地铁车站通风与火灾三维数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁车站是地铁建设中投资巨大的重要环节,也是乘客大量集散的地方,其内部的气流组织、温度分布对人体舒适和环控能耗的影响尤其重要。根据地铁车站内低雷诺数湍流流动的特点,以Navier-Stokes方程为基础,引入了重正化群双方程κ-ε湍流模型,通过重正化群变换,得到了湍动能方程和湍动能耗散方程以及湍流模型系数,建立了适用于求解地铁车站湍流流场的计算流体力学模型。针对地铁车站结构复杂的特点,使用Delaunay三角形化方法,对模型进行了非结构化网格划分。通过对时间和空间差分格式的选取、源项及边界条件的处理,在非结构化网格上对流场控制方程进行了离散。针对非结构化网格上迭代收敛速度会逐渐减慢的特点,引入了多重网格求解技术,采用了其中效率较高的代数多重网格方法对离散方程进行求解。在上述研究的基础之上,分别使用标准κ-ε两方程湍流模型和RNG κ-ε两方程湍流模型对自然对流、强制对流以及混合对流这三种典型的室内流动进行了数值计算,并与文献中的实验结果进行了对比,两种模型的计算结果都与实验结果吻合良好,在个别指标上,RNG κ-ε湍流模型的计算结果要优于标准κ-ε湍流模型。由于缺乏地铁火灾的实验数据,选取了一个比较经典的隧道火灾实验对RNGκ-ε湍流模型进行了验证,计算结果与实验数据吻合良好,表明本文的思路是正确的,研究方法是可行的。
     利用上述计算方法,对拟建中的成都地铁一号线上的火车北站地铁站环控系统进行了数值模拟,对正常运营下的候车工况、列车进站、列车停站以及事故运营中的阻塞工况进行了系统、详细的数值计算研究,分析了站台上温度和气流速度的变化情况;对地铁车站环控系统常用的四种气流组织方案:站台中间回/排风方案、站台下排风方案、车行顶道排风方案以及混合回/排风方案进行了数值模拟,并就温度场、气流速度场和空气龄这三个指标对四种方案进行了对比和分析,针对四种方案下站台候车厅内温度均不同程度的超标现象,对能够大幅改善候车环境的屏蔽门方案进行了模拟和分析。
     针对列车头部、中部和尾部三种不同位置发生火灾的情况,对全排风通风模式和推挽式通风模式进行了详细的数值计算和比较,计算中使用离散传播法对火灾时高温引起的辐射进行了模拟。在对火灾情况下站台上的环境进行评估的过程中,综合考虑了《地下铁道设计规范》和NFPA 130标准,对火
Subway station is important construct which has large proportion in subway investment. Temperature and velocity of air has great effect on human comfort and energy cost of environment control. Considered the characteristics of low Reynolds flow in subway station, based on Navier-Stokes equation, Renormalization Group k-8 turbulence model is introduced. By Renormalization Group approach, kinematics equation and kinematics dissipate equation are developed and turbulence coefficients are acquired. Computational fluid dynamic model suitable for the turbulent flow field and temperature field in subway station are established. For the complex geometry of subway station, unstructured meshes are constructed by Delaunay triangulation method. By properly choosing temporal and spatial difference format, correctly dealing with source term and boundary conditions, control equations are discretized over unstructured meshes. To overcome the reduced convergence speed of iteration method, multigrid method is introduced and algebraic multigrid is adopted to solve discretized equations because of its higher effectiveness. Using above methods, three kinds of typical indoor flow field, natural convection, forced convection and hybrid convection are calculated by standard k-e turbulence model and RNG k-e turbulence model. The results are compared with experimental data in document and fine agreement is achieved, both of two model. For some special index, the results of RNG k-s turbulence model are better than standard k-ε turbulence model's, which proved that the method presented in this thesis is correct and practicable.Based on above study, a simplified model of a subway station which awaits build is established. Normal operations include idle state, train draw up at one side, train dwell at the station, are simulated as well as congestion mode of emergency state. Temperature field and velocity field are obtained and the variation of these two fields is analyzed. The comfort of passenger on platform is valued dynamicly by relative warm index. Four scheme of ventilation, platform center return sysytem, under platform exhaust system, over track exhaust system and UPE/OTE exhaust system, were simulated. In the temperature, velocity and air age of view, these schemes were compared and analyzed. As the temperature in the waiting hall when four ventilation scheme described above were adopted dissatisfied the standard,
    platform screen door scheme was simulated and analyzed.The case of fire in subway station is probably the worst situation. Simulation of fire on train which stops at platform is also performed. Three fire locations of the train were considered. Discrete transfer method is applied to count radiation caused by high temperature of the fire. Exhuast only and push-pull ventilation strategy were compared. Code for the design of metro and NFPA 130 standard were introduced to evaluate the circumstance on the platform. Visibility was achieved as well as temperature and velocity. The influence on velocity field and smoke concentration brought by the strategy of environment control and construct of platform is analyzed. The possibility of rescue and evacuation under all fire location of the train is assessed separately. Methods and results presented in this dissertation provide good reference to subway construction.
引文
[1] 孙有望,李云清.城市轨道交通概论.中国铁道出版社,2000
    [2] 范文田.世界各国地下铁道.地下空间,1991;(2):147-149
    [3] 周翊民.我国城市轨道交通多元化发展的新趋势.城市轨道交通研究,2002;(3):1-6
    [4] 冯炼.地铁网络系统环境控制数值模拟研究.西南交通大学博士论文,成都.2001.4
    [5] 王爱仪,陈韶章译.地铁环境控制系统的系统设计.隧道译丛,1993:(8):1-8
    [6] Transit Development Corporation U S A. Subway Environment Design Handbook, Volume Ⅱ. 1975
    [7] 五十畑茂.都营新宿線地下铁排煙实测考察.空気调和·卫生工学,1981;55(3):222-227
    [8] H. Nakamura, T. Yamama, T. Matsushita. Research on smoke control in underground structures. Tunnelling and Underground Space Technology,1992;7(4): 325-333
    [9] Karl-Heinz, Westhaus. Fire behavior test in an urban railway made of corrugated steel plates in Gelsenkirchen. Special Tunnel,1993,(4): 9-21
    [10] Peter Heffels. Improving fire protection in tunnels for commuter rail traffic. Tunnelling and Underground Space Technology, 1987;2(3): 311-314
    [11] 松平秀雄,田中康雄.地下铁内列车风拳动.空気调和·卫生工学,1981;55(3):13-17
    [12] Alfred Haack. Fire protection in traffic tunnels-initial findings from large-scale tests. Tunnelling and Underground Space Technology, 1992;7(4): 363-375
    [13] R. J. Bettis, S. F. Jagger, C. J. Lea. The use of physical and mathematical modeling to assess the hazards of tunnel fires. 8th international symposium on the aerodynamics and ventilation of vehicle tunnels, 349-470
    [14] Nijemeisland, Michiel, Dixon, Anthony G., Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed, Chemical Engineering Journal Volume, 2001,82 (1-3): 231-246
    [15] Woodburn, P. J.; Britter, R. E., CFD Simulations of a Tunnel Fire-Part Ⅱ, Fire Safety Journal, 1996, 26 (1): 63-90
    [16] Novozhilov, V., Computational Fluid Dynamics Modeling Of Compartment Fires, Progress In Energy And Combustion Science , 2001, 27 (6), 611-666
    [17] Cheng, L. H., Ueng, T. H.; Liu, C. W., Simulation of ventilation and fire in the underground facilities, Fire Safety Journal, 2001, 36 (6): 597-619
    [18] Modic, Jurij, Fire simulation in road tunnels, Tunneling and Underground Space Technology, 2003, 18 (5): 525-530
    [19] Chow W. K., Simulation of tunnel fires using a zone model, Tunneling and Underground Space Technology, 1996, 11 (2): 221-236
    [20] Yeoh, G. H., Yuen, R. K. K. Lo, S. M., Chen, D. H., On numerical comparison of enclosure fire in a multi-compartment building, Fire Safety Journal , 2003, 38 (1): 85-94
    [21] J. N iu, J. V. D. Kooi, Numerical investigations of thermal comfort and indoor contaminant distribution in a room with cooled ceiling system, Proceedings of Indoor Air 1993: 331-336
    [22] G. Gan, Towards a better indoor thermal environment-A CFD analysis of the performance of chilled ceiling system, Proceedings of the 4th International Symposium on Ventilation for Contaminant Control, 1994:551-556
    [23] 陶文铨 编著,数值传热学(第二版),西安交通大学出版社,2001
    [24] T. V. Jacobsen, P. V. Neilsen, Numerical modeling of thermal environment in a displacement-ventilated room, in: Proceedings of the 'Indoor Air' 93', Helsinki, Finland, 1993, 5:301-306
    [25] Y. Li, L. Fuchs, M. Sandberg, Numerical prediction of airflow and heat-radiation in a room with displacement ventilation, Energy and Buildings, 1993, 20:27-43
    [26] S. J. Rees, J. J. McGuirk, P. Haves, Numerical investigation of transient buoyant flow in a room with a displacement ventilation and chilled ceiling system, International Journal of Heat and Mass Transfer, 2001, 44:3067-3080
    [27] Hee-Jin Park, Dale Holland, The effect of location of a convective heat source on displacement ventilation:CFD study, Building and Environment, 2001, 36:883-889
    [28] Hu, Zehua; Sun, Da-Wen, Effect of fluctuation in inlet airflow temperature on CFD simulation of air-blast chilling process, Journal of food engineering, 2001, 48: 311-316
    [29] Gadgil, A. J., Lobscheid, C., Abadie, M. O., Finlayson, E. U., Indoor pollutant mixing time in an isothermal closed room: an investigation using CFD, Atmospheric Environment, 2003, 37: 5577-5586
    [30] Gan, G., Evaluation of room air distribution systems using computational fluid dynamics, Fuel and Energy Abstracts, 1996, 37 (2-3): 132
    [31] Nijemeisland, Michiel, Dixon, Anthony G., Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed, Chemical Engineering Journal Volume, 2001,82 (1-3): 231-246
    [32] Ma, T. G., Quintiere, J. G., Numerical simulation of axi-symmetric fire plumes: accuracy and limitations, Fire Safety Journal, 2003, 38 (5): 467-492
    [33] Ming-Tsun Ke, Tsung-Che Cheng, Wen-Per Wang, Numerical simulation for optimizing the design of subway environmental control system, Building And Environmental, 2002, 37: 1139-1152
    [34] Cheng TC, Simulations of ventilation and smoke system for subway tunnel., S Thesis, National Taipei University Of Technology, Taiwan,
    [35] Tsal RJ, Adler MS, Evaluation of numerical methods for ductwork and pipeline optimization. ASHRAE Transactions 1987, 93(1): 17-34.
    [36] Patankar S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, D. C. 1980
    [37] 施仲衡.地下铁道设计与施工.陕西科学技术出版社,1997
    [38] Wu, Y., Bakar, M. Z. A., Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity, Fire Safety Journal, 2000, 35, (4): 363-390
    [39] Li, Jojo S. M., Chow W. K. Numerical studies on performance evaluation of tunnel ventilation safety system, Tunneling and Underground Space, 2003, 18 (5): 435-452
    [40] Laslandes, S.; Sacre, C., Transport of particles by a turbulent flow around an obstacle-a numerical and awind tunel approach, Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74:577-587
    [41] Bartzanas, T., Boulard, T.; Kittas,. C., Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings, Computers and Electronics in Agriculture, 2002, 34 (1-3): 207-221
    [42] Gidhagen, L., Johansson, C., Strom, J., Model simulation of ultrafine particles inside a road tunnel, Atmospheric Environment, 2003, 37 (15): 2023-2036
    [43] Ghani, S. A. A. Abdul, Aroussi, A., Rice, E., Simulation of road vehicle natural environment in a climatic wind tunnel, Simulation Practice and Theory, 2001, 8 (6-7): 359-375
    [44] Wu, Y., Bakar, M. Z. A., Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity, Fire Safety Journal, 200035 (4): 363-390
    [45] 欧阳沁,江泳.关于地铁隧道区间段阻塞研究工况临界通风速度的研究(Ⅰ),地铁与轻轨,2002,56(2):34-41
    [46] 舒宁,钟汉枢等,计算流体力学在纵向式公路隧道火灾通风中的仿真,2001,16(4): 210-516
    [47] Richard Bettis, Controlling Smoke in Tunnel Fires, Fire Prevention, 1995,280: 19-23
    [48] 王永东 夏永旭,公路隧道纵向通风系统局部影响数值模拟,西安公路交通大学学报,2001,21(4):50-54
    [49] Kennedy, D. William. Derivation and application of the SES critical velocity equations. ASHRAE Transactions, 1996; 102(2): 40-44
    [50] 曹俊杰.地铁环控数值模拟研究.西南交通大学硕士论文,1996年5月
    [51] 黄美荣.地铁中长期环境的数值模拟.西南交通大学硕士论文,1997年6月
    [52] 朱颖心,江亿,杨旭东等.地铁系统环控方案分析.地铁与轻轨,1991;(1):21-26
    [53] Yi Jiang, Yingxin Zhu. Experiment and theoretical analysis on piston air in subway system. Proceedings of New Developments of Underground Space, Use, 1998
    [54] 江亿.分析长期不稳定传热的特征值法.工程热物理学报,1984;(3):
    [55] 江亿,佟力华.地铁热环境实测与分析.全国暖通空调制冷学术年会,武汉,1982
    [56] 郑晋丽,胡维撷.深圳地铁一期工程环控模拟结果要点和分析.地下工程与隧道,2000:(1):37-44
    [57] Abu-Zaid, Sameer A. Analyzing a Transit Subway Station During Fire Emergency Using Computational Fluid Dynamics. Transportation research record..1996:152-159
    [58] Deng Mark. CFD modeling considerations for Wain fires in underground subway stations. Transaction of ASME. Fluids Engineering Division (Publication) FED,1996; 238(3): 547-555
    [59] Elias, R. Steven. Numerical simulation of subway station fires and ventilation. Transaction of ASME. Fluids Engineering Division (Publication) FED,1996; 238(3): 557-562
    [60] J. D. Castro et al., CFD prediction of smoke movement in a double track bored tunnel, a cut cover station, and a mined station in the Athens Metro. Proceedings of the 9th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 1997, 332-348
    [61] P. C. Miclea, D. McKinney, The impact of fire location in a subway station on computer simulation results and fan operation requirements. Proceedings of the 9th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 1997, 543-556
    [62] 杉原義文.列车走行地下铁駅耩内空気流动.日本机械学会论文集(B).1997,63(616):138-144
    [63] K. L. Silas, D. K. William. A CFD analysis of station fire conditions in the Buenos Aires subway system, 1999; ASHRAE Transaction, 1999; 105 (2):411-413
    [64] P. C. Miclea, McKinney D., CFD simulation of a vehicle in a station equipped with platform screen doors. Proceedings of the 10th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 305-322
    [65] I. Y. Maevski, J. F. Fay. Simulations and ventilation system design for the Tren Urban Subway Project in Puerto Rico. Proceedings of the 10th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 465-483
    [66] J. Slusarczyk, J. R. Sinclair, Bliemel M. Evaluation of emergency ventilation in three subway stations. Proceedings of the 10th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 491-510
    [67] K H Yang, S K Lee. Smoke management analysis of a subway station with platform screen doors. Proceedings of the 10th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 541-561
    [68] A Zigh, I Ong, K Kang. CFD application for subway stations. Proceedings of the 10th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 939-952
    [69] N. Hur, C-S Won. A numerical simulation of the Trackway Exhaust System (TES) for underground stations of Seoul 9th line: ventilation operation and smoke exhaust operation in case of a carriage fire. Proceedings of the 11th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2003, 231-242
    [70] J. Greg Sanchez. Optimization of station air-conditioning systems for mass transit systems. Proceedings of the 11th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 2003, 339-354
    [71] 欧阳沁,江泳,朱颖心.地铁站台火灾排烟通风模式分析.全国暖通空调制冷 2002年学术文集,2002,67-72
    [72] 那艳玲,地铁车站通风与火灾的CFD仿真模拟与实验研究.天津大学博士论文,天津.2003
    [73] Subway Environment Design Handbook Ⅶ, USA, Transit Development Corporation, 1995
    [74] 中华人民共和国国家标准,地下铁道设计规范(GB50157-92).中国计划出版社,1993
    [75] 苏铭德,黄素逸.计算流体力学基础.清华大学出版社,1997年
    [76] 费祥麟主编.高等流体力学.西安:西安交通大学出版社,1989
    [77] 王启杰.对流传热传质分析.西安:西安交通大学出版社,1991
    [78] Lorenz E N. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 1963; (20): 130-141
    [79] Ferziger J. H. High-level simulation of turbulent flows. In:essers J. A., ed. Computational methods for turbulent flows, transonic and viscous flows. Wshington DC: hemisphere, 1983:93-182
    [80] Orszag S. A. Numerical simulation of turbulent flows. In: Frost W, Moulden T. H., eds. Handbook of turbulence. New York: Plenum Press, 1997:281-313
    [81] 马铁犹.计算流体力学.北京航空学院出版社.1986年
    [82] Markatos N. C. The mathematical modeling of turbulence flows. Appl math modeling, 1986, 10: 190-220
    [83] Moin P., Kim J. Numerical investigation of turbulent channel flow. Journal of fluid mech. 1982, 118:341-377
    [84] A. J. Baker, K. L. Wong, N. S. Winowich. Design and assessment of a very large-scale CFD industrial ventilation flow field simulation. ASHRAE Transactions, 2002; 108(1): 999-1004
    [85] 章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    [86] 陶文铨.数值传热学.西安交通大学出版社.1988年
    [87] Qingyan Chen. Comparison of different κ-ε models for indoor airflow computation. Numerical Heat Transfer(Part B), 1995; 28: 353-369
    [88] Wilson K. G. Renormalization group and critical phenomena. Physics Review. B4(1971):3174
    [89] Ma S. K. Mazenko G. F. Nonlinear Reynolds stress models and the renormalization group. Physics Review B11(1975):4077
    [90] Forster D. Nelson D. R. Stephen M. J. Analysis of RNG based turbulence model for homogeneous shear flows. Physics Review 37(1976) : 895
    [91] Yakhot V. Orszag S. A. Renormalization group analysis of turbulence. Ⅰ. Basic theory. Journal of Scientific Computing, 1986, 1(1): 39-51
    [92] Special C G. Thangam S. Analysis of an RNG based turbulence model for separated flows. International Journal Engineering Science. 1992, 30(10): 1379-1388
    [93] Anderson A R. A grid generation and flow solution method for the Euler equation of unstructured grids. Journal of Computing Physics. 1994, 110:23-28
    [94] Subranmanian G. Raveendra V V S. Gopolakrishna K. Robust boundary triangulation and Delaunay triangulation of arbitrary planar demains. International Journal of Numeric Methods Engineering. 1994, 37: 1779-1789
    [95] D. J. Mavroplis. A three-dimensional multigrid reynolds-averaged Navier-Stokes solver for unstructured meshes,AIAA J. 33 (3) (1995) 445-453.
    [96] Waston D F. Computing the n-dimensional Delauney tessellation with application to voronoi polytopes. The Computer Journal. 1981, 24(2): 167-172
    [97] Lo S H. A new mesh generation scheme for arbitrary planar domains. International Journal of Numerical Methods Engineering. 1985, 21:1403-1426
    [98] Tembulkar J M, Hanks B W. On generation quadrilateral elements from a triangular mesh. Comput Stucture. 1992, 42:605-667
    [99] Bowyer A. Computing Dirichlet tessellation. The Computing Journal, 1981, 24(2): 162-167
    [100] Waston D F. Computing the n-dimensional Delauney tessellation with application to voronoi polytopes. The Computer Journal. 1981, 24(2): 167-172
    [101] 成娟.非结构网格粘性流动计算研究.南京航空航天大学博士论文,2000年6月
    [102] Kao K H, Liou M S, Advance in overset grid schemes: from chimera to DRAGON grids. AIAA Journal. 1995, 33(10): 1809-1815
    [103] Chan W H, Buning P G. Zipper grids for force and moment computation on overset grids. AIAA Paper. 1995, 95-1681
    [104] Muller J D, Roe P L, Deconinck H. A frontal approach for internal node generation in Delaunay triangulation. Int J Number Methods Fluids. 1993, 19:241-255
    [105] Zhu J, Zienkwieciz O C, Hinton E, Wu J. A new approach to the development of automatic quadrilateral mesh generation. Int J Number Methods Eng. 1991, 32:849-866
    [106] Tembulkar J M, Hanks B W. On generation quadrilateral elements from a triangular mesh. Comput Stucture. 1992, 42:605-667
    [107] 刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社,2003:107-134
    [108] Manole D M. Lage J L. Nonuniform grid accuracy test applied to the natural convection flow within a porous medium cavity. Numerical Heat Transfer. Part B, 1993.23: 351-368
    [109] Patanker S. V. Numerical heat transfer and fluid flow. New York: Mcgraw-Hill, 1980
    [110] Versteeg H K. Malalsekera W. An introduction to computational fluid dynamics. The finite volume method. Essex: Longman Scientific & Technical, 1995.4
    [111] Thomadakis M., Leschziner M. A pressure-correction method for the solution of incompressible viscous flows on unstructured grids. Int. J Numer Methods Fluids.1996, 22:581-601
    [112] Murthy J. Y., Mathur S. Periodic flow and heat transfer using unstructured meshes. Int J Numer Methods Fluids. 1997; Vol.25:659-677
    [113] Aihavale M. M., Jiang Y., Przekwas A. J. Application of an unstructured grid solution methodology to turbomachinery flows. AIAA-95-0174
    [114] 罗奇 P.J.著.计算流体力学.钟锡昌,刘学宗译.北京:科学出版社,1983:47-790
    [115] Lai K. Y. M. Numerical analysis of fluid transport phenomena. Ph D thesis, University of London, 1983
    [116] Leschinziner M. A. Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows. Comp. Meth. in Appl. Mech. & Eng.1980, Vol.23:293-312
    [117] Leonard B. P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 1979, Vol. 19:59-98
    [118] Spalding D. B. A novel finite-difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods Eng. 1972, Vol.4: 551-558
    [119] Rhie C M. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 1983, 21:1525-1552
    [120] Runchal A. K., Wolfstein M. Numerical integration procedure for steady state Navier-Stokes equations. J Mech Eng Sci. 1969, Vol.11: 445-453
    [121] 刘超群.多重网格及其在计算流体力学中的应用.北京:清华大学出版社,1995
    [122] Brandt A. Multi-level adaptive solutions to boundary-value problems. Math Comput, 1977, 31:330-390
    [123] 陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [124] Stuben K. A review of algebraic multigfid. Journal of Computational and Applied Mathematics, 2001 (128): 281-309
    [125] Saad Y. ILUM: a multi-elimination ILU preconditioner for general sparse matrices. Journal of Scientific Computing, 1996 (17): 830-847.
    [126] R. Webster. An algebraic multigrid solver for Navier-Stokes problems in the discrete second order approximation, International Journal of Numerical Methods Fluids, 1996,22 1103-1123.
    [127] Rhie C. M. A pressure based Navier-Stokes solvers using multigrid method. AIAA Paper: 86-0207
    [128] P. L. Betts, I. H. Bokhari. Experiments on turbulent natural convection of air in a tall cavity. Physics of Fluids, 1992,4(7): 1510-1513
    [129] P. V. Nielsen, A. Restivo, J. H. Whitelaw. The velocity characteristics of ventilated room. ASME Journal. Fluids Engineering, 1978 (100): 291-298.
    [130] Wei Zhang, Qingyan Chen. Large eddy simulation of indoor airflow with a filtered dynamic subgfid scale model. Heat and Mass Transfer, 2000(43):3219-3231
    [131] Qingyan Chen. Comparison of different κ-ε models for indoor air flow computations. Numerical Heat Transfer, Part B, 1995(28): 353-369
    [132] D. Baly, S. Mergui, C. Niculae, Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet, Fundamentals of Mixed Convection. ASME Journal, 1992(213): 65-72.
    [133] S. Kumar, G. Cox. Mathematical modeling of fires in road tunnels. Proceedings of the 5th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 1985, 61-74
    [134] J R Bradley, H Norman, P E Danziger etc. The emergency ventilation of the South Boston Piers/Fort Point Channel underground transitway. Proceedings of the 8th International Conference of Aerodynamics and ventilation of Vehicle Tunnel. 1994, 533-546
    [135] 刘国芳.北京地铁通风系统的现状分析和改进意见.铁道建筑,1995;3:15-18
    [136] 芪又弘道,津田邦彦.地铁内的发热及热负荷计算.刘红星译.隧道译丛,1993;(8):16-25
    [137] 张庆贺,朱合华,庄荣.地铁与轻轨.北京:人民交通出版社,2001
    [138] 铁道部第二勘察设计院.回顾与思考—广州市地下铁道一号线工程设计总结.北京:中国铁道出版社,2002
    [139] N Hur, C-S Wan. A numerical simulation of the Trackway Exhaust System (TES) for underground stations of Seoul 11th line: ventilation operation and smoke exhaust operation in case of a carriage fire. Proceedings of the 11th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 2003, 231-242
    [140] G Leoutsakos. Parametric analysis of metro-system ventilation alternatives. Proceedings of the 10th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 511-540
    [141] 刘红敏,连之伟,倪久建,叶晓江.室内空气品质和热舒适数值计算的理论分析.流体机械,2003;2(31):53-55
    [142] 李先庭,江亿.用计算流体动力学方法求解通风房间的空气龄.清华大学学报(自然科学版),1999:5(38):28-31
    [143] 陈宜吉.隧道列车火灾案例及预防.北京:中国铁道出版社,1988
    [144] Jones W. W. Modelling smoke movement through compartmented structures. Journal of Fire Science. 1993; 11:172-183
    [145] Miclea P C, McKinney D M. CFD simulation of a vehicle fire in a station equipped with platform screen doors. Proceedings of the 10th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 305-322
    [146] Chi-Ji LIN, Yew Khoy CHUAH. Smoke management design and computer simulation of an underground mass transit station in Taiwan. Proceedings of the 11th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 2003, 255-268
    [147] Carl Desrosiers. Improving emergency ventilation procedures in subways thruough hot smoke tests. Proceedings of the 6th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 1988, 549-566
    [148] Yang K H, Lee S K. Smoke management analysis of a subway station with platform screen doors. Proceedings of the 10th International Symposium of Aerodynamics and ventilation of Vehicle Tunnel. 2000, 541-561
    [149] NFPA 130, Standard for Fixed Guideway Transit and Passenger Rail Systems 2000 Edition. National Fire Protection Association, Quincy, Massachusetts.
    [150] SFPE, "SFPE Handbook of Fire Protection Engineering", National Fire Protection Association, Second Edition, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700