环境响应性二元共聚物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性自由基聚合具有反应条件温和、适用单体范围广等优势,近些年来受到研究者的广泛关注。目前活性自由基聚合的方法主要有引发转移终止剂(iniferter)法、氮氧自由基调控聚合(NMP)、稳定自由基聚合(SFRP)或过渡金属催化活性自由基聚合以及可逆加成断裂链转移聚合(RAFT)和原子转移自由基聚合(ATRP)。其中ATRP法因聚合反应速率高,反应温度适中,适用单体范围广,分子设计能力强而被广泛用于多种烯类单体的聚合,制备得到结构确定的均聚物与多种新型的嵌段、接枝等聚合物与有机/无机杂化材料。
     双亲性共聚物自组装的胶束形态受到许多因素的影响:如聚合物的化学结构、分子量、各链段的相对含量、链段的序列以及溶剂的性质等。鉴于组装体具有新奇的结构以及独特的性能,在医药、绿色环保材料、生物工程、纳米材料和医学诊断等方面具有广阔的应用前景。
     据此,本论文主要采用ATRP合成了多种不同结构组成的聚合物,并对共聚反应、胶束化行为和相关性能进行了较深入的探讨,主要包括以下几个方面:
     1.通过ATRP法一步法制备得到了分子量可控、分子量分布窄的端基含有双键的大分子单体聚4-乙烯基吡啶(St-P4VP),聚合反应过程具有ATRP活性聚合的特征,进而以St-P4VP大分子单体作为反应分散稳定剂,通过分散聚合制得了单分散的P4VP-g-PSt聚合物微球,深入研究了介质的极性、反应体系的温度、St-P4VP大分子单体的用量对微球粒径的影响,由于P4VP-g-PSt聚合物微球表面分布P4VP链段,使其具有pH响应性。将所得到的P4VP-g-PSt聚合物微球与Ag+进行复配,制备得到了Ag/P4VP-g-PSt聚合物复合微球,进而研究了复合微球的催化性能,以及对大肠杆菌与白色葡萄球菌的抗菌性能。
     2.通过ATRP法合成分子量可控、分子量分布窄的星形聚苯乙烯大分子引发剂(PSt-Br)4,进而以(PSt-Br)_4为大分子引发剂,引发第二单体N-异丙基丙烯酰胺(NIPAM)聚合,合成了双亲性星形嵌段共聚物(PSt-b-PNIPAM)_4。进而使(PSt-b-PNIPAM)_4在DMF/H_2O选择性溶剂中自组装形成胶束,研究了亲水链段PNIPAM的长度对胶束的粒径及LCST的影响。(PSt-b-PNIPAM)_4胶束可以作为Au纳米粒子的载体,通过胶束表面的PNIPAM链段与AuCl_4复配-还原制备得到Au/(PSt-b-PNIPAM)_4复合胶束,是一种具有温度响应性的催化体系。研究了此催化体系在NaBH_4还原对硝基苯酚为对氨基苯酚实验中的温度响应性,结果显示其与一般催化体系不同的特征,催化反应的速率可以通过改变催化体系的温度的而进行调节,具有可控的特点。通过调控体系的温度可将其进行回收,在进行4次重复催化实验中也能保持很高的催化活性。
     3.通过ATRP法合成分子量可控、分子量分布窄的P4VP-Cl,以P4VP-Cl为大分子引发剂引发甲基丙烯酸叔丁酯(tBMA)进行ATRP反应合成一系列不同链段比的嵌段共聚物P4VP-b-PtBMA,通过对P4VP-b-PtBMA的叔丁基定向水解,制备嵌段聚电解质P4VP-b-PMAA。研究P4VP-b-PMAA在不同pH值下的自组装行为。结果发现在pH=2的水溶液中,自组装形成以PMAA为核,P4VP为壳的胶束;在pH=10的水溶液中自组装形成以P4VP为核,PMAA为壳的胶束,通过~1H-NMR表征胶束的不同核-壳结构。进而研究了不同溶剂与链段比对P4VP-b-PMAA胶束化行为的影响。
     4.通过ATRP法合成分子量可控、分子量分布窄的聚甲基丙烯酸-N,N-二甲氨基乙酯(PDMAEMA)。深入研究了PDMAEMA的分子量、浓度和体系的pH值对PDMAEMA的LCST的影响。进而以PDMAEMA为大分子引发剂引发第二单体St在DMF溶液中进行ATRP反应合成一系列不同链段比的具有pH与温度双响应性的嵌段共聚物PDMAEMA-b-PSt。深入探讨了聚合物的链段比、浓度、温度及体系pH值对聚合物胶束化行为的影响,结果发现随着PSt链段的增加,胶束的LCST减小,粒径增加,Zeta电位减小;随着体系pH值的增加,胶束粒径减小,粒径分布变窄;随着浓度的增加,LCST减小;随着温度的增加,胶束粒径减小。通过TEM观测胶束PDMAEMA_(15)-b-PSt343的形态,发现在DMF溶剂中不同pH条件下PDMAEMA-b-PSt自组装形成球形、碗状、囊泡与串珠状的胶束,在1,4-二氧六环/H_2O(v/v=94/6)混和溶剂中形成大复合胶束。
The living polymerization can be divided into living anionic polymerization, living cationicpolymerization and living free radical polymerization by different initiation modes. Livingfree radical polymerization has been extensively studied in recent years due to the mildreaction conditions and the widely applicable monomer. Living free radical polymerizationcontains initiator-transfer agent-terminator (iniferter), nitroxide mediated polymerization(NMP) or stable free radical polymerization (SFRP), and reversible addition fragmentationchain transfer (RAFT) radical polymerization and atom transfer radical polymerization(ATRP). ATRP is widely available for the polymerization of many vinyl monomers due to thehigh reaction rate, the mild reaction temperature, a wide range of applicable monomers, andused to prepare the determinate structure of homopolymers, block/graft copolymer andorganic/inorganic hybrid materials.
     The morphology of amphiphilic copolymer assembly is influenced by many factors: suchas the chemical structure, molecular weight, the relative content of the segment, the sequenceof the segment and the nature of the solvent, etc. Due to the novel structure and uniqueproperties of the assembly, it is expected to have broad application prospects in medicine,green materials, bio-engineering, nano-materials, and medical diagnosis.
     Accordingly, this paper is mainly about the synthesis of different structure copolymers byATRP, the copolymerization reaction and the micellization behavior; the main contentsinclude the following aspects:
     1. The controlled number-average molecular weight and narrow distributionpoly(4-vinylpyridine) macromonomer (St-P4VP) with a styryl end group was synthesizedby ATRP of4-vinylpyridine using p-(chloromethyl)styrene (CMSt) as functional initiator.Poly(4-vinylpyridine) grafted polystyrene microspheres (P4VP-g-PSt) were then preparedby dispersion copolymerization of styrene with St-P4VP macromonomers. The effects ofpolymerization reaction parameters such as medium polarity, concentration of St-P4VPmacromonomer and polymerization temperature on the sizes and size distribution ofP4VP-g-PSt microspheres were investigated. P4VP distributed on the surface ofP4VP-g-PSt microspheres which made the microspheres had pH responsive.Ag/P4VP-g-PSt composite microspheres were synthesis by Ag nanoparticles stabilized onthe surface of the P4VP-g-PSt microspheres via the in situ reduction of Ag+, thecoordination interaction took place between the Ag+and pyridine group of P4VP. Thecatalytic performance and antibacterial property on Escherichia coli and Staphylococcusalbus of Ag/P4VP-g-PSt composite microspheres was studied.
     2. The controlled number-average molecular weight and narrow distribution star polystyrene,(PSt-Br)4, was firstly synthesized by ATRP of styrene (St) using pentaerythritol terakis(2-bromoisobutyrate)(4Bri-Bu) as four-armed initiator. Then,(PSt-b-PNIPAM)4wereprepared using (PSt-Br)4as macroinitiator. The self-assembly behaviors of theamphiphilic four-armed block copolymers (PSt-b-PNIPAM)4in mixed solution and thelower critical solution temperature (LCST) of the resulting micelles were investigated. The gold nanoparticles (Au NPs) were immobilized on the surfaces of the micelles by thereduction of the corresponding ions. The micelle-supported gold nanoparticles(Au-micelles) were applied to catalyze the reduction of p-nitrophenol. Moreover, theactivity of the Au-micelle catalyst could be modulated by the temperature and theAu-micelles could be easily recovered by changing the temperature and recycled fourtimes with high catalytic activity.
     3. The controlled the number-average molecular weight and narrow distributionpoly(4-vinylpyridine) with a chlorine end group (P4VP-Cl) was prepared by ATRP. Then,poly(4-vinylpyridine)-b-poly(tert-butylmethacrylate)(P4VP-b-PtBMA), was synthesizedusing P4VP-Cl as macroinitiator by ATRP. Poly(4-vinylpyridine)-b-poly(methacrylic acid)(P4VP-b-PMAA) was obtained by hydrolyzing the P4VP-b-PtBMA copolymer underroom temperature. The self-assembly behavior of P4VP-b-PMAA copolymer was alsoinvestigated, the nanomicelles with PMAA core and P4VP corona were formed at low(acidic) pH, while nanomicelles with P4VP core and PMAA corona were formed at high(basic) pH. The morphology of P4VP-b-PMAA micelles was significantly affected bysolvent, segment ratio and pH.
     4. Macroinitiators poly(2-(dimethylamino)ethyl methacrylate)(PDMAEMA) weresynthesized by ATRP using ethyl-2-chloropropionate (ECP) as initiator. Then amphiphilicblock copolymers PDMAEMA-b-PSt with different segment ratio were synthesized byATRP using PDMAEMA-Cl as macroinitiator. The amphiphilic block copolymersPDMAEMA-b-PSt in selective solution could self-assemble to form micelles. pH,segment ratio and temperature which affected the diameter of the micelles wereinvestigated, the diameter and Zeta value increased with the increment of the hydrophobicchain length or the decrement of pH, and the diameter decreased with the increment of thetemperature. The micelles had pH and temperature dual responsive. The morphology ofmicelle PDMAEMA_(15)-b-PSt_(343)was observed by TEM, PDMAEMA-b-PSt self-assembledspherical, bowl, vesicles and beaded micelles, under different pH in DMF.PDMAEMA15-b-PSt343formed macrocomposite micelles in1,4-dioxane/H2O (v/v=94/6)mixed solvent.
引文
1. Mühlebach A, Gaynor S G, Matyjaszewski K. Synthesis of amphiphilic block copolymers byatom transfer radical polymerization, Macromolecules,1998,31:6046-6052.
    2. Werne T A, Germack D S, Hagberg E C et al. A versatile method for tuning the chemistry andsize of nanoscopic features by living free radical polymerization, J. Am. Chem. Soc.,2003,125:3831-3838.
    3. Matyjaszewski K, Miller P J et al. Synthesis and characterization of star polymers withvarying arm number, length, and composition from organic and hybrid inorganic/organicmultifunctional initiators, Macromolecules.,1999,32:6526-6535.
    4. Stenzel M H, Davis T. Star polymer synthesis using trithiocarbonate functionalbeta-eyclodextrincores (reversible addition-fragmentation chain-transfer polymerization), Jpolym. Sci. Part A: polym. Chem.,2002,40:4498-4512.
    5. Szwarc M, Levy M, Milkovich R. Polymerization initiated by electron transfer to monomeranew method of the formation of block polymerization, J. Am. Chem. Soc., l956,78:2655-2656.
    6. Hagiwara T, Isono K, Imamura S I et al. Anionic polymerization of N-phenylitaconimide,Macromolecules,1996,29:4473-4477
    7. Toskas G, Moreau M, Masure M et al. Controlled cationic polymerization ofhexamethylcyclotrisiloxane, Macromolecules,2001,34:4730-4736.
    8. Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materialsusing controlled/“living” radical polymerization. Chem. Mater.,2001,13:3436-3448.
    9. Nakamura Y, Arima T, Tomita S et al. Photoinduced switching from living radicalpolymerization to a radical coupling reaction mediated by organotellurium compounds, J. Am.Chem. Soc.,2012,134:5536-5539.
    10. Braslau R, Tsimelzon A, Gewandter J. Novel methodology for the synthesis ofN-alkoxyamines, Org. Lett.,2004,6:2233-2235.
    11. Huang X Y, Doneski L J. Wirth M J. Surface-confined living radical polymerization forcoatings in capillary electrophoresis, Anal. Chem.,1998,70:4023-4029.
    12. Ouchi M, Terashima T, Sawamoto M. Precision control of radical polymerization viatransition metal catalysis:from dormant species to designed catalysts for precision functionalpolymers, Acc. Chem. Res.,2008,41:1120-1132.
    13. Matyjaszewski K. Controlled/living radical polymerization, progress in ATRP, NMP, RAFT,J.Am. Chem. Soc.,2001,123:9724-9732.
    14.丘坤元,刘俊婉,金碧辉.活性自由基聚合,中国基础科学-科学前沿,2005,3:25-27
    15. Otsu T, Yoshida M. Role of initiator‐transfer agent‐terminator in radical polymerizations:polymer design by organic disulfides as iniferters, Makromol. Chem. Rapid. Commun.,1982,3:127-132.
    16. Hawker C J, Elce E, Dao J L et al. Well-defined random copolymers by a living free-radicalpolymerization process, Macromolecules,1996,29:2686-2688.
    17. Mardare D, Matyjaszewski K.“Living” radical polymerization of vinyl acetate,Macromolecules,1994,27:645-649.
    18. Ding J F, Chuy C, Holdcroft S. Enhanced conductivity in morphologically controlled protonexchange membranes: synthesis of macromonomers by SFRP and their incorporation intograft polymers, Macromolecules,2002,35:1348-1355.
    19. Golas P L, Gregory S L, Lowry V, Matyjaszewski K, Tilton R D. Comparative study ofpolymeric stabilizers for magnetite nanoparticles using ATRP, Langmuir,2010,26:16890-16900.
    20. Jiang X L, Lok M C, Hennink W E. Degradable-brushed PHEMA-b-PDMAEMA synthesizedvia ATRPand click chemistry for gene delivery, Bioconjugate Chem.,2007,18:2077-2084.
    21. Donald S M, Rannard S P. Room temperature waterborne ATRP of n-butyl methacrylate inhomogeneous alcoholic media, Macromolecules,2001,34:8600-8602.
    22. Zhang Y Z, Wang Y, Matyjaszewski K. ATRP of methyl acrylate with metallic zinc,magnesium, and iron as reducing agents and supplemental activators, Macromolecules,2011,44:683-685
    23. De-Graaf A J, Mastrobattista E, Vermonden T. Thermosensitive peptide-hybrid ABC blockcopolymers cbtained by ATRP: synthesis, self-assembly and enzymatic degradation,Macromolecules,2012,45:842-851.
    24. Luo Y W, Wang X G, Li B G, Zhu S P. Toward well-controlled ab initio RAFT emulsionpolymerization of styrene mediated by2-(((Dodecylsulfanyl)carbonothioyl)sulfanyl)propanoic acid, Macromolecules,2011,44:221-229.
    25. Shim S E, Lee H J, Choe S. Synthesis of functionalized monodisperse poly(methylmethacrylate) nanoparticles by a RAFT agent carrying carboxyl end group, Macromolecules,2004,37:5565-5571.
    26. Wang J S, Matyjaszewski K.“Living” radical/controlled radical polymerization, transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radicalinitiator, Macromolecules,1995,28:7572-7573.
    27. Matyjaszewski K, Wei M L. Synthesis and characterization of polyphosphazenehomopolymers and copolymers, Macromolecules,1997,30:8161-8167.
    28. Veerle C, Tomislav P, Matyjaszwski K. Functional polymers by atom transfer radicalpolymerization, Prog. Polym. Sci.,2001,26:337-377.
    29.陆志豹,吴平平,韩哲文等.核磁共振法测定苯乙烯和甲基丙烯酸正丁酯竞聚率的研究.高分子学报,1996,(1):47-53.
    30. Wang J S, Matyjaszewski K. Controlled/living radical polymerization-ATRP in the presenceof transition metal complexes, J. Am. Chem. Soc.,1995, l17:5614-5622
    31. Alexakis S, Commercon A, Coulentianos C, et al. Carbocupration of acetylenic acetals andketals: synthesis of α, β ethylenic acetals and of dienals and dienones. Pure. Appl. Chem.,1983,55:1759-1766.
    32. Erdik E. Copper (I) catalyzed reactions of organolithium and grinard reagents. Tetrahedron,1984,40:641-644.
    33. Asscher M, Vosfi D. Characteristics of tetraphenylcycolbutadiene-metal complexes byligand-transfer. J. Chem. Soc.,1963:3921-3927.
    34. Asscher M, Vosfi D. A general synthesis of tetraphenylcycolbutadiene-metal complexes byligand-transfer. J. Chem. Soc.,1963:1887-1896.
    35. Wang J S, Matyjaszewski K. Cntrolled “living” radical polymerizaton: atom transfer radicalpolymerization in the presence of transition-metal complexes. J. Am. Chem. Soc.,1995,117:5614-5619.
    36.钟玲,华静,杨卫海等.原子转移自由基聚合中过渡金属催化剂的研究进展,弹性体,2003,13:54-60.
    37.秦东奇,钦曙辉,丘坤元.新引发体系引发MMA活性自由基聚合,高等学校化学学报,2001,22:866-868.
    38.李鹏,丘坤元. N, N-二乙基硫代氨基甲酰硫基团为假卤原子转移的原子转移自由基聚合新体系,高分子学报,2003:612-619.
    39. Matyjaszewski K, Wei M, Xia J H, et al. Controlled/“living” radical polymerization ofstyrene and methyl methacrylate catalyzed by iron comp lexes, Macromolecules,1997,30:8161-8164.
    40. Xia J H, Paik H, Matyjaszewski K. Polymerization of vinyl acetate promoted by ironcomplexes, Macromolecules,1999,32:8310-8314.
    41. Teodorescu M, Scott G G, Matyjaszewski K. Halide anions as ligands in iron-mediated atomtransfer radical polymerization, Macromolecules,2000,33:2335-2339.
    42. Lecomte P, Drapter I, Dubois P, et al. Controlled radical polymerization of methylmethacrylate in the presence of palladiumacetate, riphenylphosphine, and carbon tetrachloride,Macromolecules,1997,30:7631-7633.
    43. Moineau G, Minet M, Dubois P, et al. Controlled radical polymerization of (meth) acrylates byATRP with NiBr2(PPh3)2as catalyst, Macromolecules,1999,32:27-35.
    44. Kotani Y, Kamigaito M, Sawamoto M. Re(Ⅴ)-mediated living radical polymerization ofstyrene: ReO2I(PPh3)2/R-Iinitiating systems, Macromolecules,1999,32:2420-2424.
    45. Xia J H, Matyjaszewski K. Controlled/“living” radical polymerization: Homogeneous reverseatom transfer radical polymerization, Macromolecules,1997,30:7692-7696.
    46. Bernhardt P V. On the structure, electrochemistry, and spectroscopy of the N, N′-bis(2′-(dimethylamino) ethyl-N, N′-dimethylpropane-1,3-diamine copper (Ⅱ) ion, J. Am. Chem.Soc.,1997,119:771-774.
    47. Laurent B A, Grayson S M. An efficient route to well-defined macrocyclic polymers via“click” cyclization, J. Am. Chem. Soc.,2006,128:4238-4239.
    48. Cheng G L, Hu C P, Ying S K. Controlled radical polymerization of methyl methacrylate inthe presence of CuX/phen complexes and alkyl halides, Polymer,1999,40:2167-2169.
    49.朱申敏,颜德岳,张国胜等.无毒、价廉配体作用下的原子转移自由基聚合,化学世界,2000,47:203-211.
    50. Matyjaszewski K, Pintauer T, Gaynor S. Removal of copper-based catalyst in atom transferradical polymerization using ion exchange resins, Macromolecules,2000,33:1476-1478.
    51.万小龙,应圣康,刘青.原子转移自由基聚合体系催化剂的脱除与联二吡啶的回收,石油化工,2000,29:565-570.
    52. Kickelbick G, Paik H J, Matyjaszewski K. Immobilization of the copper catalyst in atomtransfer radical polymerization, Macromolecules,1999,32:2941-2947.
    53. Liou S, Rademacher J T, Malaba D, et al. Atom transfer radical polymerization of methylmethacrylate with polyethylene functionalized ligands, Macromolecules,2000,33:4295-4296.
    54.彭慧,程时远,范志强.原子转移自由基聚合体系中催化剂的脱除,化学与生物工程,2005:21-23.
    55. Shen Y Q, Zhu S P. Continuous atom transfer radical block copolymerization of methacrylates,Aiche J.,2002,48:2609-2619.
    56. Shen Y Q, Zhu S P, Pelton R. Effect of ligand spacer on silica gel supported atom transferradical polymerization of methyl methacrylate, Macromolecules,2001,34:5812-5818.
    57. Haddleton D, Jackson S, Bon S. Copper(I)-mediated living radical polymerization underfluorous biphasic conditions. J. Am. Chem. Soc.,2000,122:1542-1543.
    58. Sarbu T, Matyjaszewski K. ATRP of methyl methacrylate in the presence of ionic liquids withferrous and cuprous anion, Macromol. Chem. Phys.,2001,202:3379-3391.
    59.韩哲文等.高分子化学,华东理工大学出版社,1994.
    60. Wang J S, Matyjaszewski K. Controlled “living” radical polymerization. Halogen atomtransfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules,1995,28:7901-7910.
    61.张双分,胡娜,倪忠斌,杨建中,陈明清,原子转移自由基聚合法合成双亲性两嵌段大分子单体,石油化工,2008,37:350-355.
    62. Khalid I, Barbro L, Jukka S. Synthesis of tertiary-butyl acrylate polymers and preparation ofdiblock copolymers using atom transfer radical polymerization, Eur. Polym. J.,2003,39:2005-2010.
    63. Zhu S M, Yan D Y. Atom transfer radical polymerization of styrene and methyl methacrylatecatalyzed by FeCl2/iminodiacetic acid, J. Polym. Sci., Part A: Polym. Chem.,2000,38:4308-4314.
    64. Wang X S, Lascelles S F, Jackson R A, Armes S P. Facile synthesis of well-definedwater-soluble polymers via atom transfer radical polymerization (ATRP) in aqueous media atambient temperature, Chem. Commun.,1999,1817-1818.
    65. Coca S, Jasieczek, C B, Beers K L, Matyjaszewski K. Polymerization of acrylates by atomtransfer radical polymerization. Homopolymerization of2-hydroxyethyl acrylate, J. Polym.Sci. Part A: Polym. Chem.,1998,36:1417-1424.
    66. Kotani Y, Kamigaito M, Sawamoto M. FeCp(CO)2I: A phosphine-free half-metallocene-typeIron(II) catalyst for living radical polymerization of styrene, Macormolecules,1999,32:6877-6880.
    67. Kotani Y, Kamigaito M, Sawamoto M. Living radical polymerization of styrene byhalf-metallocene iron carbonyl complexes, Macromolecules,2000,33:3543-3549.
    68. Patten T E, Xia J H, Abemathy T, et al. Polymers with very low polydispersities from atomtransfer radical polymerization, Science,1996,272:866-868.
    69. Greszta D, Matyjaszewski K. Gradient copolymers-a new class of materials, Polymer,1996,37:569-570.
    70. Kathryn L B, Scot G G, Matyjaszewski K. The synthesis of densely grafted copolymers byatom transfer radical polymerization, Macromolecules,1998,31:9413-9416.
    71. Kotani Y, Sawamoto M. Living random copolymerization of styrene and methyl methacrylatewith a Ru(II) complex and synthesis of ABC-Type “Block-Random” copolymers,Macromolecules,1998,31:5582-5587.
    72. Coca S, Matyjaszewski K. Alternating copolymers of methyl acrylate with isobutene andisobutyl vinyl ether usingATRP, Polymer,1996,37:573-578.
    73. Heise A, Nguyen C, Malek R, et al. Starlike polymeric architectures by atom transfer radicalpolymerization: Templates for the production of low dielectric constant thin films,Macromolecules,2000,33:2346-2354.
    74. Matyjaszewski K, Peter J M, Jefery P, et al. Synthesis and characterization of star polymerswith varying arm number, length, and composition from organic and hybrid inorganic/organicmultifunctional initiators, Macromolecules,1999,32:6526-6535.
    75. Zhang X, Xia J H, Matyjaszewski K. End-functional poly(tert-butyl acrylate) star polymers bycontrolled radical polymerization, Macromolecules,2000,33:2340-2345.
    76. Xia J H, Zhang X, Matyjaszewski K. Synthesis of star-shaped polystyrene by atom transferradical polymerization using an "arm first" approach, Macromolecules,1999,32:4482-4484.
    77.牟博,雷忠利,杨红,李娜.PSt-b-PNIPAM/Ag复合微粒的制备与表征,物理化学学报,2009,25:2399-2403.
    78.汤菇忠,高宝娇,何三雄.双亲嵌段共聚物PSt-b-PBA在甲苯中的自聚集行为,高等学校化学学报,2005,26:2381-2385.
    79.严军辉,赵彦保. ATRP活性自由基聚合制备两亲性嵌段共聚物,河南大学学报,2009,39:460-464.
    80.邹慧玲,路翠苹,杜伯会,夏攀登.羟化含氟嵌段共聚物的合成,化学工程与装备,2008,:14-18.
    81.邹友思,邱志平,庄荣传等.甲基丙烯酸丁酯和苯乙烯的原子转移自由基共聚,高分子学报,1999,146-150.
    82. Davis K A, Charleux B, Matyjaszewski K. Preparation of block copolymers of polystyreneand poly (t-butyl acrylate) of various molecular weights and architectures by atom transferradical polymerization, Polym. Sci. Part A: Polym. Chem.2000,38:2274-2283.
    83.程广楼,胡春圃.活性自由基聚合反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物,高分子学报,2000,210-214.
    84. Zhang X, Matyjaszewski K. Synthesis of well-defined amphiphilic block copolymers with2-(dimethylamino)ethyl methacrylate by controlled radical polymerization, Macromolecules,1999,32:1763-1766.
    85.闰庆玲.嵌段共聚物的合成,北京:北京化工大学,2000.
    86. Narrainen A P, Pascual S, Haddleton D M. Amphiphilic diblock, triblock, and star blockcopolymers by living radical polymerization: Synthesis and aggregation behavior [J]. J.Polym. Sci. Part A: Polym. Chem,2002,40:439-450.
    87. Pan C Y, Tao L, Wu D C. Synthesis and characterizations of the four-armed amphiphilic blockcopolymer S[poly(2,3-dihydroxypropyl acrylate)-block-poly(methyl acrylate)]4, J. Polym. Sci.Part A: Polym. Chem,2001,39:3062-3072.
    88.华曼,陈明清,刘晓亚等. ATRP法制备两亲性嵌段共聚物的研究,高分子学报,2004,645-649.
    89. Smith A P, Fraser C L. Luminescent polymeric ruthenium complexes with polystyrene-b-poly(methyl methacrylate) macroligands: The sequential activation of initiator sites for blocksgenerated by parallel polymerization mechanisms, J. Polym. Sci. PartA: Polym. Chem.,2002,40:4250-4255.
    90. Liu Y, Wang L, Pan C Y. Synthesis of block copoly(styrene-b-p-nitrophenyl methacrylate) andits derivatives by atom transfer radical polymerization, Macromolecules,1999,32:8301-8305.
    91. Chen X P, Padias A B. Atom transfer radical homo-and block copolymerization of methyl1-bicyclobutanecarboxylate, J. Polym. Sci. Part A: Polym. Chem.,2002,40(12):1929-1936.
    92. Ma Q C, Wooley K L. The preparation of t-butyl acrylate, methyl acrylate, and styrene blockcopolymers by atom transfer radical polymerization: Precursors to amphiphilic andhydrophilic block copolymers and conversion to complex nanostructured materials, J. Polym.Sci. Part A: Polym. Chem.,2000,38:4805-4820.
    93. Zhang A B, Ying S K, Hu C P, et al. Semifluorinated ABA triblock copolymers: Synthesis,characterization, and amphiphilic properties, J. Appl. Polym. Sci.,2002,83:2625-2633.
    94.傅志峰,石艳,焦书科.用原子转移自由基聚合制备苯乙烯/丙烯酸丁酯/苯乙烯三嵌段共聚物合成,橡胶工业,1998,21:360-364.
    95. Moineau C, Minet M, Teyssie P, et al. Concurrent chain and stepwise polymerizations for thepreparation of block copolymers in one step, Macromolecules,1999,32:8277-8229.
    96. Shipp D A, Wang J L, Matyjaszewski K. Synthesis of acrylate and methacrylate blockcopolymers using atom transfer radical polymerization, Macromolecules,1998,31:8005-8008.
    97. Miller P J, Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylates frompoly(dimethylsiloxane) macroinitiators, Macromolecules,1999,32:8760-8767.
    98. Nakagawa Y, Miller P J, Matyjaszewski K. Development of novel attachable initiators foratom transfer radical polymerization. Synthesis of block and graft copolymers frompoly(dimethylsiloxane) macroinitiators, Polymer,1998,39:5163-5170.
    99. Lutesn L, Cordina G P, Jones R G, et al. Poly(methylphenylsilylene)-block-polystyrenecopolymer prepared by the use of a chloromethylphenyl end-cappedpoly(methylphenylsilylene) as a macromolecular initiator in an atom transfer radicalpolymerisation of styrene, Eur. Polym. J.,1998,34:1829-1837.
    100. Rossi N A A, Jones R G, Holder S J. Synthesis and characterization of poly(methylmethacrylate)-block-poly(methylphenylsilane)-block-poly(methyl methacrylate) by atomtransfer radical polymerization, J. Polym. Sci. Part A: Polym. Chem.,2003,41:30-40.
    101. Gaynor S G, Matyjaszewski K. Step-growth polymers as macroinitators for “Living” radicalpolymerization: Synthesis ofABAblock copolymers, Macromolecules,1997,30:4241-4243.
    102. Tsolakis P K, Koulotw E G, Kallitsis J K, Synthesis of rigid-flexible triblock copolymersusing atom transfer radical polymerization, Macromolecules,1999,32:9054-9058.
    103.屈刚,姜复松,张妹研. PPV-b-PMMA二嵌段共聚物的ATRP合成及其有序自组装,高分子学报,2007,541-547.
    104.王迪,张宝,李亚鹏,孙景辉.酶促开环聚合和原子转移自由基聚合制备新型H型嵌段共聚物,高等学校化学学报,2008,29:1479-1482.
    105. Pyun J, Miller P J, Kiekelbiek G, Matyjaszewski K. Synthesis of organic/inorganic hybridmaterials from polysiloxane precursors using atom transfer radical polymerization, Polymer,1999,40:454-455.
    106. Kajiwara A, Matyjaszewski K. Formation of block copolymers by transformation of cationicring-opening polymerization to atom transfer radical polymerization (ATRP),Macromolecules,1998,31:3489-3493.
    107. Coca S, Paik H, Matyjaszewski K. Block copolymers by transformation of livingring-opening metathesis polymerization into controlled/“living” atom transfer radicalpolymerization, Macromolecules,1997,30:6513-6516.
    108. Tong J D, Ni S, Winnik M A, Synthesis of polyisoprene-b-polystyrene block copolymersbearing a fluorescent dye at the junction by the combination of living anionic polymerizationand atom transfer radical polymerization, Macromolecules,2000,33:1482-1486.
    109.刘冰,刘峰,罗宁,应圣康,刘青. n-氯乙酰氧端基大分子引发剂的合成及其引发原子转移自由基聚合,高等学校化学学报,2000,21:484-487.
    110.宋天喜.机理转移法合成两亲性嵌段共聚物的研究.大连:大连理工大学,2009.
    111. Zhang Z B, Ying S K, Shi Z Q. Synthesis of fluorine containing block copolymers by ATRP,Synthesis and characterization of semifluorinated di-and triblock copolymers, Polymer,1999,40:1341-1345.
    112.陈雪生,石艳,黄启谷,付志峰.聚乙烯醇岳聚苯乙烯嵌段星形聚合物的制备,北京化工大学学报,2006,33:54-58.
    113.张希,沈家骢.超分子科学:认识物质世界的新层面,科学通报,2003,48:1477-1478.
    114. Golosovsky M, Neve-Oz Y, Davidov D. Magnetic-field tunable photonic stop band inmetallodielectric photonic crystals, Synthetic Metals,2003,139:705-709.
    115. Shklyarevskiy I O, Jonkheijm P, Christianen PC, el al. Magnetic alignment of self-assembledanthracene organogel fibers, Langmuir,2005,21:2108-2112.
    116. Schlittler R R, Seo J W, Gimzewshi J K, et al. Single crystals of single-walled carbonnanotubes formed by self-assembly, Science,2001,292:1136-1139.
    117. Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution, Adv. Colloid InterfaceSci.,1976,6:201-232.
    118. Noskov B A. Kinetics of adsorption from micellar solutions, Adv. Colloid Interface Sci.,2002,95:237-293.
    119. Prochazka K, Bednar B, Mukhtar E, et al. Nonradiative energy transfer in block copolymermicelles, J. Phys. Chem.,1991,95:4563-4568.
    120. Zhang L, Eisenberg A. Multiple morphologies and characteristics of crew-cut micelle-likeaggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in solution, Science,1995,268:1728-1732.
    121. Yu K, Zhang L, Eisenberg A. Novel morphologies of crew-cut aggregates of amphiphilicdiblock copolymers in dilute solution, Langmuir,1996,12:5980-5985.
    122. Zhang L, Eisenberg A. Formation of crew-cut aggregates of various morphologies fromamphiphilic block copolymers in solution, Polym. Adv. Technol.,1998,9:677-684.
    123. Zhang L, Eisenberg A. Crew-cut aggregates from self-assembly of blendspolystyrene-b-poly(acrylic acid) block copolymers and homopolystyrenen in solution, J.Polym. Sci. B: Polym. Phys.,1999,37:1469-1475.
    124. Zhang L, Eisenberg A. Crew-cut aggregates from self-assembly of blendspolystyrene-b-poly(acrylic acid) block copolymers and homopolystyrenen in solution, J.Polym. Sci. B: Polym. Phys.,1999,37:1469-1475.
    125. Zhang L, Eisenberg A. Multiple morphologies and characteristics of “crew-cut” micelle-likeaggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solution, J. Am.Chem. Soc.,1996,118:3168-3195.
    126. Zhang L, Eisenberg A. Morphologies effect of added ions on crew-cut aggregates ofpolystyrene-b-poly(acrylic acid) block copolymers in solution, Macromolecules,1996,29:8805-8812.
    127. Zhang L, Yu K, Eisenberg A. On-induced morphological in “crew-cut” aggregates ofamphiphilic block copolymers. Science,1996,273:1777-1779.
    128. Jiang M, Li M, Xiang M L, Zhou H. Interpolymer complexation and miscibility enhancementby hydroger bonding, Adv. Polym. Sci.,1999,146:121-126.
    129. Liu S Y, Zhu H, Zhao H Y, Jiang M, Wu C. Interpolymer hydrogen-bonding complexationinduced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene,Langmuir,2000,16:3712-3714.
    130.潘全名,刘世勇,谢静薇.嵌段-接枝共聚物SEPG与PSOH之间的氢键络合导致胶束化的研究,高等学校化学学报,2000,21:1751-1756.
    131. Leung L M, Tan K H. Electrical properties of anionically synthesized conducting blockcopolymer from the precursor polystrrene-b-poly(phenyl vinyl sulfoxide), Polym. Commun.,1994,35:1556-1560.
    132. Qiu X, Wu Q. Study of the core-shell nanoparticle formed through the “coil-to-globule”transition of poly(N-isopropylacrylamide) grafted with poly(ethylene oxide), Macromolecules,1997,30:7921-7926.
    133. Virtanen J, Baron C, Tenhu H. Grafting of poly(N-isopropylacrylamide) with poly(ethyleneoxide) under various reaction conditions, Macromolecules,2000,3:336-341.
    134. Wang M, Jiang M, Ning F, et al. Nanoscale confinement and temperature effects onassociative polymers in thin films: fluorescence study of a telechelic, pyrene-labeledpoly(dimethylsiloxane), Macromolecules,2002,35:5980-5989.
    135. Wang M, Zhang G, Cheng D. Noncovalently connected polymeric micelles based on ahomopolymer pair in solutions, Macromolecules,2001,34:7172-7178.
    136. Yu Y S, Zhang L F, Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates ofamphiphilic diblock copolymers, Macromolecules,1998,31:1144-1154.
    137. Ma Y. Cao T. Webber S E. Polymer micelles from poly(acrylic acid-g-polystyrene),Macromolecules,1998,31:1773-1778.
    138.袁晓凤,赵汉英,江明.具有特殊相互作用的聚合物共混物在选择性溶剂中的自组装行为,化学学报,2000,58:118-121.
    139. Borisov O V. Zhulina E B. Effect of salt on self-assembly in charged block copolymermicelles, Macromolecules,2002,35:4472-4480.
    140. Shen H, Zhang L, Eisenberg A. Multiple pH-induced morphological changes in aggregates ofpolystyrene-b-poly(4-vinylpyridine) in DMF/H2O mixtures, J. Am. Chem. Soc.,1999,121:2728-2735.
    141. Zhang L, Shen H, Eisenberg A. Phase separation behavior and crew-cut micelle formation ofpolystyrene-b-poly(acrylic acid) copolymers in solutions, Macromolecules,1997,30:1001-1006.
    142. Shen H, Eisenberg A. Block length dependence of morphological phase diagrams of theternary system of PS-b-PAA/dioxane/H2O, Macromolecules,2000,33:2561-2566.
    143. Burke S E, Eisenberg A. Effect of sodium dodecyl sulfate on the morphology ofpolystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures, Langmuir,2001,17:8341-8348.
    144. Liu G. Smith C. Hu N. etc. Formation and properties of polystyrene-block-poly(2-hydroxyethyl methacrylate) micelles, Macromolecules,1996,29:220-227.
    145. Kim S C, Kim D W, Shim Y H, et al. In vivo evolution of polymeric micellar paclitaxelformulation: toxicity and efficacy, J. Controlled Release,2001,72:191-202.
    146. Alexandridis P, Yang L. Sans investigation of polyether block copolymer micelle structure inmixed solvents of water and form amide, ethanol, or glycerol, Macromolecules,2000,33:5574-5587.
    147. Yu Y, Zhang L, Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates ofamphiphilic diblock copolymers. Macromolecules,1998,31:1144-1151.
    148. Desbaumes L, Eisenberg A. Single-solvent preparation of crew-cut aggregates of variousmorphologies froman amphiphilic diblock Copolymer, Langmuir,1999,15:36-42.
    149. Alexandridis P, Holzwarth J F, Alan H T. Micellization of poly (ethyleneoxide)-poly(propylene oxide)-poly(ethyleneoxide) triblock copolymers in aqueous solutions:thermodynamics of copolymer association, Macromolecules,1994,27:2414-2425.
    150. Chung J E, Yokoyama M, Aoyagi T, et al. Effect of molecular architecture of hydrophobicallymodified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shellmicellar’s drug carriers, J. Controlled Release,1998,53:119-130.
    151. Zhang L, Hu Y, Jiang X, et al. Camptothecin derivative-loadedpoly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactoneco-lactide) nanoparticles and their biodistribution in micelles. J.Controlled Release,2004,96:135-148.
    152. Zhu J. Eisenberg A. Lennox R B. Effect of varying block lengths on the properties of surfacemicelles, Macromolecules,1992,25:6547-6555.
    153. Jenekhe S A and Chen X L, Self-assembly of ordered microporous materials from rod-coilblock copolymers, Science,1999,283:372-375.
    154. Van Hest J C M, Delnoye D A P, Baars M W P L, Polystyrene-dendrimer amphiphilic blockcopolymers with a generation-dependent aggregation, Science,1995,268:1592-1595.
    155. Krzysztof S. Katsnhiro I. Yotaro M. Micelle formation of diblock copolymers of styrene andsulfonated isoprene in aqueous solution, Langmuir,1999,15:454-462.
    156. Terreau O, Bartels C, Eisenberg A. Effect of poly(acrylic acid) block length distribution onpolystyrene-b-ploy(acrylic acid) block copolymer aggregates in solution. Langmuir,2004,20:637-642.
    157. Caruso F, Susha A S, Giersig M. Magnetic core-shell particles: Preparation of magnetitemultilayers on polymers latex microspheres. Adv. Mater.,1999,11:950-957.
    158. Shenhar R, Rotello V M. Nanoparticles: Scaffolds and building blocks. Acc. Chen. Res.,2003,36:549-553.
    159. Chen D Y, Jiang M. Strategies for constructing polymeric micelles and hollow spheres insolution via specific intermolecular interaction, Acc. Chem. Res.,2005,38:494-498.
    160. Ilhan F, Galow T H, Gray M, Clavier G, Rotello V M. Giant vesicle formation throughself-assembly of complementary random copolymers, J. Am. Chem. Soc.,2000,122:5859-5896.
    161. Boal A K, Ilhan F, De Rouchey J E. Thurn-Albrecht T, Russell T P. Self-assembly ofnanoparticles into structured spherical and network aggregates. Nature,2000,404:746-749.
    162. Kang Y J, Taton T A. Core/shell gold nanoparticles by self-assembly and crosslinking ofmicellar block copolymer shells. Angew. Chem. Int. Ed.,2005,44:409-415
    163. Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivoimaging of quantum dots encapsulated in phospholipid micelles, Science,2002,298:1759-1761.
    164. Pellegrino T, Manna L, Kudera S. Hydrophobic nanocrystals coated with an amphiphilicpolymer shell: A general route to water soluble nanocrystals. Nano Lett.,2004,4:703-708.
    165. Caswell K K, Wilson J N, Bunz U H F, Murphy C J. Preferential end-to-end assembly of goldnanorods by biotion-streptavidin connectors, J. Am. Chem. Soc.,2003,125:13914-13920.
    166. Mossmer S, Spatz J P, Moller M, Aberle T, Schmidt J, Burchard W. Solution behavior ofpoly(styrene)-b-poly(2-vinylpyridine) micelles containing gold nanoparticles.Macromolecules,2000,33:4791-4798.
    167. Park S, Lim J H, Chung S W, Mirkin C A. Self-assembly of mesoscopic metal-polymeramphiphiles, Science,2004,303:348-351.
    168. Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetricdetection of polynucleotides based on the distance-dependent optical properties of goldnanoparticles, Science,1997,277:1078-1080.
    169. Michalet X, Pinaud F F, Bentolila L A. Quantum dots for live cells, in vivo imaging anddiagnostics, Science,2005,307:538-541.
    170. Lewin M, Carlesso N, Tung C H, Tang X W. Tat-peptide derived magnetic nanoparticlesallow in vivo tracking and recovery of progenitor cells, Nature Biotech,2000,18:410-415.
    171. Jordan A, Scholz R, Wust P, Felix R. Magnetic fluid hyperthermia (MFH); cancer treatmentwith AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles,J. Magn. Mater.,1999,201:413-418.
    172. Hirsch LR, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Halas N J, West J L.Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonanceguidance, PNAS,2003,100:13549-13556.
    173. Alivisatos A P. Less is more in medicine-Sophisticated forms of nanotechnology will findsome of their first real-world application in biomedical research, disease diagnosis and,possibly, therapy, Sci. Am.,2001,285:66-71.
    174. Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. In vivo cancer imaging andtargeting by semiconductor quantum dots, Nature Biotech.,2004,22:969-973.
    175. Frank S, Markus H, Abrel H E. ATRP of methyl methacrylate in the presence of ionic liquidswith ferrous and cuprous anions, Macromolecules,2001,34:5394-5397.
    176. Shen Y Q, Zhu S P, Zeng F Q, Robert. Atom transfer radical copolymerization kinetics,Macromolecules,2000,33:5399-5402.
    177. Xia J H, Zhang X, Matyjaszewski K. Atom transfer radical polymerization of4-vinylpyridine,Macromolecules1999,32(10):3531-3533.
    178. Yang R M, Wang Y M, Wang X G, et al. Synthesis of poly(4-vinylpyridine) and blockcopoly(4-vinylpyridine-b-styrene) by atom transfer radical polymerization using5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligand, Eur Polym. J.,2003,39(10):2029-2033.
    179.张凯,傅强,黄渝鸿等.反应条件对聚合物微球粒径及其分布影响,离子交换与吸附,2004,20:555-561.
    180.范婷,陈建定,黄广建.分散聚合法制备单分散聚苯乙烯微球,功能高分子学报,2007,19:172-177.
    181.何耀良,黄科林,李克贤等.国内抗菌聚氨酯的研究进展,企业技术与发展,2009,18:24-27.
    182. Kharehenko S B, Kannan R M. Role of architecture on the conformation and orientationbehavior of linear, star and hyperbranched polymer melts, Macromolecules,2003,36,399-406.
    183. Furukawa T, Ishizu K. Lattice formation of peripherally charged star polymers in aqueoussolution, Macromolecules,2003,36,434-439.
    184. GuoY M, ZouY F, Pan C Y. Synthesis and characterization of star-shapedpoly(3,3-dimethyloxetane) with multifunctional oxocarbenium perchlorates as initiators,Macromol. Chem. Phys.,2001,202,1094-1099.
    185. Xu Y J, Pan C Y. Block and star-block copolymers by mechanism transformation
    3.S-(PTHF-PSt)4and S-(PTHF-PSt-PMMA)4from living CROP to ATRP, Macromolecules,2000,33,4750-4756.
    186. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Polymers with complex architecture byliving anionic polymerization, Chem. Rev.2001,101,3747-3792.
    187. Knauss D M, Huang T. Star-block-linear-block-star triblock polystyrene by convergent livinganionic polymerization, Macromolecules,2002,35,2055-2062.
    188. Matyjaszewki K, Xia J H. Atom transfer radical polymerization, Chem. Rev.2001,101,2921-2990.
    189. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization, Chem.Rev.2001,101,3689-3746.
    190. Miura Y, Yamaoka K, Mannan M A. Syntheses of AB23-and AB45-miktoarm starcopolymers by combination of the anionic ring-opening polymerization ofhexamethylcyclotrisiloxane and nitroxide-mediated radical polymerization of styrene,Polymer,2006,47,510-519.
    191. Deng G H, Cao M, Huang J, He L H, Chen Y M. One-pot synthesis of star polymer by ATRPof bismaleimide and an excess of styrene with a conventional initiator, Polymer,2005,46,5698-5701.
    192. Zheng G H, Pan C Y. Preparation of star polymers based on polystyrene orpoly(styrene-b-N-isopropyl acrylamide) and divinylbenzene via reversibleaddition-fragmentation chain transfer polymerization, Polymer,2005,46,2802-2810.
    193. Wang J S, Greszta D, Matyjaszewski K. Atom transfer radical polymerization (ATRP): A newapproach towards well-defined (co)polymers,Polym. Mater. Sci. Eng.,1995,73:416-417.
    194. Jankova K, Bednarek M, Hvilsted S. Star polymers by ATRP of styrene and acrylatesemploying multifunctional initiators, J. Polym. Sci., Part A: Polym. Chem.,2005,43:3748-3759.
    195. Klingelhfer S, Heitz W. Application of the benzene chirality rule to chiral ring-substitutedbenzylcarbinamines and benzylcarbinamine salts, J. Am. Chem. Soc.,1997,119:116-124.
    196. Boschmann D, Vana P. Z-RAFT star polymerizations of acrylates: Star coupling viaintermolecular chain transfer to polymer, Macromolecules,2007,40,2683-2693.
    197. Cameron N S, Corbierre M K, Eisenberg A.1998E.W.R. Steacie award lecture asymmetricamphiphilic block copolymers in solution: a morphological wonderland, Can. J. Chem.,1999,77,1311-1326.
    198. Choucair A, Eisenberg A. Control of amphiphilic block copolymer morphologies usingsolution conditions, Eur. Phys. J. E.,2003,10,37-44.
    199. Zhang Y, Luo S, Liu S. Fabrication of hybrid nanoparticles with thermoresponsive coronasvia a self-assembling approach, Macromolecules,2005,38:9813-9820.
    200. Wei H, Zhang X Z, Zhou Y, Cheng S X, Zhuo R X. Self-assembled thermoresponsivemicelles of poly(N-isopropylacrylamide-b-methyl methacrylate), Biomaterials,2006,27,2028-2034.
    201. Lou X W, Yuan C L, Elizabeth R. Adv. Encapsulation and ostwald ripening of Au and Au-Clcomplex nanostructures in silica shells, Funct. Mater.,2006,16,1679-1684.
    202. Shon Y-S, Choo H. Organic reactions of monolayer-protected metal nanoparticles, C. R.Chimie.,2003,6,1009-1017.
    203. Alexander I K, Anguelina P K, Kiyotaka A. Supported gold catalysts prepared from a goldphosphine precursor and as-precipitated metal-hydroxide precursors: Effect of preparationconditions on the catalytic performance, J. Cat.2000,196,56-65.
    204. Chen X, An Y, Zhao D, He Z, Zhang Y, Cheng J, Shi L. Core-shell-corona Au-micellecomposites with a tunable smart hybrid shell, Langmuir,2008,24,8198-8204.
    205. Lu Y, Mei Y, Drechsler M, Ballauff M. Thermisensitive core-shell particles as carriers for Agnanoparticles: modulating the catalytic activity by a phase transition in networks. Angew.Chem. Int. Ed.,2006,45,813-816.
    206. Chen X, Zhao D, An Y, Zhang Y, Cheng J, Wang B, Shi L. Formation and catalytic activity ofspherical composites with surface coated with gold nanoparticles, J. Colloid. Interf. Sci.,2008,322,414-420.
    207. Zhang M, Liu L, Wu C, Fu G, Zhao H, He B. Synthesis, characterization and application ofwell-defined environmentally responsive polymer brushes on the surface of colloid particles.Polymer,2007,48,1989-1997.
    208. Ding Y, Xia X H, Zhai H S. Reversible assembly and disassembly of gold nanoparticlesdrected by a zwitterionic polymer. Chem. Eur. J.,2007,13,4197-4202.
    209. Forger S, Schmidt M. Polyelectrolytes in solution, Adv. Polym. Sci.,1995,120:5l-133.
    210. Cohen S M A, Hofs B, Assembly of polyelectrolyte-containing block copolymers in aqueousmedia Curr. Opin. Collold Interf. Sci.,2005,10:30-36.
    211. Matejicek P, Podhajecka K, Humpolickova J. Polyelectrolyte behavior of polystyrene-block-poly(methacrylic acid) micelles in aqueous solutions at low ionic strength, Macromolecules,2004,37:10141-10154.
    212. Yusa S, Shimada Y, Mitsukami Y. Heat-induced association and dissociation behavior ofamphiphilic diblock copolymers synthesized via reversible addition-fragmentation chaintransfer radical polymerization, Macromolecules,2004,37:7507-7513.
    213. Katsampas I, Tsittsilianis C. Hierarchical self-organization of ABC terpolymer constituted ofa long polyelectrolyte end-capped by different hydrophobic blocks, Macromolecules,2005,38:1307-1314.
    214. Martin T J, Prochazka K, Munk P, Webber S E. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide), Macromolecules,1996,29:6071-6079.
    215. Sang B L, Alan J R, Krzysztof M. ATRP synthesis of amphiphilic random, gradient, andblock copolymers of2-(dimethylamino)ethyl methacrylate and n-butyl methacrylate inaqueous media, Biomacromolecules,2003,4:1386-1393.
    216.马占镖.甲基丙烯酸树脂及其应用.北京:化学工业出版社,2002,331-332.
    217.康红梅,刘朋生,吴静. N, N-二甲氨基甲基丙烯酸乙酯的原子转移自由基聚合,高分子材料科学与工程,2005,2l:88-94.
    218. Goto A, Fukuda T. Mechanism and kinetics of activation processes in a nitroxyl-mediatedpolymerization of styrene, Macromolecules,1997,30:5183-5186.
    219. Kwak Y, Goto A, Tsujii Y. A kinetic study on the rate retardation in radical polymerization ofstyrene with addition-fragmentation chain transfer, Macromolecules,2002,35:3026-3029.
    220.胡晖,范晓东.聚(甲基丙烯酸N, N-二甲氨基乙酯/丙烯酸2-乙基己酯)的温度及pH敏感性能的研究,精细化工,2003,20:65-68.
    221. Baines F L, Armes S P, Billingh N C. Micellization of poly(2-(dimethylamino)ethylmethacrylate-b-methyl methacrylate) copolymers in aqueous solution, Macromolecules,1996,29,8151-8159.
    222. Cheng Z P, Zhu X L, Shi Z L. Polymer microspheres with permanent antibacterial surfacefrom surface-initiated atom transfer radical polymerization, Ind. Eng. Chem. Res.,2005,44:7098-7104.
    223.胡晖,范晓东,黄恰.以环糊精为核的星形高分子合成及其温度、pH敏感性研究,高分子学报,2004,12:805-811.
    224. Hickl P, Ballauff M, Jada A. Small-angle X-my contrast-variation study of micelles formedby poly(styrene)-poly(ethylene oxide) block copolymers in aqueous solution. Macromolecules,1996,29:4006-4014.
    225. Liu X Y, Kim J S, Wu J, Eisenberg A. Bowl-shaped aggregates from the self-assembly of anamphiphilic random copolymer of poly(styrene-co-methacrylicacid), Macromolecules,2005,38:6749-6751.
    226. Riegel I C, Eisenberg A, Petzhold C L. Novel bowl-shaped morphology of crew-cutaggregates from amphiphilic block copolymers of styrene and5-(N, N-diethylamino)-isoprene, Langmuir,2002,18:3358-3363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700