温敏性聚合物/无机杂化纳米粒子的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/无机杂化纳米粒子兼具聚合物和无机材料两者的性能,在过去的几十年中广受关注。在这一领域,响应性聚合物/无机杂化纳米粒子的制备及其应用引起越来越多的研究兴趣。响应性聚合物/无机杂化纳米粒子因其外部环境响应性可以作为智能材料应用于催化、传感器、药物传输、光电器件等领域。这篇论文利用表面引发原子转移自由基聚合(ATRP)制备了温敏性PNIPAM接枝的SiO_2杂化纳米粒子,并以此为基础研究了PNIPAM刷在纳米粒子表面的相转变行为;制备了具有温度/光响应的多色荧光杂化纳米粒子、温敏性聚合物纳米胶囊及金属纳米粒子复合胶囊;利用温敏性杂化纳米粒子作为模板进行Au纳米粒子的自组装。具体来说,本论文的工作包括以下几个方面:
     1.利用表面引发ATRP聚合NIPAM,在引发剂功能化的SiO_2纳米粒子表面接枝
     上温敏性PNIPAM刷。在聚合过程中观测到的线性动力学过程、数均分子量随着单体转化率的线性增长以及最终得到PNIPAM链窄的分子量分布说明表面引发ATRP聚合反应具有很好的可控性。光散射结果表明加热过程中杂化纳米粒子表面的PNIPAM刷有两阶相转变行为,其内层链段开始塌缩的温度低于30 oC。大于30 oC时,外层链段开始塌缩。
     2.通过连续的表面引发ATRP聚合制备了P(NIPAM-co-NBDAM) -b-P(NIPAM-co-SPMA)接枝的杂化SiO_2荧光纳米粒子。PNIPAM刷的内外层分别标记上荧光共振能量转移(FRET)给体分子NBDAE和FRET受体分子SPMA。紫外照射杂化SiO_2纳米粒子的水分散液后,PNIPAM刷外层中SPMA分子从SP形式转变至MC形式,引起NBDAE和SPMA分子间发生FRET过程。通过调节体系的温度可引起P(NIPAM-co-NBDAM) -b-P(NIPAM-co-SPMA)刷的溶胀/塌缩,改变聚合物刷中给体和受体分子间的相对距离,从而调整FRET效率。利用SPMA与NBDAE的荧光强度比值随温度的变化,杂化纳米粒子可以做为宽温度范围内的荧光温度计。当杂化纳米粒子的分散液再次用可见光照射后,SPMA分子从MC形式恢复到非荧光的SP形式,导致FRET过程的终止。制得的杂化SiO_2纳米粒子的水分散液可以发出多色荧光,其荧光可以通过紫外/可见光/温度这些因素合适的组合进行调控。
     3.利用表面引发ATRP在SiO_2纳米粒子表面引发聚合NIPAM和3-叠氮丙基丙烯酰胺(AzPAM)单体。然后利用点击化学反应将聚合物层交联,腐蚀掉SiO_2核后制得壳层厚度可控的PNIPAM纳米胶囊。壳交联的杂化SiO_2纳米粒子可以作为基体通过原位还原反应负载Ag纳米粒子,去除SiO_2核后可制备负载Ag纳米粒子的PNIPAM杂化纳米胶囊。得到的PNIPAM纳米胶囊和负载Ag纳米粒子的PNIPAM杂化纳米胶囊可以通过温度的调节实现可逆的溶胀/塌缩。对于负载Ag纳米粒子的PNIPAM杂化纳米胶囊,通过PNIPAM壳层的溶胀/塌缩过程,可以调整Ag纳米粒子在交联PNIPAM壳层中的分布。
     4.通过表面引发ATRP聚合制备了PNIPAM刷接枝的杂化SiO_2纳米粒子。PNIPAM链端的卤素基团用叠氮基团取代后,通过N-炔丙基硫辛酰胺与叠氮基团的点击化学反应高效制备了端基为二硫杂环戊烷的PNIPAM接枝的SiO_2纳米粒子。用其作为模板,在表面PNIPAM层上进行柠檬酸钠稳定的Au纳米粒子的自组装。组装体的紫外-可见光谱随温度的变化结果表明PNIPAM刷的相转变过程可以用来调控组装体中Au纳米粒子之间的空间距离。
Organic/inorganic hybrid nanoparticles have attracted ever increasing attention in the past decade due to their fascinating optical, electronic, magnetic, and catalytic properties. Recent progress in this area involves the preparation of hybrid nanoparticles coated with stimuli-responsive polymer brushes, which are attractive building blocks for the design and fabrication of smart nanostructured devices. In this dissertation, The fabrication of poly(N-isopropylacrylamide) (PNIPAM) grafted hybrid silica nanoparticles via surface initiated living polymerization and the thermal phase transition behavior of PNIPAM brushes at the silica surface were investigated in detail. On basis of the thermoresponsive PNIPAM grafted silica nanoparticles, we prepared thermoresponsive/photo-switchable fluorescent hybrid silica nanoparticles and thermoresponsive nanocapsules. The thermoresponsive PNIPAM grafted silica nanoparticles can also serve as templates for the self-assembly of Au nanoparticles.
     1. This section reports on the fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brushes and their thermal phase transition behavior. Surface-initiated atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAM) was conducted in 2-propanol at ambient temperature using CuCl/CuCl2/Me6TREN as the catalytic system, starting from the surface of silica nanoparticles derivatized with ATRP initiators. The surface-initiated ATRP can be conducted in a well-controlled manner, as revealed by the linear kinetic plot, linear evolution of number-average molecular weights (Mn) versus monomer conversions, and the relatively narrow molecular weight distributions of the grafted PNIPAM chains. Laser light scattering (LLS) and optical transmittance were then employed to study the thermal phase transitions of PNIPAM brushes at the surface of silica nanoparticles. Both the intensity-average hydrodynamic radius, , and average radius of gyration, , exhibit a two-stage decrease upon heating over the broad temperature range of 20–37 oC. The first phase transition takes place in the temperature range of 20–30 oC, which can be tentatively ascribed to the n-cluster-induced collapse of the inner region of PNIPAM brushes close to the silica core; the second phase transition occurs above 30 oC, which can be ascribed to the outer region of PNIPAM brushes, possessing much lower chain density compared to that of the inner part.
     2. This section reports on the fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive PNIPAM brushes with inner and outer layers selectively labeled with fluorescence resonance energy transfer (FRET) donors, 4-(2-acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBDAE), and photo-switchable acceptors, 1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitro- spiro (2H-1-benzopyran-2,2'-indoline) (SPMA), respectively, via surface-initiated sequential ATRP. P(NIPAM-co-NBDAE)-b-P(NIPAM-co- SPMA) brushes at the surface of silica core exhibit collapse in the broad temperature range of 20-37 oC. UV irradiation of the aqueous dispersion of hybrid silica nanoparticles induces the transformation of SPMA moieties in the outer layer of polymer brushes from non-fluorescent spiropyran (SP) form to fluorescent merocyanine (MC) form, leading to occurrence of FRET process between NBDAE and SPMA residues. Most importantly, the FRET efficiency can be facilely tuned via thermo-induced collapse/swelling of P(NIPAM-co-NBDAE)-b-P(NIPAM-co-SPMA) brushes by changing the relative distance between donor and acceptor species located within the inner and outer layer of polymer brushes, respectively. Thus, hybrid silica nanoparticles coated with P(NIPAM-co-NBDAE)-b-P(NIPAM-co-SPMA) brushes can serve as a sensitive ratiometric fluorescent thermometer. On the other hand, when the hybrid nanoparticle dispersion was irradiated with visible light again after UV irradiation, the MC form of SPMA moieties reverts back to the non-fluorescent SP form, leading to the turn-off of FRET process. Overall, aqueous dispersion of this novel type of hybrid silica nanoparticles is capable of emitting multicolor fluorescence, which can be facilely tuned by UV irradiation, visible light, and temperatures, or a proper combination of them.
     3. This section report on the fabrication of thermoresponsive cross-linked hollow PNIPAM nanocapsules and silver nanoparticle-embedded hybrid PNIPAM nanocapsules with controlled shell thickness via the combination of surface-initiated ATRP and“click”cross-linking. Starting from initiator- functionalized silica nanoparticles, the surface-initiated ATRP of N-isopropylacrylamide (NIPAM) and 3-azidopropylacrylamide (AzPAM) afforded hybrid silica nanoparticles surface coated with P(NIPAM-co-AzPAM) brushes. Hybrid PNIPAM nanocapsules were then fabricated by the“click” cross-linking of PNIPAM shell layer with a trifunctional molecule, 1,1,1-tris(4-(2-propynyloxy)phenyl)ethane, followed by the subsequent removal of silica cores via HF etching. Shell cross-linked hybrid silica nanoparticles can further serve as templates for the in-situ preparation of silver nanoparticles within the cross-linked PNIPAM layer. After HF etching, silver nanoparticle-embedded hybrid PNIPAM nanocapsules were obtained. Due to the thermoresponsiveness of PNIPAM, cross-linked PNIPAM nanocapsules and silver nanoparticle-embedded hybrid PNIPAM nanocapsules exhibit thermo-induced collapse/swelling transitions. In the latter case, the spatial distribution of Ag nanoparticles within the hybrid PNIPAM nanocapsules can be facilely modulated by temperature variations, as revealed by the thermo-induced red shift of surface plasmon absorption band. Dynamic laser light scattering (LLS) measurements revealed that PNIPAM nanocapsules and Ag nanoparticle-embedded hybrid PNIPAM nanocapsules exhibit more prominent thermo-induced dimensional changes, as compared to shell cross-linked hybrid silica/PNIPAM nanoparticles loaded with or without Ag nanoparticles, respectively.
     4. This section reports on the fabrication of thermoresponsive hybrid silica nanospheres anchored with gold nanoparticles of tunable spatial distribution. Starting from initiator-functionalized silica nanoparticles, surface-initiated ATRP of NIPAM afforded hybrid silica nanoparticles coated with PNIPAM brushes. The halogen end groups of grafted PNIPAM chains were substituted by azido groups and hybrid silica nanoparticles coated with 1,2-dithiolane end-capped PNIPAM brushes were then obtained via“click”reaction of azido groups with 1,2-dithiolane-3-pentanoic acid-N-propargylamide. The obtained 1,2-dithiolane functionalized hybrid silica nanoparticles were employed as templates for the self-assembly of citrate-capped gold nanopartilces. Laser light scattering (LLS) measurements revealed that PNIPAM brushes at the surface of silica exhibit reversibly thermo-induced collapse/swelling transitions and this phase transition behavior was not affected after the attachment of gold nanoparticles. Due to the thermoresponsiveness of PNIPAM brushes, the spatial distances between gold nanoparticles attached at the surface of PNIAPM brushes could be facilely modulated by temperature variations, as revealed by the thermo-induced red shift of surface plasmon absorption band.
引文
(1) Spadavecchia, J.; Prete, P.; Lovergine, N.; Tapfer, L.; Rella, R. 2005. Au Nanoparticles Prepared by Physical Method on Si and Sapphire Substrates for Biosensor Applications[J]. The Journal of Physical Chemistry B, 109, 17347.
    (2) Caruso, F. 2001. Nanoengineering of particle surfaces[J]. Adv. Mater., 13, 11.
    (3) Golden, J. H.; Deng, H. B.; Disalvo, F. J.; Frechet, J. M. J.; Thompson, P. M. 1995. Monodisperse Metal-Clusters 10-Angstroms in Diameter in a Polymeric Host - the Monomer-as-Solvent Approach[J]. Science, 268, 1463.
    (4) Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M. 2006. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles[J]. J. Phys. Chem. B, 110, 3930.
    (5) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. 2006. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks[J]. Angew. Chem., Int. Ed., 45, 813.
    (6) Xu, H. X.; Xu, J.; Zhu, Z. Y.; Liu, H. W.; Liu, S. Y. 2006. In-situ formation of silvernanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles[J]. Macromolecules, 39, 8451.
    (7) Suzuki, D.; Kawaguchi, H. 2006. Hybrid microgels with reversibly changeable multiple brilliant color[J]. Langmuir, 22, 3818.
    (8) Barber, S. M.; Costanzo, P. J.; Kuhl, T. L.; Patten, T. E. 2006. POLY 22-Polymer-mediated self-assembly of nanoparticles and the use of magnetic particles to probe ligand-receptor interactions[J]. Abstr Pap Am Chem S, 232.
    (9) Boal, A. K.; Frankamp, B. L.; Uzun, O.; Tuominen, M.; Rotello, V. M. 2003. Polymer mediated self-assembly of iron oxide nanoparticles.[J]. Abstr Pap Am Chem S, 225, U626.
    (10) Boal, A. K.; Galow, T. H.; Ilhan, F.; Rotello, V. M. 2001. Binary and ternary polymer-mediated "bricks and mortar" self-assembly of gold and silica nanoparticles[J]. Adv Funct Mater, 11, 461.
    (11) Duguet, E.; Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B. 2005. Design and synthesis of Janus micro- and nanoparticles[J]. J Mater Chem, 15, 3745.
    (12) Glotzer, S. C.; Solomon, M. J. 2007. Anisotropy of building blocks and their assembly into complex structures[J]. Nat Mater, 6, 557.
    (13) Ilhan, F.; Boal, A. K.; Rotello, V. 2000. Polymer-mediated "bricks and mortar" self-assembly of nanoparticles into discrete structured arrays.[J]. Abstr Pap Am Chem S, 220, U294.
    (14) Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. 2008. Self-assembling nanoparticles at surfaces and interfaces[J]. Chemphyschem, 9, 20.
    (15) Kotov, N. A.; Srivastava, S. 2009. Nanoparticle assembly for 1D and 2D ordered structures[J]. Soft Matter, 5, 1146.
    (16) Mandal, T. K.; Bhattacharjee, R. R. 2007. Polymer-mediated chain-like self-assembly of functionalized gold nanoparticles[J]. J Colloid Interf Sci, 307, 288.
    (17) Mao, Z. W.; Xu, H. L.; Wang, D. Y. 2010. Molecular Mimetic Self-Assembly of Colloidal Particles[J]. Adv Funct Mater, 20, 1053.
    (18) Nie, Z. H.; Petukhova, A.; Kumacheva, E. 2010. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nat Nanotechnol, 5, 15.
    (19) Rotello, V. M. 2006. Polymer-mediated self-assembly of nanoparticles[J]. Abstr Pap Am Chem S, 231.
    (20) Rotello, V. M.; Arumugam, P.; Xu, H.; Srivastava, S. 2007. 'Bricks and mortar' nanoparticle self-assembly using polymers[J]. Polym Int, 56, 461.
    (21) Rotello, V. M.; Boal, A. K.; Frankamp, B. L.; Uzun, O.; Tuominen, M. T. 2004. Modulation of spacing and magnetic properties of iron oxide nanoparticles through polymer-mediated "bricksand mortar" self-assembly[J]. Chem Mater, 16, 3252.
    (22) Rotello, V. M.; Ofir, Y.; Samanta, B. 2008. Polymer and biopolymer mediated self-assembly of gold nanoparticles[J]. Chem Soc Rev, 37, 1814.
    (23) Sun, S. H. 2003. Polymer-mediated self assembly of magnetic nanoparticles.[J]. Abstr Pap Am Chem S, 226, U479.
    (24) Wang, D. Y.; Duan, H. W.; Mohwald, H. 2005. The water/oil interface: the emerging horizon for self-assembly of nanoparticles[J]. Soft Matter, 1, 412.
    (25) Wang, D. Y.; Edwards, E. W.; Mohwald, H. 2007. Hierarchical organization of colloidal particles: From colloidal crystallization to supraparticle chemistry[J]. Macromol Chem Physic, 208, 439.
    (26) Yu, S. H.; Cong, H. P. 2009. Self-assembly of functionalized inorganic-organic hybrids[J]. Curr Opin Colloid In, 14, 71.
    (27) Lindenblatt, G.; Schartl, W.; Pakula, T.; Schmidt, M. 2000. Synthesis of polystyrene-grafted polyorganosiloxane microgels and their compatibility with linear polystyrene chains[J]. Macromolecules, 33, 9340.
    (28) Vestal, C. R.; Zhang, Z. J. 2002. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles[J]. J. Am. Chem. Soc., 124, 14312.
    (29) Sill, K.; Emrick, T. 2004. Nitroxide-mediated radical polymerization from CdSe nanoparticles[J]. Chem. Mat., 16, 1240.
    (30) Pyun, J.; Kowalewski, T.; Matyjaszewski, K. 2003. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromol. Rapid Commun., 24, 1043.
    (31) Mandal, T. K.; Fleming, M. S.; Walt, D. R. 2002. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature[J]. Nano Lett., 2, 3.
    (32) Kickelbick, G.; Holzinger, D.; Brick, C.; Trimmel, G.; Moons, E. 2002. Hybrid inorganic-organic core-shell nanoparticles from surface-functionalized titanium, zirconium, and vanadium oxo clusters[J]. Chem. Mat., 14, 4382.
    (33) Qiang, L.; Lifen, Z.; Zhengbiao, Z.; Nianchen, Z.; Zhenping, C.; Xiulin, Z. 2010. Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 48.
    (34) von Werne, T.; Patten, T. E. 2001. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces[J]. J. Am. Chem. Soc., 123, 7497.
    (35) Carrot, G.; Diamanti, S.; Manuszak, M.; Charleux, B.; Vairon, I. P. 2001. Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles[J]. Journal of Polymer Science Part a-Polymer Chemistry, 39, 4294.
    (36) Cui, T.; Zhang, J. H.; Wang, J. Y.; Cui, F.; Chen, W.; Xu, F. B.; Wang, Z.; Zhang, K.; Yang, B. 2005. CdS-nanoparticle/polymer composite shells grown on silica nanospheres by atom transfer radical polymerization[J]. Advanced Functional Materials, 15, 481.
    (37) Mu, B.; Shen, R.; Liu, P. 2009. Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization[J]. Colloids and Surfaces B-Biointerfaces, 74, 511.
    (38) Du, P.; Liu, P. 2010. Crosslinked Polymeric Nanocapsules Via Surface-initiated Atom Transfer Radical Polymerization from SiO2 Nano-templates[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 47, 1080.
    (39) Matsuda, Y.; Kobayashi, M.; Annaka, M.; Ishihara, K.; Takahara, A. 2008. Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths[J]. Langmuir, 24, 8772.
    (40) Wang, H.; Peng, M.; Zheng, J.; Li, P. 2008. Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles[J]. Journal of Colloid and Interface Science, 326, 151.
    (41) Li, D. J.; Sheng, X.; Zhao, B. 2005. Environmentally responsive "Hairy" nanoparticles: Mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques[J]. J. Am. Chem. Soc., 127, 6248.
    (42) He, X.; Yang, W.; Yuan, L.; Pei, X.; Gao, J. 2009. Fabrication of hollow polyelectrolyte nanospheres via surface-initiated atom transfer radical polymerization[J]. Materials Letters, 63, 1138.
    (43) Bin, M.; Ruoping, S.; Peng, L. 2009. Facile preparation of crosslinked polymeric nanocapsules via combination of surface-initiated atom transfer radical polymerization and ultraviolet irradiated crosslinking techniques[J]. Nano Scale Research Letters, 4,773.
    (44) Mu, B.; Zhao, M.; Liu, P. 2008. Halloysite nanotubes grafted hyperbranched (co)polymers via surface-initiated self-condensing vinyl (co)polymerization[J]. Journal of Nanoparticle Research, 10, 831.
    (45) Mori, H.; Seng, D. C.; Zhang, M. F.; Muller, A. H. E. 2002. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir, 18, 3682.
    (46) Huang, C.; Tassone, T.; Woodberry, K.; Sunday, D.; Green, D. L. 2009. Impact of ATRPInitiator Spacer Length on Grafting Poly(methyl methacrylate) from Silica Nanoparticles[J]. Langmuir, 25, 13351.
    (47) Morinaga, T.; Ohkura, M.; Ohno, K.; Tsujii, Y.; Fukuda, T. 2007. Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes: Their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres[J]. Macromolecules, 40, 1159.
    (48) Zhang, H.; Lei, X.; Su, Z.; Liu, P. 2007. A novel method of surface-initiate atom transfer radical polymerization of styrene from silica nanoparticles for preparation of monodispersed core-shell hybrid nanospheres[J]. Journal of Polymer Research, 14, 253.
    (49) Yu, H.-J.; Luo, Z.-H. 2010. Novel Superhydrophobic Silica/Poly(siloxane-fluoroacrylate) Hybrid Nanoparticles Prepared via Two-Step Surface-Initiated ATRP: Synthesis, Characterization, and Wettability[J]. Journal of Polymer Science Part a-Polymer Chemistry, 48, 5570.
    (50) Carrot, G.; El Harrak, A.; Oberdisse, J.; Jestin, J.; Boue, F. 2006. Polymer grafting from 10-nm individual particles: proving control by neutron scattering[J]. Soft Matter, 2, 1043.
    (51) Unsal, E.; Elmas, B.; Caglayan, B.; Tuncel, M.; Patir, S.; Tuncel, A. 2006. Preparation of an ion-exchange chromatographic support by a "grafting from" strategy based on atom transfer radical polymerization[J]. Analytical Chemistry, 78, 5868.
    (52) Liu, P.; Liu, W. M.; Xue, Q. J. 2004. Preparation of comb-like styrene grafted silica nanoparticles[J]. Journal of Macromolecular Science-Pure and Applied Chemistry, A41, 1001.
    (53) Fu, G. D.; Shang, Z. H.; Hong, L.; Kang, E. T.; Neoh, K. G. 2005. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations[J]. Macromolecules, 38, 7867.
    (54) Lei, Z.; Bi, S. 2007. Preparation of polymer nanocomposites of core-shell structure via surface-initiated atom transfer radical polymerizations[J]. Materials Letters, 61, 3531.
    (55) von Werne, T.; Patten, T. E. 1999. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations[J]. J. Am. Chem. Soc., 121, 7409.
    (56) Suzuki, H.; Murou, M.; Kitano, H.; Ohno, K.; Saruwatari, Y. 2011. Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium[J]. Colloids and Surfaces B-Biointerfaces, 84, 111.
    (57) Yu, H.-J.; Luo, Z.-H. 2011. Silica/Polystyrene and Silica/Polystyrene-b-polymethacryloxypropyltrimethoxysilane Hybrid Nanoparticles via Surface-Initiated ATRP and Comparison of Their Wettabilities[J]. Polymer Engineering and Science, 51, 218.
    (58) El Harrak, A.; Carrot, G.; Oberdisse, J.; Eychenne-Baron, C.; Boue, F. 2004. Surface-atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability[J]. Macromolecules, 37, 6376.
    (59) Liu, P.; Tian, J.; Liu, W. M.; Xue, Q. J. 2004. Surface-initiated atom transfer radical polymerization (ATRP) of styrene from silica nanoparticles under UV irradiation[J]. Polymer International, 53, 127.
    (60) Sui, X.; Yuan, J.; Yuan, W.; Zhou, M. 2008. Surface-initiated living radical polymerization from inorganic nanomaterials[J]. Progress in Chemistry, 20, 1122.
    (61) Ohno, K.; Akashi, T.; Huang, Y.; Tsujii, Y. 2010. Surface-Initiated Living Radical Polymerization from Narrowly Size-Distributed Silica Nanoparticles of Diameters Less Than 100 nm[J]. Macromolecules, 43, 8805.
    (62) Czaun, M.; Rahman, M. M.; Takafuji, M.; Ihara, H. 2008. Surface-initiated living radical polymerization of self-assembling L-phenylalanine-derived monomer from silica for RP-HPLC application[J]. Journal of Polymer Science Part a-Polymer Chemistry, 46, 6664.
    (63) Chen, X. Y.; Randall, D. P.; Perruchot, C.; Watts, J. F.; Patten, T. E.; von Werne, T.; Armes, S. P. 2003. Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization[J]. Journal of Colloid and Interface Science, 257, 56.
    (64) Wang, Y.; Chen, J.; Xiang, J.; Li, H.; Shen, Y.; Gao, X.; Liang, Y. 2009. Synthesis and characterization of end-functional polymers on silica nanoparticles via a combination of atom transfer radical polymerization and click chemistry[J]. Reactive & Functional Polymers, 69, 393.
    (65) Pyun, J.; Jia, S. J.; Kowalewski, T.; Patterson, G. D.; Matyjaszewski, K. 2003. Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films[J]. Macromolecules, 36, 5094.
    (66) Chen, J.; Xiang, J.; Cai, Z.; Yong, H.; Wang, H.; Zhang, L.; Luo, W.; Min, H. 2010. Synthesis of Hydrophobic Polymer Brushes on Silica Nanoparticles Via the Combination of Surface-Initiated ATRP, ROP and Click Chemistry[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 47, 655.
    (67) Ohno, K.; Morinaga, T.; Koh, K.; Tsujii, Y.; Fukuda, T. 2005. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization[J]. Macromolecules, 38, 2137.
    (68) Zhang, K.; Ma, J.; Zhang, B.; Zhao, S.; Li, Y. P.; Xu, Y. X.; Yu, W. Z.; Wang, J. Y. 2007. Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiatedatom transfer radical polymerization[J]. Materials Letters, 61, 949.
    (69) Pyun, J.; Matyjaszewski, K.; Kowalewski, T.; Savin, D.; Patterson, G.; Kickelbick, G.; Huesing, N. 2001. Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces[J]. J. Am. Chem. Soc., 123, 9445.
    (70) Chen, J.; Hu, M.; Zhu, W.; Li, Y. 2011. Synthesis of well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization[J]. Applied Surface Science, 257, 6654.
    (71) Perruchot, C.; Khan, M. A.; Kamitsi, A.; Armes, S. P.; von Werne, T.; Patten, T. E. 2001. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP[J]. Langmuir, 17, 4479.
    (72) Nagase, K.; Kumazaki, M.; Kanazawa, H.; Kobayashi, J.; Kikuci, A.; Akiyama, Y.; Annaka, M.; Okano, T. 2010. Thermoresponsive Polymer Brush Surfaces with Hydrophobic Groups for All-Aqueous Chromatography[J]. Acs Applied Materials & Interfaces, 2, 1247.
    (73) Li, D. J.; Jones, G. L.; Dunlap, J. R.; Hua, F. J.; Zhao, B. 2006. Thermosensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization[J]. Langmuir, 22, 3344.
    (74) Wei, Q.; Zhou, W.; Ji, J.; Shen, J. 2009. Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization[J]. Nanoscale Research Letters, 4, 84.
    (75) Mu, B.; Wang, T.; Liu, P. 2007. Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations[J]. Industrial & Engineering Chemistry Research, 46, 3069.
    (76) Perruchot, C.; Khan, M. A.; Kamitsi, A.; Armes, S. P.; Watts, J. F.; von Werne, T.; Patten, T. E. 2004. XPS characterisation of core-shell silica-polymer composite particles synthesised by atom transfer radical polymerisation in aqueous media[J]. European Polymer Journal, 40, 2129.
    (77) Cheng, Z. P.; Li, Q.; Zhang, L. F.; Bai, L. J.; Zhang, Z. B.; Zhu, J.; Zhou, N. C.; Zhu, X. L. 2011. Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization[J]. Soft Matter, 7, 6958.
    (78) Kang, E. T.; Li, G. L.; Zeng, D. L. M.; Wang, L.; Zong, B. Y.; Neoh, K. G. 2009. Hairy Hybrid Nanoparticles of Magnetic Core, Fluorescent Silica Shell, and Functional Polymer Brushes[J]. Macromolecules, 42, 8561.
    (79) Li, R. K. Y.; Yang, Y. K.; Yang, Z. F.; Zhao, Q.; Cheng, X. J.; Tiong, S. C.; Wan, X. T.; Xie, X. L. 2009. Immobilization of RAFT Agents on Silica Nanoparticles Utilizing an Alternative Functional Group and Subsequent Surface-Initiated RAFT Polymerization[J]. J Polym Sci Pol Chem, 47, 467.
    (80) Shipp, D. A.; Chinthamanipeta, P. S.; Kobukata, S.; Nakata, H. 2008. Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization[J]. Polymer, 49, 5636.
    (81) Vana, P.; Rotzoll, R. 2008. Synthesis of Poly(methyl acrylate) Loops Grafted onto Silica Nanoparticles via Reversible Addition-Fragmentation Chain Transfer Polymerization[J]. J Polym Sci Pol Chem, 46, 7656.
    (82) Benicewicz, B. C.; Li, Y. 2008. Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions[J]. Macromolecules, 41, 7986.
    (83) Pan, C. Y.; Liu, C. H. 2007. Grafting polystyrene onto silica nanoparticles via RAFT polymerization[J]. Polymer, 48, 3679.
    (84) Brittain, W. J.; Radhakrishnan, B.; Ranjan, R. 2006. Surface initiated polymerizations from silica nanoparticles[J]. Soft Matter, 2, 386.
    (85) Li, C.; Han, J.; Ryu, C. Y.; Benicewicz, B. C. 2006. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles[J]. Macromolecules, 39, 3175.
    (86) Li, C. Z.; Benicewicz, B. C. 2005. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization[J]. Macromolecules, 38, 5929.
    (87) Tsujii, Y.; Ejaz, M.; Sato, K.; Goto, A.; Fukuda, T. 2001. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration[J]. Macromolecules, 34, 8872.
    (88) Zhao, Y. L.; Perrier, S. 2006. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization[J]. Macromolecules, 39, 8603.
    (89) Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Lefebvre, F.; Zydowicz, N. 2005. Nitroxide-mediated polymerization of styrene initiated from the surface of silica nanoparticles. In situ generation and grafting of alkoxyamine initiators[J]. Macromolecules, 38, 1099.
    (90) Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Zydowicz, N. 2003. Nitroxide-Mediated Polymerizations from Silica Nanoparticle Surfaces: "Graft from" Polymerization of Styrene Using a Triethoxysilyl-Terminated Alkoxyamine Initiator[J]. Macromolecules, 36, 7946.
    (91) Blomberg, S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J. 2002. Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 40, 1309.
    (92) Julien Parvole, G. L. A. K. L. B. 2005. Surface Initiated Polymerization of Poly(butyl acrylate) by Nitroxide Mediated Polymerization: First Comparative Polymerization of a Bimolecular and a Unimolecular Initiator-Grafted Silica Particles[J]. Macromol. Chem. Phys., 206, 372.
    (93) K., M.; H., X. J. 2001. Atom transfer radical polymerization[J]. Chemical Reviews, 101, 2921.
    (94) Pyun, J.; Jia, S.; Kowalewski, T.; Patterson, G. D.; Matyjaszewski, K. 2003. Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films (vol 36, pg 5094 2003)[J]. Macromolecules, 36, 6952.
    (95) Muller, A. H. E.; Mori, H.; Seng, D. C.; Zhang, M. F. 2002. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir, 18, 3682.
    (96) J., C.; K., C. Y.; F., E. 1998. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J]. Macromolecules, 31, 5559.
    (97) Carrot, G.; Rutot-Houzé, D.; Pottier, A.; Degée, P.; Hilborn, J.; Dubois, P. 2002. Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering[J]. Macromolecules, 35, 8400.
    (98) Zirbs, R.; Binder, W.; Gahleitner, M.; Machl, D. 2007. "Grafting from" -living cationic polymerization of poly(isobutylene) from silica-nanoparticle surfaces[J]. Macromol. Symp., 254, 93.
    (99) Mingotaud, A.-F.; Reculusa, S.; Mingotaud, C.; Keller, P.; Sykes, C.; Duguet, E.; Ravaine, S. 2003. Ring-opening metathesis polymerization on well defined silica nanoparticles leading to hybrid core-shell particles[J]. J. Mater. Chem., 13, 1920.
    (100) Sharpless, K. B.; Kolb, H. C.; Finn, M. G. 2001. Click chemistry: Diverse chemical function from a few good reactions[J]. Angew. Chem., Int. Ed., 40, 2004.
    (101) Ranjan, R.; Brittain, W. J. 2007. Combination of living radical polymerization and click chemistry for surface modification[J]. Macromolecules, 40, 6217.
    (102) Li, Y.; Benicewicz, B. C. 2008. Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions[J]. Macromolecules, 41, 7986.
    (103) Ranjan, R.; Brittain, W. J. 2008. Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry[J]. Macromol. Rapid Commun., 29, 1104.
    (104) Ranjan, R.; Brittain, W. J. 2007. Tandem RAFT polymerization and click chemistry: An efficient approach to surface modification[J]. Macromol. Rapid Commun., 28, 2084.
    (105) Lu, X. Y.; Sun, F.; Wang, J.; Zhong, J. F.; Dong, Q. Z. 2009. A Facile Route to Prepare Organic/Inorganic Hybrid Nanomaterials by 'Click Chemistry'[J]. Macromol. Rapid Commun., 30, 2116.
    (106) Qiu, P. H.; Jensen, C.; Charity, N.; Towner, R.; Mao, C. B. 2010. Oil Phase Evaporation-Induced Self-Assembly of Hydrophobic Nanoparticles into Spherical Clusters with Controlled Surface Chemistry in an Oil-in-Water Dispersion and Comparison of Behaviors of Individual and Clustered Iron Oxide Nanoparticles[J]. J Am Chem Soc, 132, 17724.
    (107) Chen, S.; Yang, S. Y.; Wang, C. F. 2011. Interface-Directed Assembly of One-Dimensional Ordered Architecture from Quantum Dots Guest and Polymer Host[J]. J Am Chem Soc, 133, 8412.
    (108) Duan, H. W.; Cheng, L.; Liu, A. P.; Peng, S. 2010. Responsive Plasmonic Assemblies of Amphiphilic Nanocrystals at Oil-Water Interfaces[J]. Acs Nano, 4, 6098.
    (109) Duan, H. W.; Wang, D. Y.; Kurth, D. G.; Mohwald, H. 2004. Directing self-assembly of nanoparticles at water/oil interfaces[J]. Angew Chem Int Edit, 43, 5639.
    (110) Lee, Y. L.; Tsai, H. J. 2009. Manipulation ordered and close-packed nanoparticle monolayers at air/liquid interface coupling Langmuir-Blodgett and self-assembly techniques[J]. Soft Matter, 5, 2962.
    (111) Moffitt, M. G.; Cheyne, R. B. 2007. Controllable organization of quantum dots into mesoscale wires and cables via interfacial block copolymer self-assembly[J]. Macromolecules, 40, 2046.
    (112) Schmid, G.; Wyrwa, D.; Beyer, N. 2002. One-dimensional arrangements of metal nanoclusters[J]. Nano Lett, 2, 419.
    (113) Tsukruk, V. V.; Genson, K. L.; Holzmueller, J.; Jiang, C. Y.; Xu, J.; Gibson, J. D.; Zubarev, E. R. 2006. Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms[J]. Langmuir, 22, 7011.
    (114) Bunz, U. H. F.; Caswell, K. K.; Wilson, J. N.; Murphy, C. J. 2003. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors[J]. J Am Chem Soc, 125, 13914.
    (115) Jiang, M.; Liu, Z. 2007. Reversible aggregation of gold nanoparticles driven by inclusion complexation[J]. J Mater Chem, 17, 4249.
    (116) Murphy, C. J.; Gole, A. 2005. Biotin-streptavidin-induced aggregation of gold nanorods: Tuning rod-rod orientation[J]. Langmuir, 21, 10756.
    (117) Ritter, H.; Isenbugel, K.; Branscheid, R.; Kolb, U. 2010. Nanoparticle Vesicles Through Self Assembly of Cyclodextrin- and Adamantyl-Modified Silica[J]. Macromol Rapid Comm, 31, 2121.
    (118) Stoddart, J. F.; Klajn, R.; Olson, M. A.; Wesson, P. J.; Fang, L.; Coskun, A.; Trabolsi, A.; Soh, S.; Grzybowski, B. A. 2009. Dynamic hook-and-eye nanoparticle sponges[J]. Nat Chem, 1,733.
    (119) Wang, S. T.; Chen, K. J.; Wu, T. H.; Wang, H.; Lin, W. Y.; Ohashi, M.; Chiou, P. Y.; Tseng, H. R. 2010. Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells[J]. Angew Chem Int Edit, 49, 3777.
    (120) Miyake, M.; Shen, Z.; Yamada, M. 2007. Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands[J]. J Am Chem Soc, 129, 14271.
    (121) Yamada, M.; Shen, Z. R.; Miyake, M. 2006. Self-assembly of discotic liquid crystalline molecule-modified gold nanoparticles: control of 1D and hexagonal ordering induced by solvent polarity[J]. Chem Commun, 2569.
    (122) Rotello, V. M.; Frankamp, B. L.; Boal, A. K. 2002. Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers[J]. J Am Chem Soc, 124, 15146.
    (123) van der Boom, M. E.; Shirman, T.; Arad, T. 2010. Halogen Bonding: A Supramolecular Entry for Assembling Nanoparticles[J]. Angew Chem Int Edit, 49, 926.
    (124) Ernenwein, D.; Ghosh, P.; Rotello, V.; Chmielewski, J. 2010. Gold nanoparticle self-assembly promoted by a non-covalent, charge-complemented coiled-coil peptide[J]. J Mater Chem, 20, 5608.
    (125) Grzybowski, B. A.; Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M. 2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice[J]. Science, 312, 420.
    (126) Rotello, V. M.; Carroll, J. B.; Frankamp, B. L.; Srivastava, S. 2004. Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites[J]. J Mater Chem, 14, 690.
    (127) Rotello, V. M.; Galow, T. H.; Boal, A. K. 2000. A "building block" approach to mixed-colloid systems through electrostatic self-organization[J]. Adv Mater, 12, 576.
    (128) Wong, M. S.; Murthy, V. S.; Cha, J. N.; Stucky, G. D. 2004. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres[J]. J Am Chem Soc, 126, 5292.
    (129) Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. 1996. Organization of 'nanocrystal molecules' using DNA[J]. Nature, 382, 609.
    (130) Alivisatos, A. P.; Loweth, C. J.; Caldwell, W. B.; Peng, X. G.; Schultz, P. G. 1999. DNA-based assembly of gold nanocrystals[J]. Angew Chem Int Edit, 38, 1808.
    (131) Cha, J. N.; Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.2010. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami[J]. Nat Nanotechnol, 5, 121.
    (132) Gang, O.; Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B. 2010. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands[J]. Nat Nanotechnol, 5, 116.
    (133) Gang, O.; Nykypanchuk, D.; Maye, M. M.; van der Lelie, D. 2008. DNA-guided crystallization of colloidal nanoparticles[J]. Nature, 451, 549.
    (134) Graham, D.; Thompson, D. G.; Smith, W. E.; Faulds, K. 2008. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles[J]. Nat Nanotechnol, 3, 548.
    (135) LaBean, T. H.; Li, H. Y.; Park, S. H.; Reif, J. H.; Yan, H. 2004. DNA-templated self-assembly of protein and nanoparticle linear arrays[J]. J Am Chem Soc, 126, 418.
    (136) Liu, Y.; Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Yan, H. 2009. Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles[J]. Science, 323, 112.
    (137) Mann, S.; Sadasivan, S.; Dujardin, E.; Li, M.; Johnson, C. J. 2005. DNA-driven assembly of mesoporous silica/gold satellite nanostructures[J]. Small, 1, 103.
    (138) Mao, C. D.; Chen, Y. 2008. pH-Induced Reversible Expansion/Contraction of Gold Nanoparticle Aggregates[J]. Small, 4, 2191.
    (139) Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. 2009. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nat Mater, 8, 388.
    (140) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. 1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 382, 607.
    (141) Mirkin, C. A.; Mucic, R. C.; Storhoff, J. J.; Letsinger, R. L. 1998. DNA-directed synthesis of binary nanoparticle network materials[J]. J Am Chem Soc, 120, 12674.
    (142) Mirkin, C. A.; Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C. 2008. DNA-programmable nanoparticle crystallization[J]. Nature, 451, 553.
    (143) Wen, Y. Q.; McLaughlin, C. K.; Lo, P. K.; Yang, H.; Sleiman, H. F. 2010. Stable Gold Nanoparticle Conjugation to Internal DNA Positions: Facile Generation of Discrete Gold Nanoparticle-DNA Assemblies[J]. Bioconjugate Chem, 21, 1413.
    (144) Yan, H.; Zhang, J. P.; Liu, Y.; Ke, Y. G. 2006. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface[J]. Nano Lett, 6, 248.
    (145) Rotello, V. M.; Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P. 2000. Self-assembly of nanoparticles into structured spherical and network aggregates[J]. Nature, 404, 746.
    (146) Huskens, J.; Crespo-Biel, O.; Dordi, B.; Maury, P.; Peter, M.; Reinhoudt, D. N. 2006. Patterned, hybrid, multilayer nanostructures based on multivalent supramolecular interactions[J]. Chem Mater, 18, 2545.
    (147) Czernin, J.; Wang, H.; Wang, S. T.; Su, H.; Chen, K. J.; Armijo, A. L.; Lin, W. Y.; Wang, Y. J.; Sun, J.; Kamei, K.; Radu, C. G.; Tseng, H. R. 2009. A Supramolecular Approach for Preparation of Size-Controlled Nanoparticles[J]. Angew Chem Int Edit, 48, 4344.
    (148) Eisenberg, A.; Cameron, N. S.; Corbierre, M. K. 1999. 1998 E.W.R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland[J]. Can J Chem, 77, 1311.
    (149) Eisenberg, A.; Mai, Y. 2010. Controlled Incorporation of Particles into the Central Portion of Vesicle Walls[J]. J Am Chem Soc, 132, 10078.
    (150) Park, S. J.; Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M. 2011. Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles[J]. J Am Chem Soc, 133, 1517.
    (151) Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M. 2007. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers[J]. Nat Mater, 6, 609.
    (152) Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. 2006. Amphiphilicity-driven organization of nanoparticles into discrete assemblies[J]. J Am Chem Soc, 128, 15098.
    (153) Moffitt, M. G.; Guo, Y.; Harirchian-Saei, S.; Izumi, C. M. S. 2011. Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles[J]. Acs Nano, 5, 3309.
    (154) Duan, H. W.; Song, J. B.; Cheng, L.; Liu, A. P.; Yin, J.; Kuang, M. 2011. Plasmonic Vesicles of Amphiphilic Gold Nanocrystals: Self-Assembly and External-Stimuli-Triggered Destruction[J]. J Am Chem Soc, 133, 10760.
    (155) Granick, S.; Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S. 2010. Janus Particle Synthesis and Assembly[J]. Adv Mater, 22, 1060.
    (156) Hatton, T. A.; Lattuada, M. 2011. Synthesis, properties and applications of Janus nanoparticles[J]. Nano Today, 6, 286.
    (157) Xia, Y. N.; Ohnuma, A.; Cho, E. C.; Camargo, P. H. C.; Au, L.; Ohtani, B. 2009. A Facile Synthesis of Asymmetric Hybrid Colloidal Particles[J]. J Am Chem Soc, 131, 1352.
    (158) Yang, Z. Z.; Zhang, C. L.; Liu, B.; Tang, C.; Liu, J. G.; Qu, X. Z.; Li, J. L. 2010. Large scale synthesis of Janus submicron sized colloids by wet etching anisotropic ones[J]. Chem Commun, 46, 4610.
    (159) Granick, S.; Hong, L.; Jiang, S. 2006. Simple method to produce Janus colloidal particles inlarge quantity[J]. Langmuir, 22, 9495.
    (160) Yang, Z. H.; Liu, B.; Wei, W.; Qu, X. Z. 2008. Janus colloids formed by biphasic grafting at a pickering emulsion interface[J]. Angew Chem Int Edit, 47, 3973.
    (161) Zhao, H. Y.; Zhang, J.; Jin, J. 2009. Surface-Initiated Free Radical Polymerization at the Liquid-Liquid Interface: A One-Step Approach for the Synthesis of Amphiphilic Janus Silica Particles[J]. Langmuir, 25, 6431.
    (162) Hatton, T. A.; Lattuada, M. 2007. Preparation and controlled self-assembly of janus magnetic nanoparticles[J]. J Am Chem Soc, 129, 12878.
    (163) Li, C. Y.; Wang, B. B.; Li, B.; Zhao, B. 2008. Amphiphilic Janus gold nanoparticles via combining "Solid-State Grafting-to" and "Grafting-from" methods[J]. J Am Chem Soc, 130, 11594.
    (164) Chen, S. W.; Xu, Q. A.; Kang, X. W.; Bogomolni, R. A. 2010. Controlled Assembly of Janus Nanoparticles[J]. Langmuir, 26, 14923.
    (165) Pradhan, S.; Xu, L. P.; Chen, S. W. 2007. Janus nanoparticles by interfacial engineering[J]. Adv Funct Mater, 17, 2385.
    (166) Park, T. G.; Lee, H.; Choi, S. H. 2006. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles[J]. Macromolecules, 39, 23.
    (167) Sita, L. R.; Zehner, R. W.; Lopes, W. A.; Morkved, T. L.; Jaeger, H. 1998. Selective decoration of a phase-separated diblock copolymer with thiol-passivated gold nanocrystals[J]. Langmuir, 14, 241.
    (168) Liu, S. Y.; Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W. 2007. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution[J]. Chem Mater, 19, 2489.
    (1) Golden, J. H.; Deng, H. B.; Disalvo, F. J.; Frechet, J. M. J.; Thompson, P. M. 1995. Monodisperse Metal-Clusters 10-Angstroms in Diameter in a Polymeric Host - the Monomer-as-Solvent Approach[J]. Science, 268, 1463.
    (2) Daniel, M. C.; Astruc, D. 2004. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem. Rev., 104, 293.
    (3) Caruso, F. 2001. Nanoengineering of particle surfaces[J]. Adv. Mater., 13, 11.
    (4) Bourgeat-Lami, E. In Encyclopedia of Nanoscience and Nanotechnology; Scientific Publishers: Los Angeles, 2004; Vol. 8, p 305.
    (5) Garcia, I.; Zafeiropoulos, N. E.; Janke, A.; Tercjak, A.; Eceiza, A.; Stamm, M.; Mondragon, I. 2007. Functional ization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 45, 925.
    (6) Lindenblatt, G.; Schartl, W.; Pakula, T.; Schmidt, M. 2000. Synthesis of polystyrene-grafted polyorganosiloxane microgels and their compatibility with linear polystyrene chains[J]. Macromolecules, 33, 9340.
    (7) Vestal, C. R.; Zhang, Z. J. 2002. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles[J]. J. Am. Chem. Soc., 124, 14312.
    (8) Sill, K.; Emrick, T. 2004. Nitroxide-mediated radical polymerization from CdSe nanoparticles[J]. Chem. Mater., 16, 1240.
    (9) Pyun, J.; Kowalewski, T.; Matyjaszewski, K. 2003. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromol. Rapid Commun., 24, 1043.
    (10) Mandal, T. K.; Fleming, M. S.; Walt, D. R. 2002. Preparation of polymer coated goldnanoparticles by surface-confined living radical polymerization at ambient temperature[J]. Nano Lett., 2, 3.
    (11) Kickelbick, G.; Holzinger, D.; Brick, C.; Trimmel, G.; Moons, E. 2002. Hybrid inorganic-organic core-shell nanoparticles from surface-functionalized titanium, zirconium, and vanadium oxo clusters[J]. Chem. Mater., 14, 4382.
    (12) Prucker, O.; Ruhe, J. 1998. Mechanism of radical chain polymerizations initiated by azo compounds covalently bound to the surface of spherical particles[J]. Macromolecules, 31, 602.
    (13) Prucker, O.; Ruhe, J. 1998. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators[J]. Macromolecules, 31, 592.
    (14) Badley, R. D.; Ford, W. T.; McEnroe, F. J.; Assink, R. A. 1990. Surface modification of colloidal silica[J]. Langmuir, 6, 792.
    (15) Li, D. J.; Jones, G. L.; Dunlap, J. R.; Hua, F. J.; Zhao, B. 2006. Thermosensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization[J]. Langmuir, 22, 3344.
    (16) Li, D. J.; Sheng, X.; Zhao, B. 2005. Environmentally responsive "Hairy" nanoparticles: Mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques[J]. J. Am. Chem. Soc., 127, 6248.
    (17) Zhang, K.; Ma, J.; Zhang, B.; Zhao, S.; Li, Y. P.; Xu, Y. X.; Yu, W. Z.; Wang, J. Y. 2007. Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization[J]. Mater. Lett., 61, 949.
    (18) Pyun, J.; Jia, S. J.; Kowalewski, T.; Patterson, G. D.; Matyjaszewski, K. 2003. Synthesis and characterization of organic/inorganic hybrid nanoparticles: Kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films[J]. Macromolecules, 36, 5094.
    (19) Perruchot, C.; Khan, M. A.; Kamitsi, A.; Armes, S. P.; von Werne, T.; Patten, T. E. 2001. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP[J]. Langmuir, 17, 4479.
    (20) Chen, X. Y.; Randall, D. P.; Perruchot, C.; Watts, J. F.; Patten, T. E.; von Werne, T.; Armes, S. P. 2003. Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization[J]. J. Colloid Interface Sci., 257, 56.
    (21) von Werne, T.; Patten, T. E. 2001. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces[J]. J. Am. Chem. Soc., 123, 7497.
    (22) Carrot, G.; Diamanti, S.; Manuszak, M.; Charleux, B.; Vairon, I. P. 2001. Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles[J]. J. Polym. Sci., Part A: Polym. Chem., 39, 4294.
    (23) von Werne, T.; Patten, T. E. 1999. Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations[J]. J. Am. Chem. Soc., 121, 7409.
    (24) Ohno, K.; Morinaga, T.; Koh, K.; Tsujii, Y.; Fukuda, T. 2005. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization[J]. Macromolecules, 38, 2137.
    (25) Morinaga, T.; Ohkura, M.; Ohno, K.; Tsujii, Y.; Fukuda, T. 2007. Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes: Their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres[J]. Macromolecules, 40, 1159.
    (26) Mori, H.; Seng, D. C.; Zhang, M. F.; Muller, A. H. E. 2002. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir, 18, 3682.
    (27) Fu, G. D.; Shang, Z. H.; Hong, L.; Kang, E. T.; Neoh, K. G. 2005. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations[J]. Macromolecules, 38, 7867.
    (28) El Harrak, A.; Carrot, G.; Oberdisse, J.; Eychenne-Baron, C.; Boue, F. 2004. Surface-atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability[J]. Macromolecules, 37, 6376.
    (29) Carrot, G.; El Harrak, A.; Oberdisse, J.; Jestin, J.; Boue, F. 2006. Polymer grafting from 10-nm individual particles: proving control by neutron scattering[J]. Soft Matter, 2, 1043.
    (30) Pyun, J.; Matyjaszewski, K.; Kowalewski, T.; Savin, D.; Patterson, G.; Kickelbick, G.; Huesing, N. 2001. Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces[J]. J. Am. Chem. Soc., 123, 9445.
    (31) Zhao, Y. L.; Perrier, S. 2006. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization[J]. Macromolecules, 39, 8603.
    (32) Tsujii, Y.; Ejaz, M.; Sato, K.; Goto, A.; Fukuda, T. 2001. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of surface radical migration[J]. Macromolecules, 34, 8872.
    (33) Li, C. Z.; Benicewicz, B. C. 2005. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization[J].Macromolecules, 38, 5929.
    (34) Li, C.; Han, J.; Ryu, C. Y.; Benicewicz, B. C. 2006. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles[J]. Macromolecules, 39, 3175.
    (35) Julien Parvole, G. L. A. K. L. B. 2005. Surface Initiated Polymerization of Poly(butyl acrylate) by Nitroxide Mediated Polymerization: First Comparative Polymerization of a Bimolecular and a Unimolecular Initiator-Grafted Silica Particles[J]. Macromol. Chem. Phys., 206, 372.
    (36) Blomberg, S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J. 2002. Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 40, 1309.
    (37) Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Zydowicz, N. 2003. Nitroxide-Mediated Polymerizations from Silica Nanoparticle Surfaces: "Graft from" Polymerization of Styrene Using a Triethoxysilyl-Terminated Alkoxyamine Initiator[J]. Macromolecules, 36, 7946.
    (38) Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Lefebvre, F.; Zydowicz, N. 2005. Nitroxide-mediated polymerization of styrene initiated from the surface of silica nanoparticles. In situ generation and grafting of alkoxyamine initiators[J]. Macromolecules, 38, 1099.
    (39) Schild, H. G. 1992. Poly (N-Isopropylacrylamide) - Experiment, Theory and Application[J]. Prog. Polym. Sci., 17, 163.
    (40) Braunecker, W. A.; Matyjaszewski, K. 2007. Controlled/living radical polymerization: Features, developments, and perspectives[J]. Prog. Polym. Sci., 32, 93.
    (41) Jewrajka, S. K.; Mandal, B. M. 2003. Living radical polymerization. 1. The case of atom transfer radical polymerization of acrylamide in aqueous-based medium[J]. Macromolecules, 36, 311.
    (42) Binkert, T.; Oberreich, J.; Meewes, M.; Nyffenegger, R.; Ricka, J. 1991. Coil Globule Transition of Poly(N-Isopropylacrylamide) - a Study of Segment Mobility by Fluorescence Depolarization[J]. Macromolecules, 24, 5806.
    (43) Szleifer, I.; Carignano, M. A. In Advances in Chemical Physics, Vol Xciv; John Wiley & Sons Inc: New York, 1996; Vol. 94, p 165.
    (44) Wagner, M.; Brochardwyart, F.; Hervet, H.; Degennes, P. G. 1993. Collapse of Polymer Brushes Induced by N-Clusters[J]. Colloid Polym. Sci., 271, 621.
    (45) Zhulina, E. B.; Borisov, O. V.; Pryamitsyn, V. A.; Birshtein, T. M. 1991. Coil Globule Type Transitions in Polymers .1. Collapse of Layers of Grafted Polymer-Chains[J]. Macromolecules, 24,140.
    (46) Teraoka, I. In Polymer Solutions: An Introduction to Physical Properties; John Wiley & Sons: New York, 2002.
    (47) Balamurugan, S.; Mendez, S.; Balamurugan, S. S.; O'Brien, M. J.; Lopez, G. P. 2003. Thermal response of poly(N-isopropylacrylamide) brushes probed by surface plasmon resonance[J]. Langmuir, 19, 2545.
    (48) Shan, J.; Chen, J.; Nuopponen, M.; Tenhu, H. 2004. Two phase transitions of poly(N-isopropylacrylamide) brushes bound to gold nanoparticles[J]. Langmuir, 20, 4671.
    (49) Shan, J.; Nuopponen, M.; Jiang, H.; Kauppinen, E.; Tenhu, H. 2003. Preparation of poly(N-isopropylacrylamide)-monolayer-protected gold clusters: Synthesis methods, core size, and thickness of monolayer[J]. Macromolecules, 36, 4526.
    (50) Raula, J.; Shan, J.; Nuopponen, M.; Niskanen, A.; Jiang, H.; Kauppinen, E. I.; Tenhu, H. 2003. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization[J]. Langmuir, 19, 3499.
    (51) Ciampolini, M.; Nardi, N. 1966. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, andCopper with Tris(2-dimethylaminoethyl)amine[J]. Inorg. Chem., 5, 41.
    (52) Stober, W.; Fink, A.; Bohn, E. 1968. Controlled growth of monodisperse silica spheres in the micro size range[J]. J. Colloid Interface Sci., 26, 62.
    (53) Kim, J. B.; Huang, W. X.; Miller, M. D.; Baker, G. L.; Bruening, M. L. 2003. Kinetics of surface-initiated atom transfer radical polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 41, 386.
    (54) Matyjaszewski, K.; Miller, P. J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B. B.; Siclovan, T. M.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; Pakula, T. 1999. Polymers at interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator[J]. Macromolecules, 32, 8716.
    (55) Teodorescu, M.; Matyjaszewski, K. 2000. Controlled polymerization of (meth)acrylamides by atom transfer radical polymerization[J]. Macromol. Rapid Commun., 21, 190.
    (56) Masci, G.; Giacomelli, L.; Crescenzi, V. 2004. Atom transfer radical polymerization of N-isopropylacrylamide[J]. Macromol. Rapid Commun., 25, 559.
    (57) Xia, Y.; Yin, X. C.; Burke, N. A. D.; Stover, H. D. H. 2005. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules, 38, 5937.
    (58) Xia, Y.; Burke, N. A. D.; Stover, H. D. H. 2006. End group effect on the thermal response ofnarrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules, 39, 2275.
    (59) Pan, Y. V.; Wesley, R. A.; Luginbuhl, R.; Denton, D. D.; Ratner, B. D. 2001. Plasma polymerized N-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating[J]. Biomacromolecules, 2, 32.
    (60) Kizhakkedathu, J. N.; Norris-Jones, R.; Brooks, D. E. 2004. Synthesis of well-defined environmentally responsive polymer brushes by aqueous ATRP[J]. Macromolecules, 37, 734.
    (61) Zhang, Y. F.; Luo, S. Z.; Liu, S. Y. 2005. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach[J]. Macromolecules, 38, 9813.
    (62) Afroze, F.; Nies, E.; Berghmans, H. 2000. Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks[J]. J. Mol. Struct., 554, 55.
    (63) Burchard, W.; Brown, W., Ed.; Clarendon Press: Oxford, 1996, p 439.
    (1) Sakakibara, J.; Adrian, R. J. 1999. Whole field measurement of temperature in water using two-color laser induced fluorescence[J]. Exp. Fluids, 26, 7.
    (2) Huang, J.; Peng, A. D.; Fu, H. B.; Ma, Y.; Zhai, T. Y.; Yao, J. N. 2006. Temperature-dependent ratiometric fluorescence from an organic aggregates system[J]. J. Phys. Chem. A, 110, 9079.
    (3) Schrum, K. F.; Williams, A. M.; Haerther, S. A.; Benamotz, D. 1994. Molecular Fluorescence Thermometry[J]. Anal. Chem., 66, 2788.
    (4) Ross, D.; Gaitan, M.; Locascio, L. E. 2001. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye[J]. Anal. Chem., 73, 4117.
    (5) Lupton, J. M. 2002. A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin[J]. Appl. Phys. Lett., 81, 2478.
    (6) Lou, J. F.; Hatton, T. A.; Laibinis, P. E. 1997. Fluorescent probes for monitoring temperature in organic solvents[J]. Anal. Chem., 69, 1262.
    (7) Engeser, M.; Fabbrizzi, L.; Licchelli, M.; Sacchi, D. 1999. A fluorescent molecular thermometer based on the nickel(II) high-spin/low-spin interconversion[J]. Chem. Commun., 1191.
    (8) Davis, R.; Das, S. 2005. Fluorescent aggregates of 1-(p-butyloxyphenyl)-4-(p-cyanophenyl)buta-1E,3E-diene: Temperature sensing and photoimaging applications[J]. J. Fluoresc., 15, 749.
    (9) Crenshaw, B. R.; Kunzelman, J.; Sing, C. E.; Ander, C.; Weder, C. 2007. Threshold temperature sensors with tunable properties[J]. Macromol. Chem. Phys., 208, 572.
    (10) Chandrasekharan, N.; Kelly, L. A. 2001. A dual fluorescence temperature sensor based on perylene/exciplex interconversion[J]. J. Am. Chem. Soc., 123, 9898.
    (11) Baleizao, C.; Nagl, S.; Borisov, S. M.; Schaferling, M.; Wolfbeis, O. S.; Berberan-Santos, M. N. 2007. An optical thermometer based on the delayed fluorescence of C-70[J]. Chem.-Eur. J., 13, 3643.
    (12) Baker, G. A.; Baker, S. N.; McCleskey, T. M. 2003. Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid[J]. Chem. Commun., 2932.
    (13) Hong, S. W.; Kim, D. Y.; Lee, J. U.; Jo, W. H. 2009. Synthesis of Polymeric TemperatureSensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide)[J]. Macromolecules, 42, 2756.
    (14) Shiraishi, Y.; Miyamoto, R.; Zhang, X.; Hirai, T. 2007. Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range[J]. Org. Lett., 9, 3921.
    (15) Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. 2004. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers[J]. Anal. Chem., 76, 1793.
    (16) Iwai, K.; Matsumura, Y.; Uchiyama, S.; de Silva, A. P. 2005. Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range[J]. J. Mater. Chem., 15, 2796.
    (17) Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. 2004. Fluorescent polymeric AND logic gate with temperature and pH as inputs[J]. J. Am. Chem. Soc., 126, 3032.
    (18) Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. 2009. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry[J]. J. Am. Chem. Soc., 131, 2766.
    (19) Shiraishi, Y.; Miyarnoto, R.; Hirai, T. 2008. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer[J]. Langmuir, 24, 4273.
    (20) Yan, Q.; Yuan, J. Y.; Yuan, W. Z.; Zhou, M.; Yin, Y. W.; Pan, C. Y. 2008. Copolymer logical switches adjusted through core-shell micelles: from temperature response to fluorescence response[J]. Chem. Commun., 6188.
    (21) Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. 2003. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans[J]. Anal. Chem., 75, 5926.
    (22) Guo, Z. Q.; Zhu, W. H.; Xiong, Y. Y.; Tian, H. 2009. Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyran Moiety[J]. Macromolecules, 42, 1448.
    (23) Wong, F. H. C.; Banks, D. S.; Abu-Arish, A.; Fradin, C. 2007. A molecular thermometer based on fluorescent protein blinking[J]. J. Am. Chem. Soc., 129, 10302.
    (24) Kwak, G.; Fukao, S.; Fujiki, M.; Sakaguchi, T.; Masuda, T. 2006. Temperature-dependent, static, and dynamic fluorescence properties of disubstituted acetylene polymer films[J]. Chem. Mater., 18, 2081.
    (25) Gan, D. J.; Lyon, L. A. 2001. Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles[J]. J. Am. Chem. Soc., 123, 8203.
    (26) Jones, C. D.; McGrath, J. G.; Lyon, L. A. 2004. Characterization of cyanine dye-labeledpoly(N-isopropylacrylamide) core/shell microgels using fluorescence resonance energy transfer[J]. J. Phys. Chem. B, 108, 12652.
    (27) Douma, K.; Prinzen, L.; Slaaf, D. W.; Reutelingsperger, C. P. M.; Biessen, E. A. L.; Hackeng, T. M.; Post, M. J.; van Zandvoort, M. 2009. Nanoparticles for Optical Molecular Imaging of Atherosclerosis[J]. Small, 5, 544.
    (28) Zhu, L. Y.; Wu, W. W.; Zhu, M. Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q. 2007. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging[J]. J. Am. Chem. Soc., 129, 3524.
    (29) Chen, J.; Zeng, F.; Wu, S. Z.; Chen, Q. M.; Tong, Z. 2008. A core-shell nanoparticle approach to photoreversible fluorescence modulation of a hydrophobic dye in aqueous media[J]. Chem.-Eur. J., 14, 4851.
    (30) Chen, J.; Zeng, F.; Wu, S. Z.; Zhao, J. Q.; Chen, Q. M.; Tong, Z. 2008. Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds[J]. Chem. Commun., 5580.
    (31) Zhu, M. Q.; Zhu, L. Y.; Han, J. J.; Wu, W. W.; Hurst, J. K.; Li, A. D. Q. 2006. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence[J]. J. Am. Chem. Soc., 128, 4303.
    (32) Emin, S. M.; Sogoshi, N.; Nakabayashi, S.; Fujihara, T.; Dushkin, C. D. 2009. Kinetics of Photochromic Induced Energy Transfer between Manganese-Doped Zinc-Selenide Quantum Dots and Spiropyrans[J]. J. Phys. Chem. C, 113, 3998.
    (33) Zhu, L. Y.; Zhu, M. Q.; Hurst, J. K.; Li, A. D. Q. 2005. Light-controlled molecular switches modulate nanocrystal fluorescence[J]. J. Am. Chem. Soc., 127, 8968.
    (34) Medintz, I. L.; Trammell, S. A.; Mattoussi, H.; Mauro, J. M. 2004. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor[J]. J. Am. Chem. Soc., 126, 30.
    (35) Raymo, F. M.; Giordani, S. 2001. Signal processing at the molecular level[J]. J. Am. Chem. Soc., 123, 4651.
    (36) Onoda, M.; Uchiyama, S.; Santa, T.; Imai, K. 2002. A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields[J]. Anal. Chem., 74, 4089.
    (37) Zhang, Y. F.; Luo, S. Z.; Liu, S. Y. 2005. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach[J]. Macromolecules, 38, 9813.
    (38) Shan, J.; Chen, J.; Nuopponen, M.; Tenhu, H. 2004. Two phase transitions of poly(N-isopropylacrylamide) brushes bound to gold nanoparticles[J]. Langmuir, 20, 4671.
    (39) Luo, S. Z.; Xu, J.; Zhu, Z. Y.; Wu, C.; Liu, S. Y. 2006. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas[J]. J. Phys. Chem. B, 110, 9132.
    (40) Balamurugan, S.; Mendez, S.; Balamurugan, S. S.; O'Brien, M. J.; Lopez, G. P. 2003. Thermal response of poly(N-isopropylacrylamide) brushes probed by surface plasmon resonance[J]. Langmuir, 19, 2545.
    (41) Binkert, T.; Oberreich, J.; Meewes, M.; Nyffenegger, R.; Ricka, J. 1991. Coil Globule Transition of Poly(N-Isopropylacrylamide) - a Study of Segment Mobility by Fluorescence Depolarization[J]. Macromolecules, 24, 5806.
    (42) Yim, H.; Kent, M. S.; Huber, D. L.; Satija, S.; Majewski, J.; Smith, G. S. 2003. Conformation of End-Tethered PNIPAM Chains in Water and in Acetone by Neutron Reflectivity[J]. Macromolecules, 36, 5244.
    (43) Yim, H.; Kent, M. S.; Mendez, S.; Balamurugan, S. S.; Balamurugan, S.; Lopez, G. P.; Satija, S. 2004. Temperature-Dependent Conformational Change of PNIPAM Grafted Chains at High Surface Density in Water[J]. Macromolecules, 37, 1994.
    (44) Berkovic, G.; Krongauz, V.; Weiss, V. 2000. Spiropyrans and spirooxazines for memories and switches[J]. Chem. Rev., 100, 1741.
    (45) Such, G.; Evans, R. A.; Yee, L. H.; Davis, T. P. 2003. Factors influencing photochromism of spiro-compounds within polymeric matrices[J]. Journal of Macromolecular Science-Polymer Reviews, C43, 547.
    (46) Farinha, J. P. S.; Martinho, J. M. G. 2008. Resonance energy transfer in polymer nanodomains[J]. J. Phys. Chem. C, 112, 10591.
    (1) Meier, W. 2000. Polymer nanocapsules[J]. Chem. Soc. Rev., 29, 295.
    (2) Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. 2010. Polymer-based nanocapsules for drug delivery[J]. Int. J. Pharm., 385, 113.
    (3) Chen, D. Y.; Jiang, M. 2005. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J]. Acc. Chem. Res., 38, 494.
    (4) Ding, J. F.; Liu, G. J. 1998. Hairy, semi-shaved, and fully shaved hollow nanospheres from polyisoprene block poly(2-cinnamoylethyl methacrylate)[J]. Chem. Mater., 10, 537.
    (5) Huang, H. Y.; Remsen, E. E.; Kowalewski, T.; Wooley, K. L. 1999. Nanocages derived from shell cross-linked micelle templates[J]. J. Am. Chem. Soc., 121, 3805.
    (6) Sauer, M.; Meier, W. 2001. Responsive nanocapsules[J]. Chem. Commun., 55.
    (7) Crespy, D.; Stark, M.; Hoffmann-Richter, C.; Ziener, U.; Landfester, K. 2007. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets[J]. Macromolecules, 40, 3122.
    (8) Jang, J.; Ha, H. 2002. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers[J]. Langmuir, 18, 5613.
    (9) Li, W. W.; Yoon, J. A.; Matyjaszewski, K. 2010. Dual-Reactive Surfactant Used for Synthesis of Functional Nanocapsules in Miniemulsion[J]. J. Am. Chem. Soc., 132, 7823.
    (10) McDonald, C. J.; Bouck, K. J.; Chaput, A. B.; Stevens, C. J. 2000. Emulsion polymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules, 33, 1593.
    (11) Ni, K. F.; Shan, G. R.; Weng, Z. X. 2006. Synthesis of hybrid nanocapsules by miniemulsion (co)polymerization of styrene and gamma-methacryloxypropyltrimethoxysilane[J]. Macromolecules, 39, 2529.
    (12) Scott, C.; Wu, D.; Ho, C. C.; Co, C. C. 2005. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick[J]. J. Am. Chem. Soc., 127, 4160.
    (13) Song, L. Y.; Ge, X. W.; Wang, M. Z.; Zhang, Z. C.; Li, S. C. 2006. Anionic/nonionic mixed surfactants templates preparation of hollow polymer spheres via emulsion polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 44, 2533.
    (14) Tiarks, F.; Landfester, K.; Antonietti, M. 2001. Preparation of polymeric nanocapsules by miniemulsion polymerization[J]. Langmuir, 17, 908.
    (15) Boyer, C.; Whittaker, M. R.; Nouvel, C.; Davis, T. P. 2010. Synthesis of Hollow Polymer Nanocapsules Exploiting Gold Nanoparticles as Sacrificial Templates[J]. Macromolecules, 43, 1792.
    (16) Liu, X.; Basu, A. 2009. Core Functionalization of Hollow Polymer Nanocapsules[J]. J. Am. Chem. Soc., 131, 5718.
    (17) Marinakos, S. M.; Novak, J. P.; Brousseau, L. C.; House, A. B.; Edeki, E. M.; Feldhaus, J. C.; Feldheim, D. L. 1999. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation[J]. J. Am. Chem. Soc., 121, 8518.
    (18) Shi, Z. Q.; Zhou, Y. F.; Yan, D. Y. 2006. Preparation of poly(beta-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness[J]. Polymer, 47, 8073.
    (19) Wang, Y. J.; Bansal, V.; Zelikin, A. N.; Caruso, F. 2008. Templated synthesis of single-component polymer capsules and their application in drug delivery[J]. Nano Lett., 8, 1741.
    (20) Xu, X. L.; Asher, S. A. 2004. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals[J]. J. Am. Chem. Soc., 126, 7940.
    (21) Caruso, F.; Caruso, R. A.; Mohwald, H. 1998. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 282, 1111.
    (22) Donath, E.; Sukhorukov, G. B.; Caruso, F.; Davis, S. A.; Mohwald, H. 1998. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes[J]. Angew. Chem., Int. Ed., 37, 2202.
    (23) Gittins, D. I.; Caruso, F. 2000. Multilayered polymer nanocapsules derived from gold nanoparticle templates[J]. Adv. Mater., 12, 1947.
    (24) Kida, T.; Mouri, M.; Akashi, M. 2006. Fabrication of hollow capsules composed of poly(methyl methacrylate) stereocomplex films[J]. Angew. Chem., Int. Ed., 45, 7534.
    (25) Singh, N.; Lyon, L. A. 2007. Au nanoparticle templated synthesis of pNIPAm nanogels[J]. Chem. Mater., 19, 719.
    (26) Zha, L. S.; Zhang, Y.; Yang, W. L.; Fu, S. K. 2002. Monodisperse temperature-sensitive microcontainers[J]. Adv. Mater., 14, 1090.
    (27) Zhang, Y. W.; Jiang, M.; Zhao, J. X.; Ren, X. W.; Chen, D. Y.; Zhang, G. Z. 2005. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media[J]. Adv. Funct. Mater., 15, 695.
    (28) Li, G. L.; Liu, G.; Kang, E. T.; Neoh, K. G.; Yang, X. L. 2008. pH-responsive hollow polymeric microspheres and concentric hollow silica microspheres from silica-polymer core-shell microspheres[J]. Langmuir, 24, 9050.
    (29) Li, G. L.; Xu, L. Q.; Tang, X. Z.; Neoh, K. G.; Kang, E. T. 2010. Hairy Hollow Microspheres of Fluorescent Shell and Temperature-Responsive Brushes via Combined Distillation-Precipitation Polymerization and Thiol-ene Click Chemistry[J]. Macromolecules, 43, 5797.
    (30) Li, G. L.; Lei, C. L.; Wang, C. H.; Neoh, K. G.; Kang, E. T.; Yang, X. L. 2008. Narrowly Dispersed Double-Walled Concentric Hollow Polymeric Microspheres with Independent pH and Temperature Sensitivity[J]. Macromolecules, 41, 9487.
    (31) Ohno, K.; Akashi, T.; Huang, Y.; Tsujii, Y. 2010. Surface-Initiated Living Radical Polymerization from Narrowly Size-Distributed Silica Nanoparticles of Diameters Less Than 100 nm[J]. Macromolecules, 43, 8805.
    (32) Radhakrishnan, B.; Ranjan, R.; Brittain, W. J. 2006. Surface initiated polymerizations from silica nanoparticles[J]. Soft Matter, 2, 386.
    (33) Zhao, B.; Zhu, L. 2009. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials[J]. Macromolecules, 42, 9369.
    (34) Mandal, T. K.; Fleming, M. S.; Walt, D. R. 2000. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates[J]. Chem.Mater., 12, 3481.
    (35) Blomberg, S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J. 2002. Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 40, 1309.
    (36) Fu, G. D.; Shang, Z. H.; Hong, L.; Kang, E. T.; Neoh, K. G. 2005. Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations[J]. Macromolecules, 38, 7867.
    (37) He, X. Y.; Yang, W.; Yuan, L.; Pei, X. W.; Gao, J. Z. 2009. Fabrication of hollow polyelectrolyte nanospheres via surface-initiated atom transfer radical polymerization[J]. Mater. Lett., 63, 1138.
    (38) Morinaga, T.; Ohkura, M.; Ohno, K.; Tsujii, Y.; Fukuda, T. 2007. Monodisperse silica particles grafted with concentrated oxetane-carrying polymer brushes: Their synthesis by surface-initiated atom transfer radical polymerization and use for fabrication of hollow spheres[J]. Macromolecules, 40, 1159.
    (39) Mu, B.; Shen, R. P.; Liu, P. 2009. Facile Preparation of Crosslinked Polymeric Nanocapsules via Combination of Surface-Initiated Atom Transfer Radical Polymerization and Ultraviolet Irradiated Crosslinking Techniques[J]. Nanoscale Res. Lett., 4, 773.
    (40) Shen, R. P.; Mu, B.; Du, P. C.; Liu, P. 2009. Polymeric Nanocapsule from Silica Nanoparticle@Cross-linked Polymer Nanoparticles via One-Pot Approach[J]. Nanoscale Res. Lett., 4, 1271.
    (41) Duan, H. W.; Kuang, M.; Zhang, G.; Wang, D. Y.; Kurth, D. G.; Mohwald, H. 2005. pH-Responsive capsules derived from nanocrystal templating[J]. Langmuir, 21, 11495.
    (42) Tao, Y. H.; Liu, X. Y.; Shi, D. J.; Chen, M. Q.; Yang, C.; Ni, Z. B. 2009. Graftlike Block Copolymer Bearing Biodegradable epsilon-Caprolactone Branches: A Facile Route to Hollow Nanocages[J]. J. Phys. Chem. C, 113, 6009.
    (43) Yang, X. Y.; Chen, L.; Han, B.; Yang, X. L.; Duan, H. Q. 2010. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers[J]. Polymer, 51, 2533.
    (44) Xie, L.; Chen, M.; Wu, L. M. 2009. Fabrication and Properties of Hollow Poly(N-isopropylacrylamide)-Ag Nanocomposite Spheres[J]. J. Polym. Sci. Part A: Polym. Chem., 47, 4919.
    (45) Li, G. L.; Yang, X. Y.; Wang, B.; Wang, J. Y.; Yang, X. L. 2008. Monodisperse temperature-responsive hollow polymer microspheres: Synthesis, characterization and biological application[J]. Polymer, 49, 3436.
    (46) Cao, Z. H.; Ziener, U.; Landfester, K. 2010. Synthesis of Narrowly Size-Distributed Thermosensitive Poly(N-isopropylacrylamide) Nanocapsules in Inverse Miniemulsion[J]. Macromolecules, 43, 6353.
    (47) Qian, J.; Wu, F. P. 2007. Synthesis of thermosensitive hollow spheres via a one-pot process[J]. Chem. Mater., 19, 5839.
    (48) Choi, S. H.; Lee, S. H.; Park, T. G. 2006. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment[J]. Biomacromolecules, 7, 1864.
    (49) Hu, Y.; Chen, Y.; Chen, Q.; Zhang, L. Y.; Jiang, X. Q.; Yang, C. Z. 2005. Synthesis and stimuli-responsive properties of chitosan/poly (acrylic acid) hollow nanospheres[J]. Polymer, 46, 12703.
    (50) Zhang, W. J.; Gilstrap, K.; Wu, L. Y.; Bahadur, K. C. R.; Moss, M. A.; Wang, Q. A.; Lu, X. B.; He, X. M. 2010. Synthesis and Characterization of Thermally Responsive Pluronic F127-Chitosan Nanocapsules for Controlled Release and Intracellular Delivery of Small Molecules[J]. Acs Nano, 4, 6747.
    (51) Nayak, S.; Gan, D. J.; Serpe, M. J.; Lyon, L. A. 2005. Hollow thermoresponsive microgels[J]. Small, 1, 416.
    (52) Chen, C. W.; Chen, M. Q.; Serizawa, T.; Akashi, M. 1998. In-situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres[J]. Adv. Mater., 10, 1122.
    (53) Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M. 2006. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles[J]. J. Phys. Chem. B, 110, 3930.
    (54) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. 2006. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks[J]. Angew. Chem., Int. Ed., 45, 813.
    (55) Xu, H. X.; Xu, J.; Zhu, Z. Y.; Liu, H. W.; Liu, S. Y. 2006. In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles[J]. Macromolecules, 39, 8451.
    (56) Suzuki, D.; Kawaguchi, H. 2006. Hybrid microgels with reversibly changeable multiple brilliant color[J]. Langmuir, 22, 3818.
    (57) Suzuki, D.; Kawaguchi, H. 2005. Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template[J]. Langmuir, 21, 8175.
    (58) Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W.; Liu, S. Y. 2007. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunablespatial distribution[J]. Chem. Mater., 19, 2489.
    (59) Lu, X. Y.; Sun, F.; Wang, J.; Zhong, J. F.; Dong, Q. Z. 2009. A Facile Route to Prepare Organic/Inorganic Hybrid Nanomaterials by 'Click Chemistry'[J]. Macromol. Rapid Commun., 30, 2116.
    (60) Ranjan, R.; Brittain, W. J. 2007. Combination of living radical polymerization and click chemistry for surface modification[J]. Macromolecules, 40, 6217.
    (61) Li, Y.; Benicewicz, B. C. 2008. Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions[J]. Macromolecules, 41, 7986.
    (62) Ranjan, R.; Brittain, W. J. 2007. Tandem RAFT polymerization and click chemistry: An efficient approach to surface modification[J]. Macromol. Rapid Commun., 28, 2084.
    (63) Ranjan, R.; Brittain, W. J. 2008. Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry[J]. Macromol. Rapid Commun., 29, 1104.
    (64) Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. 2006. A(3)-type star polymers via click chemistry[J]. J. Polym. Sci. Part A: Polym. Chem., 44, 6458.
    (65) Jiang, X. Z.; Zhang, J. Y.; Zhou, Y. M.; Xu, J.; Liu, S. Y. 2008. Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry[J]. J. Polym. Sci. Part A: Polym. Chem., 46, 860.
    (66) Frey, W.; Morones, J. R. 2007. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent[J]. Langmuir, 23, 8180.
    (1) Boal, A. K.; Galow, T. H.; Ilhan, F.; Rotello, V. M. 2001. Binary and ternary polymer-mediated "bricks and mortar" self-assembly of gold and silica nanoparticles[J]. Adv Funct Mater, 11, 461.
    (2) Duguet, E.; Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E. B. 2005. Design and synthesis of Janus micro- and nanoparticles[J]. J Mater Chem, 15, 3745.
    (3) Glotzer, S. C.; Solomon, M. J. 2007. Anisotropy of building blocks and their assembly into complex structures[J]. Nat Mater, 6, 557.
    (4) Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. 2008. Self-assembling nanoparticles at surfaces and interfaces[J]. Chemphyschem, 9, 20.
    (5) Kotov, N. A.; Srivastava, S. 2009. Nanoparticle assembly for 1D and 2D ordered structures[J]. Soft Matter, 5, 1146.
    (6) Mandal, T. K.; Bhattacharjee, R. R. 2007. Polymer-mediated chain-like self-assembly of functionalized gold nanoparticles[J]. J Colloid Interf Sci, 307, 288.
    (7) Mao, Z. W.; Xu, H. L.; Wang, D. Y. 2010. Molecular Mimetic Self-Assembly of Colloidal Particles[J]. Adv Funct Mater, 20, 1053.
    (8) Nie, Z. H.; Petukhova, A.; Kumacheva, E. 2010. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nat Nanotechnol, 5, 15.
    (9) Rotello, V. M.; Arumugam, P.; Xu, H.; Srivastava, S. 2007. 'Bricks and mortar' nanoparticle self-assembly using polymers[J]. Polym Int, 56, 461.
    (10) Rotello, V. M.; Boal, A. K.; Frankamp, B. L.; Uzun, O.; Tuominen, M. T. 2004. Modulation of spacing and magnetic properties of iron oxide nanoparticles through polymer-mediated "bricks and mortar" self-assembly[J]. Chem Mater, 16, 3252.
    (11) Rotello, V. M.; Ofir, Y.; Samanta, B. 2008. Polymer and biopolymer mediated self-assembly 118of gold nanoparticles[J]. Chem Soc Rev, 37, 1814.
    (12) Wang, D. Y.; Edwards, E. W.; Mohwald, H. 2007. Hierarchical organization of colloidal particles: From colloidal crystallization to supraparticle chemistry[J]. Macromol Chem Physic, 208, 439.
    (13) Yu, S. H.; Cong, H. P. 2009. Self-assembly of functionalized inorganic-organic hybrids[J]. Curr Opin Colloid In, 14, 71.
    (14) Rotello, V. M.; Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P. 2000. Self-assembly of nanoparticles into structured spherical and network aggregates[J]. Nature, 404, 746.
    (15) Rotello, V. M.; Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K. 2002. Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers[J]. J Am Chem Soc, 124, 892.
    (16) van der Boom, M. E.; Shirman, T.; Arad, T. 2010. Halogen Bonding: A Supramolecular Entry for Assembling Nanoparticles[J]. Angew Chem Int Edit, 49, 926.
    (17) Ernenwein, D.; Ghosh, P.; Rotello, V.; Chmielewski, J. 2010. Gold nanoparticle self-assembly promoted by a non-covalent, charge-complemented coiled-coil peptide[J]. J Mater Chem, 20, 5608.
    (18) Grzybowski, B. A.; Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M. 2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice[J]. Science, 312, 420.
    (19) Rotello, V. M.; Carroll, J. B.; Frankamp, B. L.; Srivastava, S. 2004. Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites[J]. J Mater Chem, 14, 690.
    (20) Rotello, V. M.; Galow, T. H.; Boal, A. K. 2000. A "building block" approach to mixed-colloid systems through electrostatic self-organization[J]. Adv Mater, 12, 576.
    (21) Wong, M. S.; Murthy, V. S.; Cha, J. N.; Stucky, G. D. 2004. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres[J]. J Am Chem Soc, 126, 5292.
    (22) Miyake, M.; Shen, Z.; Yamada, M. 2007. Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands[J]. J Am Chem Soc, 129, 14271.
    (23) Yamada, M.; Shen, Z. R.; Miyake, M. 2006. Self-assembly of discotic liquid crystalline molecule-modified gold nanoparticles: control of 1D and hexagonal ordering induced by solvent polarity[J]. Chem Commun, 2569.
    (24) Bunz, U. H. F.; Caswell, K. K.; Wilson, J. N.; Murphy, C. J. 2003. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors[J]. J Am Chem Soc, 125, 13914.
    (25) Czernin, J.; Wang, H.; Wang, S. T.; Su, H.; Chen, K. J.; Armijo, A. L.; Lin, W. Y.; Wang, Y. J.; Sun, J.; Kamei, K.; Radu, C. G.; Tseng, H. R. 2009. A Supramolecular Approach for Preparation of Size-Controlled Nanoparticles[J]. Angew Chem Int Edit, 48, 4344.
    (26) Jiang, M.; Liu, Z. 2007. Reversible aggregation of gold nanoparticles driven by inclusion complexation[J]. J Mater Chem, 17, 4249.
    (27) Murphy, C. J.; Gole, A. 2005. Biotin-streptavidin-induced aggregation of gold nanorods: Tuning rod-rod orientation[J]. Langmuir, 21, 10756.
    (28) Ritter, H.; Isenbugel, K.; Branscheid, R.; Kolb, U. 2010. Nanoparticle Vesicles Through Self Assembly of Cyclodextrin- and Adamantyl-Modified Silica[J]. Macromol Rapid Comm, 31, 2121.
    (29) Stoddart, J. F.; Klajn, R.; Olson, M. A.; Wesson, P. J.; Fang, L.; Coskun, A.; Trabolsi, A.; Soh, S.; Grzybowski, B. A. 2009. Dynamic hook-and-eye nanoparticle sponges[J]. Nat Chem, 1, 733.
    (30) Wang, S. T.; Chen, K. J.; Wu, T. H.; Wang, H.; Lin, W. Y.; Ohashi, M.; Chiou, P. Y.; Tseng, H. R. 2010. Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells[J]. Angew Chem Int Edit, 49, 3777.
    (31) Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. 1996. Organization of 'nanocrystal molecules' using DNA[J]. Nature, 382, 609.
    (32) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. 1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature, 382, 607.
    (33) Mirkin, C. A.; Mucic, R. C.; Storhoff, J. J.; Letsinger, R. L. 1998. DNA-directed synthesis of binary nanoparticle network materials[J]. J Am Chem Soc, 120, 12674.
    (34) Alivisatos, A. P.; Loweth, C. J.; Caldwell, W. B.; Peng, X. G.; Schultz, P. G. 1999. DNA-based assembly of gold nanocrystals[J]. Angew Chem Int Edit, 38, 1808.
    (35) LaBean, T. H.; Li, H. Y.; Park, S. H.; Reif, J. H.; Yan, H. 2004. DNA-templated self-assembly of protein and nanoparticle linear arrays[J]. J Am Chem Soc, 126, 418.
    (36) Mann, S.; Sadasivan, S.; Dujardin, E.; Li, M.; Johnson, C. J. 2005. DNA-driven assembly of mesoporous silica/gold satellite nanostructures[J]. Small, 1, 103.
    (37) Yan, H.; Zhang, J. P.; Liu, Y.; Ke, Y. G. 2006. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface[J]. Nano Lett, 6, 248.
    (38) Gang, O.; Nykypanchuk, D.; Maye, M. M.; van der Lelie, D. 2008. DNA-guided crystallization of colloidal nanoparticles[J]. Nature, 451, 549.
    (39) Graham, D.; Thompson, D. G.; Smith, W. E.; Faulds, K. 2008. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles[J]. Nat Nanotechnol,3, 548.
    (40) Mao, C. D.; Chen, Y. 2008. pH-Induced Reversible Expansion/Contraction of Gold Nanoparticle Aggregates[J]. Small, 4, 2191.
    (41) Mirkin, C. A.; Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C. 2008. DNA-programmable nanoparticle crystallization[J]. Nature, 451, 553.
    (42) Liu, Y.; Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Yan, H. 2009. Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles[J]. Science, 323, 112.
    (43) Maye, M. M.; Nykypanchuk, D.; Cuisinier, M.; van der Lelie, D.; Gang, O. 2009. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nat Mater, 8, 388.
    (44) Cha, J. N.; Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M. 2010. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami[J]. Nat Nanotechnol, 5, 121.
    (45) Gang, O.; Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B. 2010. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands[J]. Nat Nanotechnol, 5, 116.
    (46) Wen, Y. Q.; McLaughlin, C. K.; Lo, P. K.; Yang, H.; Sleiman, H. F. 2010. Stable Gold Nanoparticle Conjugation to Internal DNA Positions: Facile Generation of Discrete Gold Nanoparticle-DNA Assemblies[J]. Bioconjugate Chem, 21, 1413.
    (47) Duan, H. W.; Wang, D. Y.; Kurth, D. G.; Mohwald, H. 2004. Directing self-assembly of nanoparticles at water/oil interfaces[J]. Angew Chem Int Edit, 43, 5639.
    (48) Tsukruk, V. V.; Genson, K. L.; Holzmueller, J.; Jiang, C. Y.; Xu, J.; Gibson, J. D.; Zubarev, E. R. 2006. Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms[J]. Langmuir, 22, 7011.
    (49) Duan, H. W.; Cheng, L.; Liu, A. P.; Peng, S. 2010. Responsive Plasmonic Assemblies of Amphiphilic Nanocrystals at Oil-Water Interfaces[J]. Acs Nano, 4, 6098.
    (50) Li, C. Y.; Wang, B. B.; Li, B.; Zhao, B. 2008. Amphiphilic Janus gold nanoparticles via combining "Solid-State Grafting-to" and "Grafting-from" methods[J]. J Am Chem Soc, 130, 11594.
    (51) Moffitt, M. G.; Guo, Y.; Harirchian-Saei, S.; Izumi, C. M. S. 2011. Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles[J]. Acs Nano, 5, 3309.
    (52) Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. 2006. Amphiphilicity-driven organization of nanoparticles into discrete assemblies[J]. J Am Chem Soc, 128, 15098.
    (53) Eisenberg, A.; Mai, Y. 2010. Controlled Incorporation of Particles into the Central Portion of Vesicle Walls[J]. J Am Chem Soc, 132, 10078.
    (54) Park, S. J.; Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M. 2011. Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles[J]. J Am Chem Soc, 133, 1517.
    (55) Park, T. G.; Lee, H.; Choi, S. H. 2006. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles[J]. Macromolecules, 39, 23.
    (56) Sita, L. R.; Zehner, R. W.; Lopes, W. A.; Morkved, T. L.; Jaeger, H. 1998. Selective decoration of a phase-separated diblock copolymer with thiol-passivated gold nanocrystals[J]. Langmuir, 14, 241.
    (57) Deng, Z. X.; Han, X. G.; Li, Y. L. 2007. DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays[J]. Adv Mater, 19, 1518.
    (58) Halas, N. J.; Westcott, S. L.; Oldenburg, S. J.; Lee, T. R. 1998. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces[J]. Langmuir, 14, 5396.
    (59) Osterloh, F. E.; Hiramatsu, H. 2003. pH-controlled assembly and disassembly of electrostatically linked CdSe-SiO2 and Au-SiO2 nanoparticle clusters[J]. Langmuir, 19, 7003.
    (60) Rotello, V. M.; Frankamp, B. L.; Boal, A. K. 2002. Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers[J]. J Am Chem Soc, 124, 15146.
    (61) Yin, Y. D.; Lu, Z. D.; Goebl, J.; Ge, J. P. 2009. Self-assembly and tunable plasmonic property of gold nanoparticles on mercapto-silica microspheres[J]. J Mater Chem, 19, 4597.
    (62) Wei, A.; Sadtler, B. 2002. Spherical ensembles of gold nanoparticles on silica: electrostatic and size effects[J]. Chem Commun, 1604.
    (63) Suzuki, D.; Kawaguchi, H. 2005. Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template[J]. Langmuir, 21, 8175.
    (64) Suzuki, D.; Kawaguchi, H. 2006. Hybrid microgels with reversibly changeable multiple brilliant color[J]. Langmuir, 22, 3818.
    (65) Li, A. D. Q.; Zhu, M. Q.; Wang, L. Q.; Exarhos, G. J. 2004. Thermosensitive gold nanoparticles[J]. J Am Chem Soc, 126, 2656.
    (66) Liu, S. Y.; Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W. 2007. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution[J]. Chem Mater, 19, 2489.
    (67) Minko, S.; Lupitskyy, R.; Motornov, M. 2008. Single nanoparticle plasmonic devices by the "Grafting to" method[J]. Langmuir, 24, 8976.
    (68) Lu, X. Y.; Sun, F.; Wang, J.; Zhong, J. F.; Dong, Q. Z. 2009. A Facile Route to PrepareOrganic/Inorganic Hybrid Nanomaterials by 'Click Chemistry'[J]. Macromol. Rapid Commun., 30, 2116.
    (69) Ranjan, R.; Brittain, W. J. 2007. Combination of living radical polymerization and click chemistry for surface modification[J]. Macromolecules, 40, 6217.
    (70) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. 1995. Preparation and Characterization of Au Colloid Monolayers[J]. Anal Chem, 67, 735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700