连分式方法在数字图像处理中的若干应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理的最终目标是能够有效地传递视觉信息,达到延伸人类视觉器官的功能。因此处理的结果图像不仅要能反映图像的客观性质,还要考虑人的视觉特性,而图像本身的客观性质和人的视觉特性都是非线性的,这就决定了非线性方法在图像处理中具有重要意义。近年来在图像处理领域,利用非线性方法进行图像处理取得较好效果的有中值滤波、数学形态学等,非线性方法已引起越来越多研究者的重视。作为研究非线性数值问题的首选方法—连分式方法,不仅能反映数据的渐变性,也能反映数据的突变性。鉴于这些原因,本文将连分式插值和逼近引入到数字图像处理领域,开展了图像插值、图像重建等方面的研究。本文的主要工作可归纳如下:
     首先,在以图像像素为插值节点集,构造连分式插值函数过程中出现逆差商为无穷大的情况,给出了合理的解决办法,提出了重新调整插值节点集的节点顺序、构造Thiele-Newton型混合有理的插值方法。该方法可有效地应用于散乱数据图像重建、图像缩放处理中。
     然后,在图像采样和图像重建理论的基础上,基于逼近理想插值核函数的思想,构造了一种自适应切触有理插值函数,对其空域和频域的性能进行了分析,并与传统的图像插值核函数进行了比较。
     接着,从彩色图像三基色之间存在相关性的角度出发,提出了利用二元(向量值)混合有理插值进行彩色图像的缩放方法,该方法也可用于灰度图像处理,此时向量有理插值处理转为标量有理插值处理。
     最后,从人的视觉对图像边缘和细节较敏感的角度出发,基于自适应插值思想,提出了一种新的保持轮廓清晰的有理—线性图像插值方法。在基于图像局部特征分析的基础上,将图像划分为不同的区域,对不同的区域相应地采取不同的矩形网格或三角网格上的二元(向量值)混合有理插值方法,实现图像的无级缩放。
     本文的创新意义包括:
     1.本文首次将(向量值)连分式方法用于数字图像处理领域。基于一元(向量)连分式形式的有理分式已应用于其它工程领域,但基于矩形网格和三角网格上的混合有理插值在数字图像处理领域目前还没看到这方面的报道。
     2.本文构造了一个全新的图像插值核函数—自适应切触有理插值核函数,同现有的线性插值核函数相比,其空域特性和频域特性均最接近
    
    合肥工业大学博士论文
    理想插值核函数Sinc函数。该函数的表达式系数可随缩放比例系数的
    不同取不同的值,突破了传统不同缩放比例的图像均选用相同的插值
    核函数的思路。重要的是该插值核函数还可用于其它信号的采样重建
    处理。
    基于自适应插值的思想,将线性插值方法和有理插值方法相结合,解
    决插值图像边缘失真问题。目前的自适应插值处理的方法是先检测出
    边缘,进行边缘线性拟合,最后沿着边缘线进行线性插值,实现图像
    的缩放等处理。而本文的方法是基于用非线性方法进行边缘处理,该
    方法将Newton线性插值方法和连分式有理插值方法进行有机的结
    合,提高了图像的插值速度和效果。
    不仅丰富了数字图像的处理方法,而且也扩展了连分式的应用领域,
    同时也会推动连分式理论的发展。
The purpose of image processing is to effectively transfer vision information, and achieve the aim of extending human eyespot Because the objectivity of image and humans vision peculiarity is nonlinear, the nonlinear image processing algorithms are important. In recent years, nonlinear methods have attracted more and more attention and there have been some successful cases, such as median filter, mathematical morphology, etc. As a preferred way to inverstigate nonlinear numerical problems, the continued fractions method can effectively express the gradually changing data or abrupt data, so it is meaningful to study image processing by means of the continued fractions theory and algorithms.
    With the review of digital image properties and continued fractions theory, this dissertation focuses on the study of the image interpolation and image reconstruction; the main contributions are as fallows:
    First of all, the methods of solving the problem of inverse difference being infinite are successfully found while constructing the Thiele-type continued fractions. In this case it is proposed to reorder the set of interpolating points and then construct a Thiele-Newton blending continued fraction. This method is useful to the scattered data interpolation for image reconstruction or image compression.
    Secondly, a new adaptive osculatory rational interpolation kernel function is constructed from the point of approximating the ideal interpolating function, the function's characteristics, i.e., the space properties, the spectral properties, and the efficiency are analyzed, and the comparision it with other interpolation methods is made.
    Thirdly, a new method of resizing color image is presented, where the processing of color image data is carried out by using bivariate (vector valued) blending rational interpolation. This method is more effective on color image processing, because of the inherent correlation that exists between the image channels, and the nonlinearity among image pixels.
    Finally, a novel adaptive interpolation magnification algorithm is proposed for color image to obtain a higher resolution image from its low resolution version. It adopts the basic idea of the adaptive interpolation schemes: local analysis to classify pixels into different categories and choose different interpolation algorithms by means of rational-linear vector valued interpolation over rectangular or triangular grids. The comparison results with classical linear interpolation schemes are alse provided.
    What fellows are the main results achieved in this dissertation.
    1. (Vector valued) continued fractions are adopted for the first time to process digital images. Though the rational fractions based on one-variable (vector valued) continued fractions have been used in other engineering fields, its application in the field of digital image processing hasn't yet been reported in the literature so far.
    
    
    
    2. A new osculatory rational interpolation kernel function is established, which is different from the classical linear interpolation kernel functions. Generally, it is a more accurate approximation for the ideal interpolation function than other linear polynomial interpolants functions. Simulation results are also presented to demonstrate the superior performance of this new interpolation kernel function.
    3. According to the basic idea of the adaptive interpolation schemes, a novel adaptive rational-linear algorithm is worked out to enhance the resolution of an image. In this approach, the interpolation functions are adaptively selected according to the local image analysis and classification. Our algorithm significantly outperforms the classical bilinear and bicubic interpolation methods in terms of edge sharpness and artifact reduction.
    4. The applications of the continued fractions are extended, which will further push forward the study of the continued fractions.
引文
[1] Joseph Abale, Ward Whitt. "Computing Laplace Transforms For Numerical Inversion Via Continued Fractions". May 14,1998,http://research.att.com.
    [2] Calvin D. Ahlbrandt, "Continued Fractions Arising in filtering and control".http://www.math.missouri.edu/cf/abstracts.pdf.
    [3] J. Allebach and P. W. Wong, "Edge-directed interpolation," in Proc. IEEE Int. Conf. Image Processing, vol. 3, 1996, 707-710.
    [4] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun, "Image Warping by Radial Basis Functions: Application to Facial Expressions", CVGIP: Graphical Models and Image Processing, Vol. 56, No. 2, 161-172, 1994.
    [5] Gonzalo R.Arce, Petros Maragos,Yrjo Neuvo, Ioannis Pitas, "Guest Editorial Introduction to the Special Issue on Nonlinear Image Processing",IEEE Trans.on Image Processing,vol.5,no.6,June 1996.805-808.
    [6] J. Astola, P. Haavisto, and Y. Neuvo, "Vector median filter," Proc. IEEE, vol. 78, 678-689, Apr. 1990.
    [7] F. L. Bookstein, "Principal Warps: Thin-Plate Splines and the Decomposition of Deformations", IEEE trans. Pattern Analysis and Machine Intelligence, Vol. 11, No. 6, 1989
    [8] S. Carrato, G. Ramponi, and S. Marsi, "A simple edge-sensitive image Interpolation filter," in Proc. IEEE Int. Conf. Image Processing, vol. 3,1996, 711-714.
    [9] R. Castagno and G. Ramponi, "A rational filter for the removal of blocking artifacts in image sequences coded at low bitrates", in Proc. of EUSIPCO'96, 10-13 Sept. 1996, vol. I,pp. 567-570.
    [10] F. Alaya Cheikh, L. Khriji, M. Gabbouj, and G. Ramponi,"Color image interpolation using vector rational filters", in Proc. of SPIE/EI Conf., Nonlinear Image Processing Ⅸ, San Jose, CA, 24-30 Jan. 1998, vol. 3304.
    [11] H. Chen, M. Civanlar, and B. Haskell, "A block transform coder for arbitrarily shaped image segments," in Proc. IEEE Int. Conf. Image Processing, Nov. 1994, 85-89.
    [12] P. Combettes, "The foundations of set theoretic estimation," Proc. IEEE, vol. 81,no. 2, 182-208, Feb. 1993.
    [13] M.S. Crouse, R.D. Nowak, and R.G.Baraniuk. "Wavelet-Based Signal Processing Using Hidden Markov Models". IEEE Transactions on Signal Processing, 886-902, April 1998.
    [14] Cuyt A. and Verdonk B., "A Review of Branched Continued Fractions Theory for the Construction of Multivariate Rational Approximants", Appl. Numer. Math.,
    
    4(1988),263-271.
    [15] Cuyt A. and Verdonk B., "Evaluation of branched continued fractions using block-tridiagonal linear systems", IMA J. Numer. Anal.,8(1988),209-217.
    [16] Neil A. Dodgson, "Quadratic Interpolation for Image Resampling", IEEE Transactions on Image Processing, Vol. 6, No..9, Sept 1997
    [17] Durand CX, Faguy D., "Rational zoom of bitmaps using B-spline interpolation in computerized 2-D anmation". Computer Graphics Forum. 1990,9[1],27-37.
    [18] Philippe Flajolet, Fabrice Guillemin. "The formal theory of Birth-Death Processes, Lattice Path Combinatorics and Continued Fractions", France Telecom, CNET, Lannuon, Breizh, Algorithms Seminar, February 2, 1998.
    [19] Frank R,Hagen,H. "Least squares surface approximation using multiquadrics and parametris domain distortion".CAGD 16,1999:177-196
    [20] I.J.Good, "Random Motion and Analystic Continued Fractions", Processings of Cambridge Philosophical Society, 54:43-47,1958.
    [21] A.Goshtasby, "Piecewise Linear Mapping Functions for Image Registration", Pattern Recognition, Vol. 19, No. 6, pp. 459-466, 1986
    [22] Graves-Mories P.R., "Vector valued rational interpolants I", Numer. Math., 42(1983),331-348.
    [23] Graves-Mories P.R.,"Vector valued rational interpolants Ⅱ",IMA J.Numer. Anal.,4(1984),209-224.
    [24] Graves-Mories P.R. and Jenkins C. D., "Vector valued rational interpolants Ⅲ", Constr. Approx., 2(1986),263-289.
    [25] Fabrice Guillemin and Didier Pinchon."Continued fraction analysis of the duration of an excursion in an M/M/system". Journal of Applied Probability, vol. 35, no.1, 1998, 165-183
    [26] Fabrice Guillemin and Didier Pinchon., "Excursions of birth and death processes, orthogonal polynomials, and continued fractions", Preprint, 1998. Journal of Applied Probability.
    [27] K.P.Hong, J.K. Paik,H.J.Kim and C.H.Lee, "An Edge-Preserving Image Interpolation System for a Digital Camcorder", IEEE Trans.on Consumer Electronics, vol.42,no.3,August. 1996. 279-283.
    [28] H.H. Hou and H.C.Andrews, "Cubic Splines for Image Interpolation and Digital Filtering", IEEE Truns.on Acoustics,Speech,and Signal Processing,vol.26,no.6, 508-512,Dec.1978.
    [29] M.Hu, J.Q.Tan, "Image compression and reconstruction based on brivariate interpolation by continued fractions," in Second International Conference on Image and Graphics,Wei Sui,Editor, SPIE Vol. 4875,87-92(2002)
    
    
    [30] K. Jensen and D. Anastassiou, "Subpixel edge localization and the interpolation of still images," IEEE Trans. on Image Processing, vol. 4, 285-295, Mar. 1995.
    [31] W.B. Jones, A. Steinhardt, "Digital Filters and Continued Fractions", Lect. Notes In Math, No. 32, 129,Springer-Verlag, Berlin, 1982.Feb. 1972.
    [32] Jones W.B.and Thron W.J.,"Continued Fractions Analytic Theory and Application", Addision Wesley London,1980.
    [33] William B.Jones, "Frequency analysis,Wiener Filters, Szeg(?) Polynomials and PC-Continued Fractions".http://Euclid.Coiorado.edu
    [34] Juan C., "Modified 2D median filter for impulse noise suppression in a real-time system", IEEE Trans. on Consum. E41(1995) 15.73-80
    [35] R.G..Keys, "Cubic convolution interpolation for digital image processing",IEEE Trans.Acoust.Speech, Signal Processing, 1981,ASSP-29, No. 6,1153-1160.
    [36] L. Khriji, F. Alaya Cheikh, and M. Gabbouj, "Multistage vector rational interpolation for color images", in Proc. Of CESA'98, Hammamet, Tunisia, 1-4 April 1998.
    [37] L. Khriji and M. Gabbouj, "Median-rational hybrid filters for image restoration", Electronics Letters, vol. 34, no. 10, 977-979, May 1998.
    [38] Lazhar Khriji, Moncef Gabbouj, "Vector Median-Rational Hybrid Filters for Multichannel Image Processing", IEEE Signal Processing Letters, Vol. 6, No.7, July 1999,186-190
    [39] N.F. Law and R.Chung, "Interpolation with Multiscale Analysis of Discontinuity", Proceeding of the Fifth European Conference on Computer Vision, June 1998,University of Freiburg,Breisgau, Germany,Vol 2, 202-214.
    [40] Seungyong Lee,George Wolberg,and Sung Yong Shin, "Scattered Data Interpolation with Multilevel B-Splines", IEEE Transaction on Visualization and Computer Graphics,Vol.3,No.3,July Septrmber 1997.
    [41] S. W. Lee and J. K. Paik, "Image interpolation using adaptive fast B-spline filtering," in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, 1993, 177-180.
    [42] H.Leung and S.Haykin, "Detection and Estimation Using an Adaptive Rational Function Filters", IEEE Trans.on Signal Processing,vol.42,no. 12, Dec. 1994,3365-3376.
    [43] Xin Li, Michael T. Orchard, "New Edge-Directed Interpolation", IEEE Transactions on Image Processing", Vol. 10, No.10, October 2001,1521-1527.
    [44] R.Machuca and K. Phillips, "Applications of vector fields to image processing," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, 316-329, May 1983.
    [45] O. Mencer, M. Morf, M. J. Flynn, "Precision of Semi-Exact Redundant Continued Fraction Arithmetic for VLSI", SPIE Advanced Signal Processing Algorithms, Architectures, and Implementations Ⅸ, Denver, July 1999.
    
    
    [46] S.K. Mitra, R.J. Sherwood, "Canonic realizations of digital filters using the continued fraction expansion", IEEE Trans. on Audio and Electroacoustics, Vol. AU-20, No. 3, 185-197, Aug. 1972.
    [47] Ryszard Stasi Nski, Janusz Konrad, "POCS-Based Image Reconstruction From Irregulary-Spaced Samples", In Proc. Int. Conf. on Image Processing, ICIP-2000 Sep. 10-13, 2000, Vancouver, BC, Canada
    [48] M.A.Pumar."Zooming of Terrain Imagery Using Fractal-Based Interpolation".Comput. >aphics,20(1): 171-176,1996.
    [49] G..Ramponi, "The Rational Filter for Image smoothing",IEEE Signal Processing Letters ,vol.2,no.3,63-65,Mar. 1996
    [50] G.Ramponi, S. Carato, "Interpolation of the DC component of Coded Image Using a Rational Filter", IEEE Signal Process.Lett., ,vol.3,no.7 1997,386-392.
    [51] Tami R. Randolph, "Image Compression and Classification Using Nonlinear Filter Banks", PhD thesis, Georgia Institute of Technology, April 2001.
    [52] K. Revathy, G. Raju and S. R. Prabhakaran Nayar, "Image Zooming by Wavelets", Fractals, Vol. 8, No. 3(2000) 247{253, World Scientic Publishing Company.
    [53] Corless Robert, "Continued Fraction and Chaos", Amer, Math. Monthly, 1992.
    [54] Ruprecht D., Nagel R., Muller H. "Spatial free-form deformation with scattered data interpolation methods".Computer and Graphics. 1995,19(1):63-71.
    [55] Scharcanski J, Venelsancpoulcs A N, "Edge Detection of Color Image Using Ciredional Operalions",IEEE Trans Circuils and Systems for Video Technolgy, 1997:7(2),397-401.
    [56] Siemaszko W., "Branched Continued Fractions for Double Power Series", J.Comput.Appl.Math., 6(1980),121-125.
    [57] Siemaszko W., "On Some Conditions for Convergence of Branched Continued Fractions",LNM,888(1981),363-370
    [58] Siemaszko W., "Thiele-type Branched Continued Fractions for Two-variable Functions" J.Comput.Appl.Math., 9(1983), 137-153.
    [59] Jieqing Tan, "Algorithms for lacunary vector valued rational interpolants", Numer.Math. A J. Chin. Univ.7(2)(1998), 681-687
    [60] Jieqing Tan, "Bivariate Rational Interpolants with Rectangle-hole Structure",J. Comput. Math. 17(1), 1999.1-14
    [61] Jie-Qing Tan, "A Compact Determinantal Representation for Inverse Differences",数学研究与评论 20(1)32-36
    [62] Jieqing Tan, "Bivariate blending rational interpolants",Approximation Theory and Its Application, 15(2)(1999),74-83.
    [63] Jieqing Tan,"Rational surfaces approximately reconstructed by continued
    
    fractions", Proceedings of the 7th Inter-national Conference on Computer Aided Design and Computer Graphics, International Academic Publishers.(2001)
    [64] Jieqing Tan, "Composite schemes for multivariate blending rational interpolation", J.Comput.Appl.Math. 144(2002)263-275.
    [65] Jieqing Tan," The limiting Case of Thiele's Interpolating Continued Fraction Expansion", J.Comput.Math. 19(4)433-444.
    [66] Jieqing Tan, Shuo Tang, "Vector Valued Rational Interpolants by Triple Branched Continued Fractions", Appl. Math. -JCU, 12B(1)(1997), 99-108
    [67] Jieqing Tan, Shuo Tang. "Bivariate composite vector valued rational interpolation". Mathematics of Computation,69(2000), 1521-1532.
    [68] Jieqing Tan and Yi Fang, "Newton-Thiele's rational interpolants", Numerical Algorithms 24(2000)141-157.
    [69] Jie-Qing Tan and Gong-Qin Zhu, "Bivariate Vector Valued Rational Interpolants by Branched Continued Fractions", Numer.Math.A.J.of Chinese Univ.,1(1995), 37-43.
    [70] Jie-Qing Tan and Gong-Qin Zhu, "General framework for vector valued interpolants",in:Proceedings of Third China-Japan seminar on Numerical Mathematics, Zhong-CiShied,Science Press,Beijing/New York(1998),273-278.
    [71] Hou-chun Ting and Hsueh-Ming Hang, "Spatially Adaptive Interpolation of Digital Images Using Fuzzy Inference". SPIE, Vol.2727,89-99,1996.
    [72] P.E. Trahanias, D.Karakos and A.N. Venetsanopoulos, "Directional Processing of Color Images:Theory and Experimental Results",IEEE Trans.on Image Processing,vol.5,No.6,June 1996.868-880.
    [73] L.Trahanias, P E, Venetsanopoulos A N, "Color edge detection using vector statistics", IEEE Trans Image Processing, 1993(24):259-264.
    [74] S. Tsekeridou, F. Alaya Cheikh, M. Gabbouj, and I. Pitas, "Motion field estimation by vector rational interpolation for error concealment purposes", in Proc. of ICASSP'99, 15-19 Mar. 1999, accepted for publication.
    [75] Adam Van Tuyl, "continued fractions", http://archives.math.utk.edu/articles/atuy/confrac/index.html
    [76] Wynn P., "Vector Continued Fractions", Linear Algebra and its applications, 1(1968), 357-395.
    [77] 程正兴,《小波分析算法与应用》,西安交通大学出版社,1998.
    [78] 程正兴、李水根,《数值逼近与常微分方程数值解》.西安:西安交通大学出版社,2000.
    [79] 崔屹,《数字图像处理技术与应用》,北京,电子工业出版社,1997,43-45.
    [80] 崔屹,《图像处理与分析—数学形态学方法及应用》,科学出版社,北京,2000.
    
    
    [81] 顾传青,“二元Thiele型向量连分式的系数算法”,合肥工业大学学报(自然科学版),2(1990),49-53.
    [82] 顾传青、朱功勤,“二元Thiele型向量连分式展开式及其逼近性质”,高等学校计算数学学报,2(1993),99-105
    [83] 顾传青、朱功勤,“二元Thiele型向量连分式的误差公式”,高等学校计算数学学报,3(1994),293-296.
    [84] 胡敏、檀结庆、刘晓平,“基于有理分式插值的散乱数据图像重建方法”,贵州工业大学.
    [85] 黄友谦、李岳生,《数值逼近》,北京:高等教育出版社,1987.
    [86] 李建平、唐远炎,《小波分析方法的应用》,重庆大学出版社,1999.10.
    [87] 钱曾波、朱述龙,《基于小波变换的图像变焦技术》,解放军测绘学院学报,1994,11(3),45-48.
    [88] 阮秋琦,《数字图像处理学》,电子工业出版社,2001.1.
    [89] 施法中,《计算机辅助几何设计与非均匀有理B样条》,北京:高等教育出版社,2001.3.
    [90] 石峻、郭宝龙,“一种新的图像插值方案—子带插值”,西安电子科技大学学报,25(5),1998.
    [91] 檀结庆,胡敏,刘晓平,“有理曲面的三维重建”,计算机应用,Vol.20.Suppl.57-59.
    [92] 檀结庆、唐烁,“向量值三重分叉连分式插值的算法”,数值计算与计算机应用,21(1996).146-149.
    [93] 檀结庆、朱功勤,“二元向量分叉连分式插值的矩阵算法”,高等学校计算数学学报,3(1996),250-254.
    [94] 徐晓刚、欧宗瑛、王秀娟,“基于分形几何模型的图像放大”,中国图像图形学报,3(11).896-898,1998.
    [95] 杨丰、肖平、余英林,“基于三次B一样条小波变换的汉字字型无级放大算法”,计算机学报,Vol.21,No.12,Dec.1998.
    [96] 杨绍国、尹忠科、罗炳伟、尧德中,“分形插值在图像处理中的应用“,电子科学学刊,19(4)1996:562-565.
    [97] 朱长青,《小波分析理论与影像分析》,测绘出版社,1998.
    [98] 钟慧湘、王正旋、庞云阶,“图像重建中的有理逼近方法”,中国图象图形学报,11(2000),876-919.
    [99] 朱功勤,“二元矩阵有理插值算法与特征性质”,中国学术期刊文摘,3(1999),333-335.
    [100] 朱功勤、顾传青,“二元Thiele型向量有理插值”,计算数学,3(1990),293-301.
    [101] 朱功勤、顾传青,“二元对称型向量有理插值”,合肥工业大学学报(自然科学版),4(1991),80-85.
    [102] 朱功勤、顾传青,“向量连分式逼近与插值”,计算数学,4(1992),427-432.
    
    
    [103] 朱功勤、顾传青,檀结庆,《多元有理逼近方法》,北京:中国科学技术出版社,1996年7月.
    [104] 朱功勤、檀结庆、王洪燕,“预给极点的向量有理插值及性质”,高等学校计算数学学报,2(2000),97-104.
    [105] 朱功勤、檀结庆,“矩形网格上二元向量有理插值的对偶性”,计算数学,3(1995),311-320.
    [106] 朱功勤、王洪燕,“离散点集上的向量有理插值算法与特征性质”,高等学校计算数学学报,4(1998),316-320.
    [107] 朱浩、方宗德、杨宏斌,“基于NURBS曲面拟合的图像边缘检测方法”,洛阳工学院学报,vol.22,No.1,3(2000),39-42.
    [108] 朱晓临,“一种快速构造圆弧的新方法”,合肥工业大学学报,(2) 2002.269-272.
    [109] 朱晓临,“(向量)有理函数插值的研究及其应用”,中国科技大学博士学位论文,2002.9.
    [110] 朱心雄等,《由曲线曲面造型技术》,科学出版社,2000.
    [111] 周燕、金伟其,“人眼视觉的传递特性及模型”,光学技术,Vol.22,No.1,Jan.2001.
    [112] 朱志刚等译,《数字图像处理》,电子工业出版社,1998.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700