~12.
    [87] N Ikawa, S Shimada, H Tanaka, G Ohmori. An Atomistric Analysis of Nanometric Chip Removal as Affected by Tool-work Interacion in Diamond Turning. Annals of CIRP, 40(1), 1991: 551~554.
    [88] S Shimada, N Ikawa, G Ohmori, H Tanaka, J Uchikoshi. Molecular Dynamics Analysis as Compared with Experimental Results of Micro-machining. Annals of CIRP, 41 (1), 1992: 117~120.
    [89] S Shimada, N Ikawa, H Tanaka, G Ohmori, J Uchikoshi, H Yoshinaga. Feasibility Study on Ultimate Accuracy in Micro-cutting Using Molecular Dynamics Simulation. Annals of CIRP, 42(1), 1993: 91~94.
    [90] Shimada S., Ikawa N., Tanaka H., Uchikoshi J. Structure of micromachined surface simulated by molecular dynamics analysis. Annals of CIRP, 43(1), 1994: 51~54.
    [91] 罗熙淳,梁迎春,董申.分子动力学在纳米机械加工中的应用.中国机械工程,10(6),1999:692~696.
    [92] 罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究.中国机械工程,11(8),2000:860~862.
    [93] 林滨.工程陶瓷超精密磨削机理与试验研究.天津大学博士学位论文.1999.
    [94] 孙家广,杨长贵.计算机图形学.新版.北京:清华大学出版社,1995.
    [95] 宁汝新,赵汝嘉,欧宗瑛.CAD/CAM技术.北京:机械工业出版社,2002.
    [96] 尚游,张爽,万磊.OpenGL高级图形编程指南.哈尔滨:哈尔滨工程大学出版社,1999.
    [97] X. X. Yu, W. S. Lau, T. C. Lee. A finite element analysis of residual stresses in stretch turning. Int. J of Machine Tools & Manufacture, 37(10), 1997: 1525~1537.
    [98] 胡华南,周泽华,陈澄洲.切削加工表面残余应力的理论预测.中国机械工程,6(1),1995:48~51.
    [99] 金家骏.分子热力学.北京:科学出版社,1990.
    [100] Morse, P. M. Diatomic molecules according to the wave mechanics Ⅱ vibrational levels. Phys. Rev., 34, 1929: 57~64.
    [101] Girifalco, L. A. and Weizer, V. G. Application of the Morse potential function to cubic materials. Phys. Rev., 114, 1959: 687~690.
    [102] Brenner, D. W. and Garrison, B. J. Dissociative valence force field potential for silicon. Phys. Rev. B, 34(2), 1986: 1304~1307.
    [103] Stillinger, F. H. and Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 31(8), 1985: 5262~5271.
    [104] Biswas, R. and Hamann, D. R. Interatomic potentials for silicon structural energies. Phys. Rev. Lett., 55(19), 1985: 2001~2004.
    [105] Bolding, B. C. and Anderson, H. C. Interatomic potential for silicon clusters, crystals, and surfaces. Phys. Rev. B, 41, 1990: 10, 568~10, 585.
    [106] Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 37(12), 1988: 6991~6999.
    [107] Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B, 42(15), 1990: 9458~9471.
    [108] Voter, A. F. Interatomic potentials for atomic simulations. MRS Bull., 21(2), 1996: 17~18.
    [109] 杨尚林,张宇,桂太龙.材料物理导论.哈尔滨:哈尔滨工业大学出版社,1999.
    [110] 陈纲,廖理几.晶体物理学基础.北京:科学出版社,1992.
    [111] 李后强,汪富泉.分形理论及其在分子科学中的应用.科学出版社,1993.
    [112] 盛爱兰,翟晓晴.分形在物理学中的应用.现代物理知识,14(4):16~17.
    [113] 董连科.分形理论及其应用.沈阳:辽宁科学技术出版社,1998.
    [114] 王慧,曾令可.分形理论在材料科学中的应用.材料开发与应用,15(5),2000.10:39~43.
    [115] 陈国安.分形理论在摩擦学研究中的应用.摩擦学学报,18(2),1998:179~184.
    [116] Suresh S. Micromechanisms of Fatigue Crack Crowth Retardation Following Overloads, Engng Fract. Mech., 18(3), 1983: 577~593.
    [117] 蒋东翔.分形几何及旋转机械故障诊断中的应用.哈尔滨工业大学学报,28(2),1996:27~31.
    [118] 孙棣华.基于分形理论的制造决策映射模型建模.重庆大学学报,21(4),1998:73~78.
    [119] 肖人彬.分形设计:复杂产品设计的新途径.高技术通讯,1997(1):22~26.
    [120] Bova S W. et al. Mesh Generation/Refinement Using Fractal Concepts and Iterated Function Systems. Int. J for Numerical Methods in Engineering, 33, 1992: 287~305.
    [121] Kluft W, Nakayama K, Pekelharing A J. Present Knowledge of Chip Control. Annals of the CIRP, 28(2), 1979: 106~112.
    [122] [日]中山一雄,李云芳译.金属切削加工理论.北京:机械工业出版社,1985.
    [123] 施志辉.可转位机夹刀片断屑槽形的研究.大连铁道学院硕士学位论文.1988.
    [124] 赵玢.基于虚拟制造技术的切屑仿真.大连铁道学院硕士学位论文.2000.
    [125] I. S. Jawahir. A survey and future prediction for the use of chip breaking in unmanned systems. Int. J of Advanced Manufacturing Technology, 3(4), 1988: 87~104.
    [126] J. Wang. Development of a general tool model for turning operations based on a variable flow stress theory. Int. J of MachineTools Manufacture, 36(1), 1996: 103~113.
    [127] X D Fang. A hybrid algorithm for prediction chip form/chip breakability in machining. Int. J of Machine Tools Manufacturing, 36(10), 1996: 1593~1607.
    [128] M Rahman. A three dimensional model of chip flow, chip curl and chip breaking under the concept of equivalent parameters. Int. J of Machine Tools Manufacture, 35(7), 1995: 1015~1031.
    [129] 张幼侦.金属切削理论.北京:航空工业出版社,1988.
    [130] 李振加,郑敏利,韦银利等.切屑空间运动轨迹及其约束方程的研究.机械工程学报,37(12),2001:42~46.
    [131] 韦银利,李振加,郑敏利.切屑空间运动轨迹的数学模型及动态仿真.哈尔滨理工大学学报,5(5),2000:40~42.
    [132] 李振加,曲贵民,董丽华等.横向卷曲短螺卷屑折断数学模型与折断判据.机械工程学报,32(6),1996:105~110.
    [133] 李振加,徐亦红,严复钢等.横向卷曲C形屑折断数学模型及试验研究.机械工程学报,33(1),1997:34~38.
    [134] 陈永洁,方宁,师汉民.切屑的三维卷曲流动.华中理工大学学报,21(4),1993:1~6.
    [135] 吕映芝,张素芹等.编译原理.北京:清华大学出版社,1998.
    [136] M.E Lesk and E. Schmidt. Lex-A Lexical Analyzer Generator. Http://www.cs.ucsb.edu/~cs160/machines/lex-docs.txt
    [137] Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. AT&T Bell Laboratories, Murray Hill, New Jersey, 07974. Http://www.csc.calpoly.edu/~gfisher/450/doc/yacc/paper.txt
    [138] A.V.Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic Search. comm. ACM 18. 1975: 333~340.
    [139] Aho A V, Sethi R, and Ullman J D. Compilers Principles, Techniques, and Tools. Readind, Mass: Addison-Wesley. 1986. 796-769.
    [140] 蒋立源,康慕宁等.编译原理,西安:西北工业大学出版社,1999.
    [141] Aho A V, Ullman J D. Compilers Principles, Techniques, and Tools. Massachusetts: Addison-Wesley, 1986.
    [142] Rumbaugh J.. Object-Oriented Modeling and Design. New York: Prentice Hall, 1991.
    [143] 唐泽圣,周嘉玉,李新友.计算机图形学基础.北京:清华大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700