横风中高速铁路声屏障对列车气动性能和动力学性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路建设的迅猛发展和列车运营速度的不断提高,高速列车的运行安全性和噪声污染问题日益受到人们的关注。为了降低噪声对周围环境的影响,声屏障技术在国内外高速铁路工程领域得到了广泛的应用。在横风环境中,声屏障客观上起到了挡风墙的作用。安装声屏障后,对列车起到了一定的横风保护作用。同时,列车周围流场结构发生改变,列车的气动性能和动力学性能都将受到声屏障的影响,声屏障参数设置合理与否将影响到高速列车行车安全性。因此有必要深入探讨横风中声屏障对高速列车气动性能和动力学性能的影响,以期为高速铁路声屏障的合理设置及设有声屏障区段上列车的安全运营提供参考。
     论文介绍了国内外高速铁路建设发展概况及高速铁路声屏障的应用情况。在总结了国内外横风中列车运行安全性及高速铁路声屏障相关研究工作的基础上,指出了现阶段针对横风中声屏障对列车运行安全性研究的不足之处。基于空气动力学理论建立了横风中高速列车运行在复线路堤及复线高架桥区段时的三维空气动力学模型,并针对不同高度的声屏障工况分别建模。基于多体动力学理论建立了对应的横风中高速列车系统动力学模型。分析了横风中列车运行在复线路堤及复线高架桥区段时,有、无声屏障对列车周围流场结构、气动性能、动力学性能和运行安全性的影响。针对设有插板式声屏障的路堤区段和高架桥区段,分别研究了横风环境中,列车气动性能和动力学性能随声屏障高度的变化规律。
     数值模拟结果表明,加装声屏障后,由于列车与其两侧的声屏障之间形成了半封闭的空间,列车两侧都出现了明显的旋涡,形成局部负压区域。列车与迎风侧声屏障之间形成的负压区域可能导致列车受到逆横风方向的作用力,使得列车有向逆横风方向倾覆的倾向。列车运行在不同工况时,列车两侧形成了位置、大小不一的旋涡。在路堤及高架桥区段,车辆受到的气动力随声屏障高度的增加有一定的规律性,其中头车气动性能受声屏障高度变化的影响最大,声屏障高度较低时,随声屏障高度的增加,头车侧力和侧滚力矩改善明显。在路堤及高架桥区段,声屏障高度对头车的运行安全性指标有明显影响。复线路堤区段,声屏障高度较低时,列车安全性指标随高度增大而减小,但声屏障达到一定高度后安全性指标又逐渐增大。复线高架桥区段,列车安全性指标随高度增加逐渐得到改善。列车运行在复线路堤段上风线时,安全性好于下风线时;列车运行在复线高架桥段上、下风线时安全性指标差别不大。随横风速度和行车速度的增大,列车运行安全性逐渐变差。不宜在横风较大的路堤区段架设3m以上高度的声屏障;高架桥区段声屏障高度则不宜超过3.5m。
With the rapid development of high-speed railway and the increase of train speed, the running safety and noise pollution of high speed train are concerned increasingly. In order to reduce the noise pollution induced by high speed train, noise barrier is widely used in modern high speed railway engineering at home and abroad. In crosswind condition, noise barrier also acts as windbreak wall. With noise barrier equipped, trains are protected to a certain extent in crosswind condition, but noise barrier changes the flow structure around the train, affects the aerodynamic performance and dynamic performance. The height of noise barrier may affect the running safety of train. Hence, it is necessary to study the influence law of noise barrier on aerodynamic and dynamic performance of high speed train, to provide some reference for the design of noise barrier and running safety.
     The development situations of high speed railway and noise barrier at home and abroad are summarized at first. The study on running safety in crosswind condition and noise barrier is reviewed and some disadvantages are pointed.3D aerodynamic models of high speed train running on embankment and viaduct equipped with noise barrier are built (different height noise barrier models are separately built) based on aerodynamic theory. Corresponding train dynamic models are built based on multi-body dynamics. Flow structures, aerodynamic and dynamic performances with and without noise barrier are compared, separately on embankment and viaduct. The change laws of aerodynamic and dynamic performances with the increase of noise barrier height are studied.
     Numerical analysis shows that:turbulences form on both sides of the carbody, and negative pressure forms in these areas. The negative pressure area formed between the windward side of carbody and noise barrier may produce side force against the wind direction. Different turbulences are formed in different cases. On embankment and viaduct, the aerodynamic force changes with the increase of noise barrier height. The change range of head car is the largest, its side force and rolling moment reduces within a certain range of height. With the increase of height, when noise barrier is low, the running safety of train on embankment gets better, when the height reaches certain value, it gets worse. On viaduct, running safety of train gets better with the increase of height. Running safety on windward track of embankment is better than on leeward track. On viaduct, train running safety indexes on leeward and windward tracks are close. With the increase of wind speed and train speed, running safety gets worse. In crosswind condition, noise barrier above3m on embankment is not advised,3.5m and above noise barrier on viaduct is not advised.
引文
[1]G. Ellwanger, M. Wilckens. European high-speed transport:A service with future[J]. Rail International.1994, (1):3-14.
    [2]钱立新.速度350 km·h-1等级世界高速列车技术发展综述[J].中国铁道科学,2007,(4):66-72.
    [3]杨新文.高速铁路轮轨噪声理论计算与控制研究[D].成都:西南交通大学,2010.
    [4]前田达夫.兰于沿线环境的研究开发动向[R].日本铁道综合技术研究所报告,2002.
    [5]T.Kawa, K.Fujimoto, T.Itow. Noise Propagation around a Thin Half Plane[J]. Acustica, 1978,38:313-323.
    [6]U.J.Kurze. Noise Reduction by Barriers[J]. Journal of the Acoustical Society of America,1974,55:504-518.
    [7]关于发布时速250、350km客运专线铁路路基插板式声屏障通用参考图的通知经规标准[2009]84号.铁道标准设计,2009,(11):132-133.
    [8]关于发布时速250km客运专线铁路桥梁插板式金属声屏障和时速350km客运专线铁路桥梁插板式金属声屏障的通知经规标准[2009]7号.铁路标准设计,2009,(11):130.
    [9]TB 10621-2009,高速铁路设计规范(试行)[S].2009.
    [10]高广军,段丽丽.单线路堤上挡风墙高度研究[J].中南大学学报(自然科学版),2011,42(1):254-259.
    [11]姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响[J].中国铁道科学,2006,27(2):66-70.
    [12]Chris Baker, Federico Cheli, Alexander Orellano, et al. Cross-wind effects on road and rail vehicles[J]. Vehicle System Dynamics,2009,47(8):983-1022.
    [13]E. Andersson, J. Haggstrom, M. Sima and S. Stichel. Assessment of train-overturning risk due to strong cross-winds[J]. IMechE Part F:Journal of Rail and Rapid Transit. 2004,218:215-223.
    [14]Coleman S. A., Baker C. J. High sided road vehicles in crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990(36):1383-1392.
    [15]Diedrichs, Ben. Studies of Two Aerodynamics Effects on High-Speed Trains Crosswind Satbility and Discomforting Car Body Vibrations Inside Tunnels[D]. Royal Institute of Technology Doctoral Thesis,2006.
    [16]Hoppmann U, Koening S, Tielkes T, Matsehke G. A short-term strong wind prediction model for railway application, design and verification[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002,90(10):1127-1134.
    [17]Fuji Toshishige, Taneneio Katsuji, Maeda Tasuo, et al. Wind Induced Accidents of Train Vehicles in Japan and the Countermeasures on Kansai Airport Line[A]. World Congress on Railway Research[C], Italy,1997:1-7.
    [18]M. Matsumoto, T. Maeda. Train-Vehicles wind-induced hazard and its mitigation[A]. Proceedings of the Conference on Natural Disaster Reduction[C], ASCE,1996.
    [19]Matsehke G, Schulte-Werning B. Measures and Strategies to Minimize the Effect of Strong Cross Winds on High Speed Trains[A]. Proceedings of WCRR World Congress of Railway Research[C], Florence, Italy, Vol. E,569-575,1997.
    [20]Nadal M J. Locomotives a vapeur, collection encyclopedie scientifique[J]. Biblioteque de Mecanique Appliquee et Genie,1908,186(1):56-67.
    [21]Weinstock H. Wheel climb derailment criteria for evaluation of rail vehicle safety[A]. ASME Proceeding of the ASME Winter Annual Meeting[C]. New York:ASME,1984: 1-7.
    [22]Elkins J, Wu H. Angle of attack and distance-based criteria for flange climb derailment[J]. Vehicle System Dynamics,2000,33(2):293-305.
    [23]俞展猷,李富达,李谷.车轮脱轨及其评价[J].铁道学报,1999,21(3):33-38.
    [24]曾京.轮对稳态脱轨准则的研究[J].铁道学报,1999,21(6):15-19.
    [25]翟婉明,陈果.根据车轮抬升量评判车辆脱轨的方法与准则[J].铁道学报,2001,23(2):17-26.
    [26]曾庆元,向俊,娄平.车桥及车轨时变系统横向振动计算中的根本问题与列车脱轨能量随机分析理论[J].中国铁道科学,2002,23(1):1-10.
    [27]Copley J.M.. The three-dimensional flow around railway trains[J]. Journal of Wind Engineering and Industrial Aerodynamics.1987,26(1):21-52.
    [28]Baker C. J. Ground vehicles in high cross winds[J]. Part I:steady aerodynamic forces. Journal of Fluids and Structures.1991,5:69-90.
    [29]W. Khier, M. Breuer and F. Durst, Flow structure around trains under side wind conditions:a numerical study[J]. Computers & Fluids,2000,29(2):179-195.
    [30]B. Diedrichs, M. Sima, A. Orellano, H. Tengstrand. Crosswind stability of a high-speed train on a high embankment[J]. Proceedings of the I MECH E. Part F:Journal of Rail and Rapid Transit,2007,221(2):205-225.
    [31]M. Suzuki, K. Tanemoto, T. Maeda. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003, 91(1):209-218.
    [32]毕海权,雷波,张卫华.TR磁浮列车气动力特性数值计算研究[J].铁道学报,2004,26(4):51-54.
    [33]谭深根.侧风下高速列车气动性能分析[D].成都:西南交通大学,2008.
    [34]谭深根,李雪冰,张继业,张卫华.路堤上运行的高速列车在侧风下的流场结构及气动性能[J].铁道车辆,2006,46(8):4-8.
    [35]田红旗.高速列车空气动力学[M].北京:中国铁道出版社,2007.
    [36]周丹,田红旗,杨明智,鲁寨军.强侧风下客车在不同路况运行的气动性能比较[J].中南大学学报(自然科学版),2008,39(3):554-559.
    [37]Cooper, R.K.. The probability of trains overturning in high winds[A]. Proc.5th Int. Conf. on Wind Engineering[C], Fort Collins, CO, USA, Pergamon,1979,1185-1194.
    [39]日比野有,石田弘明.车冈の耘覆限界风速に关すゐ否静解析法[R].铁道総研报告,2003,17(4):39-44.
    [40]Diedrichs B., Ekequist M., Stichel S., and Tengstrand H.. Quasi-static modeling of wheel rail reactions due to crosswind effects for various types of high-speed rolling stock[J]. IMechE Part F:Journal of Rail and Rapid Transit,2004,218:133-148.
    [41]高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40.
    [42]陈康,罗赞.横风对液力传动动车直线运行性能的影响[J].铁道车辆,2003,(6):22-24.
    [43]任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究[J].铁道学报.2006,28(6):46-50.
    [44]H. Xia, W.W. Guo, N. Zhang, G.J. Sun. Dynamic analysis of a train-bridge system under wind action[J]. Computers and Structures,2008,1845-1855.
    [45]YANG Ji-zhong, ZHAI Wan-ming, and BI Hai-quan. Analysis of wind/vehicle interaction in cross-wind considering fluid-solid interaction effect[A]. Proceeding of the First International Symposium on Innovation & Sustainability of Modern Railway[C]. China Railway Publishing House,2008:617-622.
    [46]杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析[J].铁道学报.2009,31(2):120-124.
    [47]李振.横风中复线路堤上高速列车气动性能和运行安全性研究[D].成都:西南交 通大学,2011.
    [48]汪林峰.横风中桥上高速列车的气动性能和动力学性能分析[D].成都:西南交通大学,2012.
    [49]王厚雄,高注,王蜀东,尹永顺.挡风墙高度的研究[J].中国铁道科学,1990,11(1):14-22.
    [50]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响[J].中南大学学报(自然科学版),2006,37(1):176-182.
    [51]郑继平.南疆铁路大风区高架桥挡风结构研究与设计[J].铁路标准设计,2008,(11):27-29.
    [52]郑晓静,马高生,黄宁.铁路挡风墙挡风效果和积沙情况分析[A].中国力学学会学术大会'2009论文摘要集[C],2009.
    [53]黄宁.火车倾覆的力学分析[A].第十四届全国结构风工程学术会议论文集(下册)[C],2009.
    [54]马存明,李佳圣,廖海黎.兰新铁路列车横风稳定性3D数值风洞研究[A].第七届全国风工程和空气动力学学术会议论文集[C],2006.
    [55]刘晓红.强风区电气化铁路挡风墙的研究.前沿动态2011年第2期.
    [56]杨斌,刘堂红,杨明智.大风区铁路挡风墙合理设置[J].铁道科学与工程学报,2011,8(3):67-72.
    [57]江杰.接触网风偏量检测系统设计与实现[D].长沙:中南大学,2009.
    [58]Kaoru Murata, et al. Noise Reduction Effect of Noise Barrier for Shinkansen Based on Y-shaped Structure[J]. QR of RTRI,2006,47(3):162-168.
    [59]D.C. Hothersall, et al. Scale Modelling of Railway Noise Barriers [J]. Journal of Sound and Vibration,2000,234(2):207-223.
    [60]郑史雄,王林明.铁路声屏障风荷载体型系数研究[J].中国铁道科学,2009,(4):46-50.
    [61]罗建斌,杨志刚.高架桥声屏障高度对高速列车气动特性的影响[J].计算机辅助工程,2011,20(3):6-10.
    [62]罗建斌,胡爱军.高架桥声屏障高度对列车气动性能影响到数值模拟[J].计算物理,2012,29(1):65-72.
    [63]董香婷.风障对桥面风环境影响的数值模拟研究[D].杭州:浙江大学,2007.
    [64]唐煜.高架桥挡风屏对强侧风条件下列车运营安全性的影响[D].成都:西南交通大学,2010.
    [65]黄泰鑫.沿海铁路桥梁挡风墙抗风作用研究[D].长沙:中南大学,2010.
    [66]陈涛.高速铁路桥梁风障设置对列车及主梁气动性能影响研究[D].长沙:中南大 学,2011.
    [67]于梦阁.高速列车风致安全研究[D].成都:西南交通大学,2010.
    [68]吴望一.流体力学(上)[M].北京:北京大学出版社,1982.
    [69]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [70]李人宪.有限体积法基础(第2版)[M].北京:国防工业出版社,2008.
    [71]H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. England:Longman Group Ltd,1995.
    [72]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [73]田红旗.中国列车空气动力学研究进展[J].力学进展,2006,6(1):1-9.
    [74]S.V. Pantakar and D.B. Spalding. A calculation procedure for heat, mass and moment transfer in parabolic flow[J]. Int. J. Heat Mass Transfer,1972,15:1787-1806.
    [75]N.G. Markatos, The theoretical prediction of external aerodynamics of road vehicles [J]. Int. J. Vehicle Des. SP3,1983:387-400.
    [76]W. Khier, Le Devehat E. CFD Methodology[R]. Report Ref.1M7S23T1.DA, TRANSAERO Brite Euram project No. BE95-1240.
    [77]M. Sterling, A.D. Quinn, D.M. Hargreaves, and etc. A comparison of different methods to evaluate the wind induced forces on a high sided lorry [J]. Journal of Wind Engineering and Industrial Aerodynamics.2012,98:10-20.
    [78]R. K. Cooper. The effect of cross-wind on trains[A]. In:Proceedings of Aerodynamics of Transportation[J], ASME-CSME Conference.18-20 June, Niagara,1979:27-51.
    [79]邓运清.高速铁路简支箱梁设计研究[J].铁道标准设计,2004,(7):125-129.
    [80]翟婉明.车辆-轨道耦合动力学(第3版)[M].北京:科学出版社,2007.
    [81]严隽耄,傅茂海.车辆工程(第三版)[M].北京:中国铁道出版社,2004.
    [82]V. K. Garg, R. V. Dukkipati. Dynamics of Railway Vehicle Systems[M]. Academic Press. Canada,1984.
    [83]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [84]杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究[D].成都:西南交通大学,2009.
    [85]贾璐.高速车辆动力学性能评价方法研究[D].成都:西南交通大学,2008.
    [86]李振,翟婉明,赵春发,杨吉忠.横风环境中复线路堤上高速列车的气动性能[J].铁道车辆,2011,49(11):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700