线性Markov切换系统的随机微分博弈理论及在金融保险中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1965年Rufus· Isaacs出版了第一部微分博弈专著《Differential Games》以来,无论其理论还是应用研究都得到了很大的发展,今天,微分博弈已被广泛应用于国防军事工程、生产管理、经济生活等领域的各个方面,成为了科学有效的决策工具。本学位论文以工程和经济领域中大量存在的一类动态系统(工程领域称之为Markov切换系统,经济管理学界称之为Markov调制系统,本论文统称为Markov切换系统)为研究对象,在已有Markov切换系统最优控制理论和随机微分博弈理论的基础上,利用动态优化理论中的极大值原理、动态规划原理、Riccati方程法等,系统研究线性Markov切换系统的非合作随机微分博弈理论,并给出其在均值-方差型投资组合选择和保险公司投资-再保险问题中的应用分析。主要的研究结果如下:
     一、研究了噪声仅依赖于状态的线性Markov切换系统、目标泛函为正定二次型的随机微分博弈问题,称之为正定型线性Markov切换系统的随机微分博弈。首先,在已有随机线性二次(linear quadratic, LQ)微分博弈理论的基础上,建立了线性Markov切换系统二人零和博弈和非零和博弈模型。然后借助于随机LQ控制中的均方稳定的概念,给出并证明了系统均衡策略存在的充要条件等价于相应的广义矩阵Riccati方程存在解,同时得到了最优控制策略的显式解和最优值函数的表达式。最后在此基础上将所得结果应用于线性Markov切换系统的随机H∞、H2/H∞控制上,并给出了数值仿真算例验证结果的正确性,拓展了已有的随机微分博弈的相关研究成果。
     二、研究了噪声同时依赖于状态和控制的线性Markov切换系统、目标泛函为不定二次型的随机微分博弈问题,称之为线性Markov切换系统的不定随机微分博弈。首先,借助于随机不定LQ控制中的相关结果,建立了线性Markov切换系统二人零和及非零和不定随机微分博弈模型,推导证明了随机微分博弈问题适定及均衡策略存在的充要条件等价于相应的矩阵Riccati微分(代数)方程存在解,同时得到了最优控制策略的显式解和最优值函数的表达式。最后给出数值仿真算例验证了所得结果的有效性,同时也为后面章节的研究奠定了基础。
     三、基于博弈方法研究了的线性Markov切换系统目标泛函不定的鲁棒控制问题。借助于线性Markov切换系统不定随机微分博弈的结果,将控制策略设计者视为博弈的一方即博弈人P1,将随机性干扰视为博弈的另一方即“自然博弈人”P2,从而将鲁棒控制问题转化为两人博弈问题,即博弈人P1如何在预期到“自然人”P2的各种干扰策略情况下设计自己的策略,既实现与“自然人”的均衡又使自己的目标最优。解决了噪声同时依赖于状态、控制和干扰的线性Markov切换系统的随机H∞、H2/H∞混合控制问题,证明了控制器的存在性,并借助耦合Riccati微分(代数)方程给出了反馈增益明晰的表达式,最后给出数值算例验证了所得结论的有效性。
     四、研究了线性Markov切换系统微分博弈理论在金融保险中的应用。运用随机微分博弈的方法讨论了基于Markov调制模型的均值.方差型投资组合选择问题。首先假设资产价格服从带Markov调制的几何布朗运动,建立了带Markov调制的金融市场模型,然后将市场看成“虚拟”的博弈对手,在投资者与市场之间构建了一个二人零和随机微分博弈模型,投资者选择一个投资策略最大化其终止时刻财富期望效用,而市场选择一个概率测度代表的投资“环境”最小化投资者的最大化终止时刻期望财寓效用。最后在投资者具有常数相对风险规避系数效用函数偏好的假设下,通过求解微分博弈问题对应的HJBI方程,得到了投资者的最优投资策略及最优值函数的显式解。
     接着,讨论了基于Markov调制模型的保险公司投资-再保险问题。首先假设保险公司的盈余过程是一个带Markov调制的随机过程,金融资产的价格服从带Markov调制的几何布朗运动,建立了带Markov调制的金融市场模型,然后将市场看成“虚拟”的博弈对手,在保险公司与市场自然之间构建了一个二人零和随机微分博弈模型,保险公司选择一个投资-再保险策略最大化其终止时刻财富期望效用,而市场选择一个概率测度代表的经济“环境”最小化保险公司的最大效用。通过使用动态规划的方法求得了问题的最优解,同时通过验证定理给出了问题的HJB解,最后在适当的假设条件下给出了保险公司和市场最优策略的显式解及最优函数值。
     本论文的研究得到国家自然科学基金项目—广义随机线性Markov切换系统非合作微分博弈理论及其在金融保险中的应用(71171061)和广东省自然科学基是金—随机Markov切换系统的非合作微分博弈理论及在经济中的应用(S2011010000473)的支持。
Since Rufus· Isaacs published his first monograph "Differential Games" in1965, great development has been made about its theory and application. Today, differential game has been widely used in many aspects, such as national defense and military engineering, production management, economic life, etc, and it has been a scientific and effective tool for decision-making. This dissertation investigated a class of dynamic systems which have been used frequently in engineering and economics (engineering experts referred them as the Markov jump systems, economic and management scholars referred them as the Markovian regime-switching systems, in this dissertation, they are collectively referred to the Markov jump systems). On the basis of the existing literature of optimal control for Markov jump systems and stochastic differential game theory, by utilizing the maximum principle, dynamic programming, Riccati equation methods used in dynamic optimization, this dissertation studied the stochastic differential game theory of Markov jump linear systems and its applications in finance and insurance systematically. The main contributions can be concluded as follows:
     First, problems of stochastic differential game for Markov jump linear systems with state-dependent noise were discussed, we called them definite stochastic differential games for Markov jump linear systems. Firstly, on the basis of the existed stochastic LQ differential game theory, two person zero-sum and nonzero-sum game models of Markov jump linear systems were established. And then by means of the concept of mean-square stabilizability in stochastic LQ control, we proved that necessary and sufficient conditions for the existence of the equilibrium strategy are equivalent to the solvability of the corresponding generalized matrix-valued Riccati equations; moreover, we got the explicit solution of the optimal control strategy and the expressions of the optimal value function. Finally, on the basis of the obtained results, we investigated the stochastic H∞, H2/H∞control problems for Markov jump linear systems by applying the game theory approach, and got the optimal control strategy. These obtained results in this chapter expanded the existing results in stochastic differential game research.
     Second, problems of the stochastic differential game for Markov jump linear systems with state-and control-dependent noise were studied, similar with indefinite stochastic LQ problems, we called them indefinite stochastic differential game for Markov jump linear systems. Firstly, two person zero-sum and nonzero-sum game models of Markov jump linear systems are formulated by applying the results of stochastic LQ problems. Then, we proved that the well-posedness and the existence condition of the equilibrium strategy are equivalent to the solvability of the corresponding matrix-valued differential (algebraic) Riccati equations; meanwhile, the explicit solution of optimal control strategy and the expression of the optimal value function were obtained. Finally, numerical simulation examples were given to verify the validity of the presented results, and laid the foundation for the sequel chapters.
     Third, we studied the robust control problems of Markov jump linear systems based on game theory approach. By means of the results of indefinite stochastic differential game for Markov jump linear systems discussed in chapter4, we viewed the control strategy designer as one player of the game, i.e. P1, the stochastic disturbance as another player of the game, i.e."nature" P2, respectively, the robust control problems were transformed into a two person differential game model, player P1faced the problem that how to design his own strategy in the case of various interference strategy implemented by "nature" P2, both balanced with the "nature" and optimized his own objective. Corresponding results of stochastic H∞H2/H∞control problems for Markov jump linear systems with state, control and disturbance-dependent noise were obtained, and proved the existence of the controller, clarity expressions of the feedback gain were given by means of coupled differential (algebraic) Riccati equations. Finally, numerical examples were presented to verify the validity of the conclusions.
     Fourth, we investigated the application of the differential game theory of Markov jump linear systems in finance and insurance. We studied a game theoretic approach for portfolio selection under Markovian regime-switching models. First, we considered the portfolio selection problem in a Markovian regime switching Black-Scholes economy to illustrate the main idea of the method. In this case, the price dynamics of the underlying risky asset is governed by a Markovian regime switching geometric Brownian motion (GBM). Then, we considered the portfolio selection problem in the context of a two-player, zero-sum stochastic differential game. One of the players in this game is an investor and the other is a fictitious player-the market. The investor has a CRRA utility function and is to select a portfolio, which maximizes the expected CRRA utility of the terminal wealth. The market then selects a generalized "scenario", which is represented by a probability measure, to minimize the maximal utility of the investor. The closed-form expressions of optimal strategies of the investor and the optimal value function are derived by solving the HJBI equation of the associated game.
     Then, we studied a game theoretic approach for optimal investment-reinsurance problem of an insurance company under Markovian regime-switching models. Firstly, we considered the optimal investment-reinsurance problem in a Markovian regime switching Black-Scholes economy. In this case, the price dynamics of the underlying risky asset is governed by a Markovian regime switching geometric Brownian motion (GBM). Then, we considered the problem in the context of a two-player, zero-sum stochastic differential game. One of the players in this game is an insurance company and the other is a fictitious player-the market. The insurance company has a utility function and is to select an investment-reinsurance policy, which maximizes the expected utility of the terminal wealth. The market then selects a generalized "scenario", which is represented by a probability measure, to minimize the maximal utility of the insurance company. The optimal solutions were given by applying the dynamic programming; and meanwhile, the HJB solutions of the associated game were obtained. Finally, under appropriate assumptions, the closed-form expressions of optimal investment-reinsurance policy of the insurance company and the optimal value function were derived.
     This thesis was supported by the National Natural Science Fund of China—Noncooperative differential game theory of generalized Markov jump linear systems with application to finance and insurance (71171061), the Natural Science Fund of Guangdong Province—Noncooperative differential game theory of Markov jump linear systems with application to economics (S2011010004970).
引文
[1]T. Basar, G. J. Olsder. Dynamic Noncooperative Game Theory [M]. Philadelphia, PA:SIAM,2nd edition,1999.
    [2]D. W. K. Yeung, L. A. Petrosyan. Cooperative stochastic differential games [M]. New York:Springer,2006.
    [3]K. M. Ramachandran, C. P. Tsokos. Stochastic Differential Games. Theory and Applications [M]. Paris:Atlantis Press,2012.
    [4]H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems [J]. IEEE Transactions on Automatic Control,1966,11(2):161-167.
    [5]L. Huang, X. Mao. Stability of Singular Stochastic Systems with Markovian Switching [J]. IEEE Transactions on Automatic Control,2011,56(2):424-429.
    [6]F. Deng, Q. Luo, X. Mao. Stochastic stabilization of hybrid differential equations [J]. Automatica,2012,48(9):2321-2328.
    [7]M. D. Fragoso, O. L. V Costa. A Separation Principle for the Continuous-Time LQ-Problem With Markovian Jump Parameters [J]. IEEE Transactions on Automatic Control,2010,55(12):2692-2707.
    [8]D. Gorges, M. Izak, S. Liu. Optimal Control and Scheduling of Switched Systems [J]. IEEE Transactions on Automatic Control,2011,56(1):135-140.
    [9]A. Gattami. Generalized Linear Quadratic Control [J]. IEEE Transactions on Automatic Control,2010,55(1):131-136.
    [10]P. J. Antsaklis, A. Nerode. Hybrid control systems:an introductory discussion to the special issue [J]. IEEE Transactions on Automatic Control,1998,43(4): 457-460.
    [11]F. Black, M. Scholes. The pricing of options and corporate liabilities [J]. Journal of Political Economy,1973,81(3):637-654.
    [12]R. C. Merton. Option pricing when underlying stock returns are discontinuous [J]. Journal of Financial Economics,1976,3(1-2):125-144.
    [13]G. Xin. Information and option pricings [J]. Quantitative Finance,2001,1(1): 38-44.
    [14]G. Xin. An explicit solution to an optimal stopping problem with regime switching [J]. Journal of Applied Probability,2001,38(2):464-481.
    [15]A. Jobert, L. C. G. Rogers. Option pricing with Markov-modulated dynamics [J]. SIAM Journal on Control and Optimization,2006,44(6):2063-2078.
    [16]R. J. Elliott, T. K. Siu, L. L. Chan, et al. Pricing options under a generalized Markov modulated jump-diffusion model [J]. Stochastic Analysis and Applications,2007,25(4):821-843.
    [17]Q. Zhang, X. Guo. Closed-Form Solutions for Perpetual American Put Options with Regime Switching [J]. SI AM Journal on Applied Mathematics,2004,64(6): 2034-2049.
    [18]H. U. Gerber, B. Landry. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option [J]. Insurance:Mathematics and Economies,1998, 22(3):263-276.
    [19]H. U. Gerber, E. S. W. Shiu. Optimal dividends:analysis with Brownian motion [J]. North American Actuarial Journal,2004,8(1):1-20.
    [20]H. U. Gerber, E. S. W. Shiu. The time value of ruin in a Sparre Andersen model [J]. North American Actuarial Journal,2005,9(2):49-84.
    [21]A. Bensoussan, Z. Yan, G. Yin. Threshold-Type Policies for Real Options Using Regime-Switching Models [J]. SI AM Journal on Financial Mathematics, 2012,3(1):667-689.
    [22]Q. Song, R. H. Stockbridge, Chao Zhu. On Optimal Harvesting Problems in Random Environments [J]. SI AM Journal on Control and Optimization,2011, 49(2):859-889.
    [23]P. Eloe, R. Liu. Upper and Lower Solutions for Regime-Switching Diffusions with Applications in Financial Mathematics [J]. SIAM Journal on Applied Mathematics,2011,71(4):1354-1373.
    [24]H. Le, C. Wang. A Finite Time Horizon Optimal Stopping Problem with Regime Switching [J]. SIAM Journal on Control and Optimization,2010,48(8): 5193-5213.
    [25]M. K. Ghosh, A. Goswami. Risk Minimizing Option Pricing in a Semi-Markov Modulated Market [J]. SIAM Journal on Control and Optimization,2009,48(3): 1519-1541.
    [26]S. Boyarchenko, S. Levendorskii. American Options in Regime-Switching Models [J]. SIAM Journal on Control and Optimization,2009,48(3):1353-1376.
    [27]P. Eloe, R. Liu, M. Yatsuki, et al. Optimal Selling Rules in a Regime-Switching Exponential Gaussian Diffusion Model [J]. SIAM Journal on Applied Mathematics,2008,69(3):810-829.
    [28]Q. Zhang, G. Yin, R. Liu. A Near-Optimal Selling Rule for a Two-Time-Scale Market Model [J]. Multiscale Modeling & Simulation,2005,4(1):172-193.
    [29]T. Basar. A dynamic games approach to controller design:disturbance rejection in discrete-time [J]. IEEE Transactions on Automatic Control,1991, 36(8):936-952.
    [30]D. J. N. Limebeer, B. D. O. Anderson, P. P. Khargonekar, et al. A game theoretic approach to H∞ control for time-varying systems [J]. SI AM Journal on Control and Optimization,1992,30(2):262-283.
    [31]D. J. N. Limebeer, B. D. O. Anderson, B. Hendel. A Nash game approach to mixed H2/H∞ control [J]. IEEE Transactions on Automatic Control,1994,39(1): 69-82.
    [32]T. Basar, P. Bernhard. H∞-Optimal Control and Related Minimax Problems:A Dynamic Game Approach [M]. Boston:Birkhauser,1995.
    [33]Z. Pan, T. Basar. H∞ Control of Markovian Jump Systems and Solutions to Associated Piecewise-deterministic Differential Games[J]. in Annals of the International Society of Dynamic Games, G. J. Olsder, Ed. Boston, MA: Birkhauser,1996,61-94.
    [34]N. M. Krasovskii, E. A. Lidskii. Analytical design of controllers in systems with random attributes Ⅰ, Ⅱ, Ⅲ [J]. Automation and Remote Control,1961, 22(1-3):1021-1025,1141-1146,1289-1294.
    [35]J. J. Florentin. Optimal Control of Continuous Time, Markov, Stochastic Systems [J]. Journal of Electronics and Control,1961,10(6):473-488.
    [36]林湘泽,李世华,邹云.非线性切换系统不变集的输出反馈镇定[J].自动化学报,2008,34(7):784—791.
    [37]J. Daafouz, P. Riedinger, C. lung. Stability analysis and control synthesis for switched systems:a switched Lyapunov function approach [J]. IEEE Transactions on Automatic Control,2002,47(11):1883-1887.
    [38]A. Bacciotti. Stabilization by means of state space depending switching rules [J]. Systems & Control Letters,2004,53(3-4):195-201.
    [39]D. Cheng, L. Guo, Y. Lin, et al. Stabilization of switched linear systems [J]. IEEE Transactions on Automatic Control,2005,50(5):661-666.
    [40]J. Zhao, G. M. Dimirovski. Quadratic stability of switched nonlinear systems [J]. IEEE Transactions on Automatic Control,2004,49(4):574-578.
    [41]M. A. Wicks, P. Peleties, R. A. DeCarlo. Construction of piecewise Lyapunov functions for stabilizing switched systems [C]. Proceedings of the 33rd IEEE Conference on Decision and Control, Vol.4. IEEE,1994:3492-3497.
    [42]G. Zhai, H. Lin, P. J. Antsaklis. Quadratic stabilizability of switched linear systems with polytopic uncertainties [J], International Journal of Control,2003, 76(7):747-753.
    [43]J. C. Geromel, P. Colaneri, P. Bolzern. Dynamic output feedback control of switched linear systems [J]. IEEE Transactions on Automatic Control,2008, 53(3):720-733.
    [44]X. Mao, C. Yuan. Stochastic Differential Equations with Markovian Switching [M]. London:Imperial College Press,2006.
    [45]D. D. Sworder. Feedback control of a class of linear systems with jump parameters [J]. IEEE Transaction on Automatic Control,1969,14(1):9-14.
    [46]W. M. Wonham. Random differential equations in control theory [J]. In Probabilistic Methods in Applied Mathamatics, vol.2, A. T. Bharucha-Reid Ed., New York:Academic,1971:131-212.
    [47]R. Rishel. Dynamic programming and minimum prinples for systems with jump markov disturbances [J]. SI AM Journal of Control,1975,13(2):338-371.
    [48]X. Li, X. Y. Zhou. Indefinite Stochastic LQ Control with Markovian Jumps in Finite Time Horizon[J]. Communications in Information and Systems,2002, 2(3):265-282.
    [49]X. Li, X. Y. Zhou, M. A. Rami. Indefinite Stochastic Linear Quadratic Control with Markovian Jumps in Infinite Time Horizon[J]. Journal of Global Optimization,2003,27(2-3):149-175.
    [50]V. Dragan, T. Morozan. The Linear Quadratic Optimization Problems for a Class of Linear Stochastic Systems with Multiplicative White Noise and Markovian Jumping [J]. IEEE Transactions on Automatic Control,2004,49(5): 665-675.
    [51]Y. Liu, G. Yin, X. Y. Zhou. Near-optimal controls of random-switching LQ problems with indefinite control weight costs [J]. Automatica,2005,41(6): 1063-1070.
    [52]J. B. R. do Val, J. C. Geromel, O. L. V. Costa. Solutions for the linear-quadratic control problem of Markov jump linear systems [J]. Journal of Optimization Theory and Applications,1999,103(2):283-311.
    [53]E. K. Boukas, Z. Liu. Jump linear quadratic regulator with controlled jump rates [J]. IEEE Transactions on Automatic Control,2001,46(2):301-305.
    [54]孙振东.华南理工大学.切换线性系统的控制和优化.项目批准号60925013/F0301.项目起止年月2010-01至2012-12.
    [55]张艳霞.北京理工大学.不确定切换系统的分析与控制.项目批准号60704002/F030101.项目起止年月2008-01至2010-12.
    [56]武玉强.曲阜师范大学Markov跳变的切换系统控制问题研究.项目批准号60574007/F0301.项目起止年月2006-01至2006-12.
    [57]武玉强.曲阜师范大学.不确定切换控制系统及机动跟踪控制问题研究.项目批准号60674027/F0301.项目起止年月2007-01至2009-12.
    [58]方洋旺.中国人民解放军空军工程大学.近空间飞行器的随机结构跳变最优控制理论研究.项目批准号60874040/F030113.项目起止年月2009-01至2011-12.
    [59]康宇.中国科技大学.时变时滞Markov跳跃系统控制问题研究.项目批准号60704007/F030104.项目起止年月2008-01至2010.12.
    [60]董明.广义双线性Markov跳变系统的分析与控制[D].天津:天津大学博士学位论文,2008.
    [61]J. C. Engwerda. Computational aspects of the open-loop Nash equilibrium in linear quadratic games [J]. Journal of Economic Dynamics and Control,1998, 22(8-9):1487-1506.
    [62]J. C. Engwerda. The solution set of the N-player scalar feedback Nash algebraic Riccati equations [J]. IEEE Transactions on Automatic Control,2000, 45(12):2363-2368.
    [63]J. C. Engwerda. Solving the scalar feedback Nash algebraic Riccati equations: an eigenvector approach [J]. IEEE Transactions on Automatic Control,2003, 48(5):847-852.
    [64]J. C. Engwerda. A numerical algorithm to find soft-constrained Nash equilibria in scalar LQ-games [J]. International Journal of Control,2006, 79(6):592-603.
    [65]J. C. Engwerda. Algorithms for computing Nash equilibria in deterministic LQ games [J]. Computational Management Science,2007,4(2):113-140.
    [66]K. Mizukami, H. Xu. Closed-loop Stackelberg strategies for linear-quadratic descriptor systems [J]. Journal of optimization theory and applications,1992, 74(1):151-170.
    [67]H. Xu, K. Mizukami. Two-person two-criteria decision making problems for descriptor systems [J]. Journal of Optimization Theory and Applications,1993, 78(1):163-173.
    [68]H. Xu, K. Mizukami. New sufficient conditions for linear feedback closed-loop stackelberg strategy of descriptor system [J]. IEEE Transactions on Automatic Control,1994,39(5):1097-1102.
    [69]H. Xu, K. Mizukami. Linear-quadratic zero-sum differential games for generalized state space systems [J]. IEEE Transactions on Automatic Control, 1994,39(1):143-147.
    [70]H. Xu, K. Mizukami. On the Isaacs equation of differential games for descriptor systems [J]. Journal of optimization theory and applications,1994, 83(2):405-419.
    [71]H. Xu, K. Mizukami. Infinite-horizon differential games of singularly perturbed systems:A unified approach [J]. Automatica,1997,33(2):273-276.
    [72]K. Mizukami, K. Tetsushi. On closed-loop Nash equilibrium solutions for continuous descriptor systems [J]. Bulletin of Hiroshima Koukusai Gakuin University,2001,34:51-60.
    [73]H. Xu, H. Mukaidani. The linear quadratic dynamic game for discrete-time descriptor systems [J]. International Game Theory Review,2003,5(4): 361-374.
    [74]J. C. Engwerda, Salmah. The open-loop linear quadratic differential game for index one descriptor systems [J]. Automatica,2009,45(2):585-592.
    [75]J. C. Engwerda, Salmah. Feedback Nash equilibria for linear quadratic descriptor differential games [J]. Automatica,2012,48(4):625-631.
    [76]E. Dockner, S. Jorgensen, N. Van Long, et al. Differential Games in Economics and Management Science [M]. Cambridge:Cambridge University Press,2000.
    [77]G. M. Erickson. Dynamic Models of Advertising Competition [M]. Boston: Kluwer,2003.
    [78]V. I. Zhukovskiy. Lyapunov Functions in Differential Games [M]. London: Taylor & Francis,2003.
    [79]S. Jorgensen, G. Zaccour. Differential Games in Marketing [M]. New York: Springer,2004.
    [80]J. C. Engwerda. LQ dynamic optimization and differential games [M]. New York:John Wiley,2005.
    [81]T. L. Friesz. Dynamic Optimization and Differential Games [M]. Boston, MA: Springer Science+Business Media, LLC,2010.
    [82]S. Hamadene. Backward-forward SDE's and stochastic differential games [J]. Stochastic analysis and applications,1998,77(1):1-15.
    [83]S. Hamadene. Nonzero sum linear-quadratic stochastic differential games and backward-forward equations [J]. Stochastic analysis and applications,1999, 17(1):117-130.
    [84]Z. Wu. Forward-backward stochastic differential equations, linear quadratic stochastic optimal control and nonzero sum differential games [J]. Journal of Systems Science and Complexity,2005,18(2):179-192.
    [85]G. Wang, Z. Yu. A Pontryagin's Maximum Principle for Non-Zero Sum Differential Games of BSDEs with Applications [J]. IEEE Transactions on Automatic Control,2010,55(7):1742-1747.
    [86]G. Wang, Z. Yu. A partial information non-zero sum differential game of backward stochastic differential equations with applications [J]. Automatica, 2012,48(2):342-352.
    [87]D. Zhang. Backward linear-quadratic stochastic optimal control and nonzero-sum differential game problem with random jumps [J]. Journal of Systems Science and Complexity,2011,24(4):647-662.
    [88]Z. Yu. Linear-quadratic optimal control and nonzero-sum differential game of forward-backward stochastic system [J]. Asian Journal of Control,2012,14(1): 173-185.
    [89]E. C. M. Hui, H. Xiao. Maximum principle for differential games of forward-backward stochastic systems with applications [J]. Journal of Mathematical Analysis and Applications,2012,386(1):412-427.
    [90]J. M. Lasry, P. L. Lions. Mean Field Games [J]. Japanese Journal of Mathematics,2007,2(1):229-260.
    [91]O. Gueant. Mean Field Games and applications to economics [D]. PhD thesis, Universite Paris-Dauphine,2008.
    [92]O. Gueant. A reference case for mean field games models [J]. Journal de Mathematiques Pures et Appliquees,2009,92(3):276-294.
    [93]O. Gueant, J. M. Lasry, P. L. Lions. Mean field games and oil production [R]. Technical report, College de France, Paris,2010.
    [94]Y. Achdou, Ⅰ. Capuzzo-Dolcetta. Mean field games:numerical methods [J]. SIAM Journal on Numerical Analysis,2010,48(3):1136-1162.
    [95]A. Lachapelle, J. Salomon, G. Turinici. Computation of mean field equilibria in economics [J]. Mathematical Models and Methods in Applied Sciences,2010, 20(4):567-588.
    [96]O. Gueant. Mean field games equations with quadratic hamiltonian:a specific approach [J]. Mathematical Models and Methods in Applied Sciences,2012, 22(9):567-588.
    [97]Y. Achdou, V. Perez. Iterative strategies for solving linearized discrete mean field games systems [J]. Networks and Heterogeneous Media,2012,7(2): 197-217.
    [98]M. Bardi. Explicit solutions of some linear-quadratic mean field games [J]. Networks and Heterogeneous Media,2012,7(2):243-261.
    [99]O. Gueant. New numerical methods for mean field games with quadratic costs [J]. Networks and Heterogeneous Media,2012,7(2):315-336.
    [100]Y. Achdou, F. Camilli, Ⅰ. Capuzzo-Dolcetta. Mean Field Games:Numerical Methods for the Planning Problem [J]. SIAM Journal on Control and Optimization,2012,50(1):77-109.
    [101]张嗣瀛.微分对策[M].北京:科学出版社,1987.
    [102]李登峰.微分对策及其应用[M].北京:国防工业出版社,2000.
    [103]J. Yong. Zero-sum differential games involving impulse controls [J]. Applied mathematics & optimization,1994,29(3):243-261.
    [104]刘晓平.主从对策若干问题研究及在广义系统中的推广[D].沈阳:东北工学院博士论文,1989.
    [105]张成科.双线性系统二次型微分博弈理论[D].广州:华南理工大学博士后出站报告,2008.
    [106]张成科,王行愚.线性时变二次微分对策Nash策略的小波分析法—小波逼近解[J].控制理论与应用,2002,19(1):57-60.
    [107]张成科.奇异线性二次型微分鞍点对策的小波逼近解法[J].系统工程与电子技术,2003,25(6):707-711.
    [108]王光臣.部分可观测的随机控制系统及其应用[D].济南:山东大学博士论文,2007.
    [109]吴臻,于志勇.带随机性跳跃的线性二次非零和微分对策问题[J].应用数学和力学,2005,8(26):945-950.
    [110]于志勇.随机控制和对策理论中的—些倒向问题[D].济南:山东大学博士论文,2008.
    [111]罗成新.不定随机线性二次最优控制问题理论研究[D].大连:大连理工大学博士论文,2004.
    [112]宾宁.奇异摄动系统非合作微分博弈理论及在投入产出问题中的应用研究[D].广州:广东工业大学博士论文,2012.
    [113]高晓秋.随机双线性系统的非合作博弈理论及应用研究[D].广州:广东工 业大学博士论文,2012.
    [114]郑立辉.基于鲁棒控制的期权定价方法[J].管理科学学报,2000,3(3):60-64.
    [115]刘海龙,郑立辉.证券投资决策的微分对策方法研究[J].系统工程学报,1999,14(1):69-72.
    [116]刘海龙,吴冲锋.基于最差情况的最优投资和投资策略[J].管理科学学报,2001,4(6):48-54.
    [117]张德贤,陈中慧.渔业资源配额的微分对策研究[J].资源科学,2000,22(2):61-65.
    [118]赵中奇,吴瑞明,王浣尘.渔业资源最优经营管理问题[J].系统工程学报,2004,19(4):423-426.
    [119]张庶萍,张世英.供应链中合作广告策略的Stackelberg微分对策模型[J].西南交通大学学报,2005,40(4):513-518.
    [120]张庶萍,张世英.基于微分对策的供应链合作广告决策研究[J].控制与决策,2006,21(2):153-157.
    [121]傅强,曾顺秋.纵向合作广告的微分对策模型研究[J].系统工程理论与实践,2007,27(11):26-33.
    [122]傅强,曾顺秋.不确定需求下供应链合作广告与订货策略的博弈[J].系统工程理论与实践,2008,28(3):56-63.
    [123]胡本勇,彭其渊.基于广告—研发的供应链合作博弈分析[J].管理科学学报,2008,11(2):61-70.
    [124]熊中楷,聂佳佳,李根道.基于微分对策的多寡头品牌和大类广告策略研究[J].管理工程学报,2009,23(3):72-79.
    [125]刘晓峰,黄沛,杨雄峰.具有网络外部性的双寡头市场的动态定价策略[J].中国管理科学,2007,15(1):94-98.
    [126]田晓微.基于寡头竞争结构的移动通信市场广告博弈策略研究[D].天津:天津大学硕士学位论文,2004.
    [127]曾顺秋.供应链中的制造商-零售商合作广告博弈模型[D].重庆:重庆大学硕士学位论文,2007.
    [128]张庶萍.竞争环境下的广告策略研究[D].天津:天津大学博士学位论文,2005.
    [129]聂佳佳.基于微分对策的供应链合作广告策略[D].重庆:重庆大学博士学位论文,2009.
    [130]钟伟.倒向随机微分方程的最优控制,微分对策和熵风险约束下的最优投资[D].上海:复旦大学博士学位论文,2009.
    [131]王皓.反射倒向随机微分方程及其在混合零和微分对策,可逆投资问题及偏微分方程中的应用[D].济南:山东大学博士学位论文,2009.
    [132]罗琰.最优投资与效用无差别定价模型研究[D].长沙:湖南大学博士学位论文,2011.
    [133]王瑶.开环非合作微分对策及其在经济中的应用[D].吉林:吉林大学博士学位论文,2011.
    [134]J. P. Hespanha. Logic-based Switching Algorithm in Control [M]. New Haven: Yale University,1998.
    [135]S. Xu, T. Chen. Robust H∞ control for uncertain discrete-time stochastic bilinear systems with Markovian switching [J]. Journal of Robust and Nonlinear Control,2005,15(5):201-217.
    [136]H. Liu, F. Sun, E. K. Boukas. Robust control of uncertain discrete-time Markovian jump systems with actuator saturation [J]. International Journal of Control,2006,79(7):805-812.
    [137]L. Li, V. A. Ugrinovskii. On necessary and sufficient conditions for H∞ output feedback control of Markov jump linear systems [J]. IEEE Transactions on Automatic Control,2007,52(7):1287-1292.
    [138]Y. Kang, J. Zhang, S. Ge. Robust output feedback H∞ control of uncertain Markovian jump systems with mode-dependent time-delays [J]. International Journal of Control,2008,81(1):43-61.
    [139]G. Wei, Z. Wang, H. Shu. Nonlinear H∞ control of stochastic time-delay systems with Markovian switching [J]. Chaos, Solitons & Fractals,2008,35(3): 442-451.
    [140]Y. Huang, W. Zhang, G. Feng. Infinite horizon H2/H∞ control for stochastic systems with Markovian jumps [J]. Automatica,2008,44(3):857-863.
    [141]L. Zhang, E. K. Boukas.H∞ control for discrete-time Markovian jump linear systems with partly unknown transition probabilities [J]. Journal of Robust and Nonlinear Control,2009,19(8):868-883.
    [142]Z. Lin, Y. Lin, W. Zhang. A unified design for state and output feedback H∞ control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise [J]. Automatica,2009,45(12),2955-2962.
    [143]T. Hou, W. Zhang, H. Ma. Finite Horizon H2/H∞ Control for Discrete-Time Stochastic Systems With Markovian Jumps and Multiplicative Noise [J]. IEEE Transactions on Automatic Control,2010,55(5):1185-1191.
    [144]L. Ma, Z. Wang, Y. Bo, et al. Finite-horizon H2/H∞ control for a class of nonlinear Markovian jump systems with probabilistic sensor failures [J]. International Journal of Control,2011,84(11):1847-1857.
    [145]H. Ma, W. Zhang, T. Hou. Infinite horizon H2/H∞ control for discrete-time time-varying Markov jump systems with multiplicative noise [J]. Automatica, 2012,48(7),1447-1454.
    [146]P. Dorato, A. Kestenbaum. Application of game theory to the sensitivity design of optimal systems [J]. IEEE Transactions on Automatic Control,1967, 12(1):85-87.
    [147]J. C. Doyle, K. Glover, P. P. Khargonekar, et al. State-space solutions to standard H2 and H∞, problems [J]. IEEE Transactions on Automatic Control, 1989,34(8):831-847.
    [148]李莉莉.几类非线性切换系统的H∞控制问题研究[D].沈阳:东北大学博士论文,2009.
    [149]张维,李帅,熊熊.科技优先领域的遴选方法及应用[J].科学学研究,2006,24(6):906-910.
    [150]林凤玺,周洁.基于马尔可夫跳理论的固定资产系统的建模及能控性分析.苏州科技学院学报(自然科学版),2009,26(1):16-20.
    [151]张振中.受控的带马氏调制跳扩散过程及其在保险金融中的应用[D].长沙:中南大学博士论文,2009.
    [152]郑立辉.基于鲁棒控制的期权定价理论与方法研究[D].武汉:华中科技大学博士后研究工作报告,1998.
    [153]蔡明超,杨朝军,张静.国债价格行为的布朗桥运动模型与久期方法比较[J].中国管理科学,2003,11(1):28-32.
    [154]孙卫,张卫朋.债务国际化下国债规模临界增长模型研究[J].中国管理科学,2003,11(2):1-6.
    [155]X. Y. Zhou, G. Yin. Markowitz's mean-variance portfolio selection with regime switching:A continuous-time model [J]. SI AM Journal on Control and Optimization,2003,42(4):1466-1482.
    [156]O. L. V. Costa, W. L. de Paulo. Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems [J]. Automatica, 2007,43(4):587-597.
    [157]0. L. V. Costa, M. V. Araujo. A generalized multi-period mean-variance portfolio optimization with Markov switching parameters [J]. Automatica, 2008,44(10):2487-2497.
    [158]O. L. V. Costa, A. de Oliveira. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises [J]. Automatica,2012,48(2):304-315.
    [159]Q. Zhang. Stock trading:An optimal selling rule [J]. SIAM Journal on Control and Optimization,2001,40(1):64-87.
    [160]D. D. Yao, Q. Zhang, X. Y. Zhou. A Regime-Switching Model for European Options [C]. Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems,2006:281-300.
    [161]S. Xie. Continuous-time mean-variance portfolio selection with liability and regime switching [J]. Insurance:Mathematics and Economics,2009,45(1): 148-155.
    [162]M. Pemy, Q. Zhang. Optimal stock liquidation in a regime switching model with finite horizon [J]. Journal of mathematical analysis and applications, 2006,321(2):537-552.
    [163]Q. Zhang, X. Y. Zhou. Valuation of Stock Loans with Regime Switching [J]. SIAM Journal on Control and Optimization,2009,48(3):1229-1250.
    [164]X. Guo, Q. Zhang. Optimal Selling Rules in a Regime Switching model [J]. IEEE Transactions on Automatic Control,2005,50(9):1450-1455.
    [165]L. R. Sotomayor, A. Cadenillas. Explicit Solutions of Consumption-Investment Problems in Financial Markets with Regime Switching [J]. Mathematical Finance,2009,19(2):251-279.
    [166]R. J. Elliott, T. K. Siu. A stochastic differential game for optimal investment of an insurer with regime switching [J]. Annals of Operations Research,2010, 176(1):271-291.
    [167]张振中.受控的带马氏调制跳扩散过程及其在保险金融中的应用[D].长沙:中南大学博士论文,2009.
    [168]李波.跳扩散模型在风险理论中的应用[D].天津:南开大学博士论文,2009.
    [169]张鑫.马氏调节过程在保险与金融中的应用[D].天津:南开大学博士论文,2009.
    [170]T. Honda. Optimal portfolio choice for unobservable and regime-switching mean returns [J]. Journal of Economic Dynamics and Control,2003,28(1): 45-78.
    [171]W. Fei. Optimal consumption and portfolio under inflation and Markovian switching [J]. Stochastics:An International Journal of Probability and Stochastic Processes,2013,85(2):272-285.
    [172]苏涛,詹原瑞,刘家鹏,李杰.基于马尔科夫转换下的资本资产定价模型[J].系统管理学报,2007,16(3):285-290.
    [173]苏涛,詹原瑞,刘家鹏.基于马尔科夫转换下的CAPM实证研究[J].系统工程理论与实践,2007,27(6):21-26.
    [174]苏涛,詹原瑞SWARCH模型下的VaR估计[J].数量经济技术经济研究,2005.12:143-149.
    [175]苏涛.金融市场风险VaR度量方法的改进研究[D].天津:天津大学博士论文,2007.
    [176]詹原瑞,刘家鹏,苏涛.基于马尔科夫机制转换CAPM的VaR模型研究[J].电子科技大学学报(社会科学版),2008,l0(3):19-22.
    [177]J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the business cycle [J]. Econometrica,1989,57(2):357-384.
    [178]R. Garcia, P. Perron. An analysis of the real interest rate under regime shifts [J]. The Review of Economics and Statistics,1996,78(1):111-125.
    [179]J. Anas, M. Billio, L. Ferrara, et al. Business cycle analysis with multivariate Markov switching models [R]. in Growth and Cycle in the Euro-zone, G.L Mazzi and G. Savio (eds.), Palgrave MacMillan,2006.
    [180]S. Chen. Measuring business cycle turning points in Japan with the Markov Switching Panel model [J]. Mathematics and Computers in Simulation,2007, 76(4):263-270.
    [181]M. Billio, R. Casarin. Identifying business cycle turning points with sequential Monte Carlo methods:an online and real-time application to the Euro area [J]. Journal of forecasting,2010,29(1-2):145-167.
    [182]S. H. Hsu, C. M. Kuan. Identifying Taiwan's business cycles in 1990s:An application of the bivariate Markov switching model and Gibbs sampling (in Chinese) [J]. Journal of Social Sciences and Philosophy,2001,13(5), 515-540.
    [183]王建军Markov机制转换模型研究——在中国宏观经济周期分析中的应用[J].数量经济技术经济研究,2007,3(5):39-48.
    [184]么向华.商业银行贷款定价的简化型模型研究[D].天津:天津大学博士论文,2006.
    [185]赵鹏.中国股市投机泡沫形成机制与实证研究[D],武汉:华中科技大学博士论文,2008.
    [186]X. Feng, K. A. Loparo, Y. Ji, et al. Stochastic Stability Properties of Jump Linear Systems [J]. IEEE Transaction on Automatic Control,1992,37(1): 38-53.
    [187]M. A. Rami, L. E. Ghaoui. LMI Optimization for Nonstandard Riccati Equations Arising in Stochastic Control [J]. IEEE Transactions on Automatic Control,1996,41(11):1666-1671.
    [188]Y. Ji, H. J. Chizeck. Controllability, Stabilizability, and Continuous-time Markovian Jump Linear Quadratic Control [J]. IEEE Transactions on Automatic Control,1990,35(7):777-788.
    [189]Y. Ji, H. J. Chizeck. Jump Linear Quadratic Gaussian Control in Continuous-time [J]. IEEE Transactions on Automatic Control,1992,37(12): 1884-1892.
    [190]V. Dragan, T. Morozan. Game-theoretic Coupled Riccati Equations Associated to Controlled Linear Differential Systems with Jump Markov Perturbations [J]. Stochastic Analysis and Applications,2001,19(5):715-751.
    [191]V. Dragan, I. Ivanov. A Numerical Procedure to Compute the Stabilising Solution of Game Theoretic Riccati Equations of Stochastic Control [J]. International Journal of Control,2011,84(4):783-800.
    [192]C. Sun, H. Liu, K. He, et al. Reduced Order H∞, Filtering for Linear Systems with Markovian Jump Parameters [J]. Systems and Control Letters,2005,54(8): 739-746.
    [193]Q. Song, G. Yin, Z. Zhang. Numerical Solutions for Stochastic Differential Games with Regime Switching [J]. IEEE Transactions on Automatic Control, 2008,53(2):509-520.
    [194]R. J. Elliott, T. K. Siu. A Markovian Regime-Switching Stochastic Differential Game for Portfolio Risk Minimization [C].2008 American Control Conference, Washington, USA,2008:1017-1022.
    [195]T. Bjork. Finite dimensional optimal filters for a class of Ito-processes with jumping parameters [J]. Stochastics,1980,4(2):167-183.
    [196]W. Zhang, B. S. Chen. State feedback H∞ control for a class of nonlinear stochastic systems [J]. SIAM Journal on Control and Optimization,2006, 44(6):1973-1991.
    [197]D. Hinrichsen, A. J. Pritchard. Stochastic H∞ [J]. SIAM Journal on Control and Optimization,1998,36(5):1504-1538.
    [198]V. A. Ugrinovskii. Robust H∞ Control in the Presence of Stochastic Uncertainty [J]. International Journal of Control,1998,71(2):219-237.
    [199]R. Penrose. A generalized inverse for matrices [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1955,51(3):406-413.
    [200]M. A. Rami, J. B. Moore, X. Y. Zhou. Indefinite stochastic linear quadratic control and generalized differential Riccati equations [J]. SIAM Journal on Control and Optimization,2001,40(4):1296-1311.
    [201]H. Mukaidani. A numerical analysis of the Nash strategy for weakly coupled large-scale systems [J]. IEEE Transactions on Automatic Control,2006,51(8): 1371-1377.
    [202]H. Mukaidani. Newton's method for solving cross-coupled sign-indefinite algebraic Riccati equations for weakly coupled large-scale systems [J]. Applied Mathematics and Computation,2007,188(1):103-115.
    [203]H. Mukaidani. Numerical computation of sign indefinite linear quadratic differential games for weakly coupled large-scale systems [J]. International Journal of Control,2007,80(1):75-86.
    [204]M. Sagara, H. Mukaidani, T. Yamamoto. Numerical solution of stochastic Nash games with state-dependent Noise for weakly coupled large-scale systems [J]. Applied Mathematics and Computation,2008,197(2):844-857.
    [205]M. Sagara, H. Mukaidani, T. Yamamoto. Efficient numerical computations of soft constrained Nash strategy for weakly coupled large-scale systems [J]. Journal of Computers,2008,3(9):2-10.
    [206]H. Mukaidani. Soft-constrained stochastic Nash games for weakly coupled large-scale systems [J]. Automatica,2009,45(5):1272-1279.
    [207]H. Mukaidani. Robust guaranteed cost control for uncertain stochastic systems with multiple decision makers [J]. Automatica,2009,45(7): 1758-1764.
    [208]W. M. Wonham. On a matrix Riccati equation of stochastic control [J]. SI AM Journal on Control,1968,6(4):681-697.
    [209]M. Athens. Special issues on linear-quadratic-gaussian problem [J]. IEEE Transactions on Automatic Control,1971,16(6):527-869.
    [210]A. Bensoussan. Lecture on stochastic control, Part I, in Lecture Notes in Mathematics,1983,972:1-39.
    [211]M. H. A. Davis. Linear Estimation and Stochastic Control [M]. London: Chapman and Hall,1977.
    [212]S. Chen, X. Li, X. Y. Zhou. Stochastic linear quadratic regulators with indefinite control weight costs [J]. SI AM Journal on Control and Optimization, 1998,36(5):1685-1702.
    [213]M. Kohlmann, X. Y. Zhou. Relationship between backward stochastic differential equations and stochastic controls:a linear-quadratic approach [J]. SIAM Journal on Control and Optimization,2000,38(5):1392-1407.
    [214]A. E. B. Lim, X. Y. Zhou. Mean-Variance Portfolio Selection with Random Parameters in a Complete Market. Mathematics of Operations Research,2002, 27(1):101-120.
    [215]X. Y. Zhou, D. Li. Continuous-time mean-variance portfolio selection:A stochastic LQ framework. Applied Mathematics and Computation,2000,42(1): 19-33.
    [216]J. Yong, X. Y. Zhou. Stochastic controls:Hamiltonian systems and HJB equations. New York:Springer,1999.
    [217]S. Chen, X. Y. Zhou. Stochastic linear quadratic regulators with indefinite control weight costs. Ⅱ [J]. SI AM Journal on Control and Optimization,2000, 39(4):1065-1081.
    [218]M. A. Rami, X. Y. Zhou. Linear Matrix Inequalities, Riccati Equations, and Indefinite Stochastic Linear Quadratic Controls [J]. IEEE Transactions on Automatic Control,2000,45(6):1131-1143.
    [219]M. A. Rami, J. B. Moore, X. Y. Zhou. Indefinite stochastic linear quadratic control and generalized differential Riccati equation [J]. SIAM Journal on Control and Optimization,2001,40(4):1296-1311.
    [220]M. A. Rami, X. Chen, J. B. Moore, et al. Solvability and Asymptotic Behavior of Generalized Riccati Equations Arising in Indefinite Stochastic LQ Controls [J]. IEEE Transactions on Automatic Control,2001,46(3):428-440.
    [221]J. Yong. A leader-follower stochastic linear quadratic differential game [J]. SIAM Journal on Control and Optimization,2002,41(4):1015-1041.
    [222]L. Mou, J. Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method [J]. Journal of Industrial and Management Optimization,2006,2(1):93-115.
    [223]M. McAsey, L. Mou. Generalized Riccati Equations Arising in Stochastic Games [J]. Linear Algebra and its Applications,2006,416(2-3):710-723.
    [224]H. Zhu, C. Zhang. Infinite time horizon nonzero-sum linear quadratic stochastic differential games with state and control-dependent noise [J]. Journal of Control Theory and Applications, to appear,2013.
    [225]K. Zhou, J. C. Doyle, K. Glover. Robust and optimal control [M]. New Jersey: Prentice Hall,1996.
    [226]A. J. Van der Schaft. L2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control [J]. IEEE Transactions on Automatic Control,1992, 37(6):770-784.
    [227]M. Abu-Khalaf, J. Huang, F. L. Lewis. Nonlinear H2/H∞ constrained feedback control:A Practical Design Approach Using Neural Networks [M]. London:Springer-Verlag,2006.
    [228]A. Friedman. Stochastic differential equations and applications [M]. New York:Academic Press,1975.
    [229]R. Z. Has'minskii. Stochastic stability of differential equation [M]. Amsterdam:Sijthoff and Noordhoff,1982.
    [230]E. Gershon, U. Shaked, U. Yaesh. Control and estimation of state multiplicative linear systems [M]. London:Springer-Verlag,2005.
    [231]I. R. Petersen, V. Ugrinovskii, A. V. Savkin. Robust control design methods [M]. Berlin:Springer,2000.
    [232]T. Damm. State-feedback H∞-type control of linear systems with time varying parameter uncertainty [J]. Linear Algebra and its Applications,2002, vol.351-352:185-210.
    [233]N. Berman, U. Shaked.H∞-like control for nonlinear stochastic systems [J]. Systems and control letters,2005,55(3):247-257.
    [234]B. S. Chen, H. Zhang. Stochastic H2/H∞ control with state-dependent noise [J]. IEEE Transactions on Automatic Control,2004,49(1):45-57.
    [235]H. Zhang, S. Zhang, B. S. Chen. Stochastic H2/H∞ control with (x, u, v)-dependent noise:Finite horizon case [J], Automatica,2006,42(11): 1891-1898.
    [236]V. Dragan, T. Morozan, A. M. Stoica. Mathematical methods in robust control of linear stochastic systems [M]. New York:Springer,2006.
    [237]M. Mariton. Jump linear systems in automatic control [M]. New York: Marcel Dekker,1990.
    [238]G. Yin, X. Y. Zhou. Markowitz's mean-variance portfolio selection with regime switching:From discrete-time models to their continuous-time limits [J]. IEEE Transactions on Automatic Control,2004,49(3):349-360.
    [239]V. Dragan, T. Morozan. Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise [J]. Stochastics Analysis and Applications,2002, 20(1):33-92.
    [240]V. Dragan, G. Freiling, T. Morozan, et al. Iterative algorithms for stabilizing solution of game theoretic Riccati equations of stochastic control[C]. Proceedings of 18Th International Symposium on Mathematical Theory of Networks and Systems, Blacksburg, VA, USA, CD-Rom,2008.
    [241]W. M. Wonham. Random differential equations in control theory [M]. Probabilistic Methods in Applied Mathematics, New York:Academic Press, 2nd edition,1970.
    [242]H. Mukaidani, V. Dragan. Stochastic H∞ Control Problem with State-Dependent Noise for Multimodeling Systems[C]. Proceedings of 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 2009,4410-4415.
    [243]H. Markowitz. Portfolio selection [J]. The Journal of Finance,1952,7(1): 77-91.
    [244]D. Li, W. L. Ng. Optimal Dynamic Portfolio Selection:Multiperiod Mean-Variance Formulation [J]. Mathematical Finance,2000,10(3): 387-406.
    [245]X. Li, X. Y. Zhou, A. E. B. Lim. Dynamic mean-variance portfolio selection with no-shorting constraints [J]. SI AM Journal on Control and Optimization, 2002,40(5):1540-1555.
    [246]S. Zhu, D. Li, S. Wang. Risk control over bankruptcy in dynamic portfolio selection:A generalized mean-variance formulation [J]. IEEE Transactions on Automatic Control,2004,49(3):447-457.
    [247]Y. Hu, X. Y. Zhou. Constrained Stochastic LQ Control with Random Coefficients, and Application to Portfolio Selection [J]. SIAM Journal on Control and Optimization,2005,44(2):444-466.
    [248]A. E. B. Lim. Mean-variance hedging when there are jumps [J]. SIAM Journal on Control and Optimization,2005,44(5):1893-1922.
    [249]S. Xie, Z. Li, S. Wang. Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach [J]. Insurance:Mathematics and Economics,2008,42(3):943-953.
    [250]J. M. Reinhard. On a class of semi-Markov risk models obtained as classical risk models in a Markovian environment [J]. Astin Bulletin,1984,14(1): 23-43.
    [251]S. Asmussen. Exponential families generated by phase-type distributions and other Markov lifetime [J]. Scandinavian Journal of Statistics,1989,16(4): 319-334.
    [252]R. J. Elliott, L. Chan, T. K. Siu. Option pricing and Esscher transform under regime switching [J]. Annals of Finance,2005,1(4):423-432.
    [253]H. Haller, R. Lagunoff. Genericity and Markovian behavior in stochastic games [J]. Econometrica,2000,68(6):1231-1248.
    [254]S. Browne. Stochastic Differential Portfolio Games [J]. Journal of Applied Probability,2000,37(1):126-147.
    [255]S. Mataramvura, B.Oksendal. Risk minimizing portfolios and HJBI equations for stochastic differential games [J]. Stochastics:An International Journal of Probability and Stochastic Processes,2008,80(4):317-337.
    [256]R. J. Elliott, T. K. Siu. Portfolio risk minimization and differential games [J]. Nonlinear Analysis:Theory Methods & Applications,2009,71(12): 2127-2135.
    [257]R. J. Elliott, T. K. Siu. On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy [J]. Annals of Operations Research, 2010,176(1):271-291.
    [258]T. K. Siu. A game theoretic approach to option valuation under Markovian regime-switching models [J]. Insurance:Mathematics and Economics,2008, 42(3):1146-1158.
    [259]R. J. Elliott, T. K. Siu. A BSDE approach to a risk-based optimal investment of an insurer [J]. Automatica,2011,47(2):253-261.
    [260]R. J. Elliott, L. Aggoun, J. B. Moore. Hidden Markov Models:Estimation and Control [M]. New York:Springer-Verlag,1995.
    [261]B.Oksendal, A. Sulem. A game theoretic approach to martingale measures in incomplete markets [J]. Surveys of Applied and Industrial Mathematics,2008, 15:18-24.
    [262]R. C. Merton. Optimum consumption and portfolio rules in a continuous time model [J]. Journal of Economic Theory,1971,3(4):373-413.
    [263]S. Browne. Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin [J]. Mathematics of Operations Research,1995,20(4):937-958.
    [264]C. Hipp, M. Plum. Optimal investment for insurers [J]. Insurance: Mathematics and Economics,2000,27 (2):215-228.
    [265]R. Korn. Worst-case scenario investment for insurers [J]. Insurance: Mathematics and Economics,2005,36(1):1-11.
    [266]Y. Cao, N. Wan. Optimal proportional reinsurance and investment base on Hamilton-Jacobi-Bellman equation [J]. Insurance:Mathematics and Economic, 2009,45(2):157-162.
    [267]S. Chen, Z. Li, K. Li. Optimal investment-reinsurance policy for an insurance company with VaR constraint [J]. Insurance:Mathematics and Economics, 2010,47(2):144-153,
    [268]Y. Zeng, Z. Li. Optimal time-consistent investment and reinsurance policies for mean-variance insurer [J]. Insurance:Mathematics and Economics,2011, 49(1):145-154.
    [269]X. Zhang, T. K. Siu. Optimal investment and reinsurance of an insurer with model uncertainty [J]. Insurance:Mathematics and Economics,2009,45(1): 81-88.
    [270]R. J. Elliott, T. K. Siu. A stochastic differential game for optimal investment of an insurer with regime switching [J]. Quantitative Finance,2011,11(3): 365-380.
    [271]X. Lin, C. Zhang, T. K. Siu. Stochastic differential portfolio games for an insurer in a jump-diffusion risk process [J]. Mathematical Methods of Operations Research,2012,75(1):83-100.
    [272]F. L. Lewis. A survey of linear singular systems [J]. Circuits, Systems, and Signal Processing,1986,5(1):3-36.
    [273]L. Dai. Singular control systems:Lecture notes in control and information sciences [M]. Berlin:Springer-Verlag,1989.
    [274]V. Kolmanovskii, A. Myshkis. Introduction to the theory and applications of functional differential equations [M]. Dordrecht:Kluwer Academy,1999.
    [275]付梦印,邓志红,张继伟Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [276]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版社,2000.
    [277]R. Buckdahn, P. Cardaliaguet, M. Quincampoix. Some recent aspects of differential game theory [J]. Dynamic Games and Applications,2011,1(1): 74-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700