大宽跨比正交异性板鱼腹式多室薄壁箱梁结构受力性能和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以某跨线桥的实际工程——大宽跨比正交异性板鱼腹式薄壁钢箱梁为研究对象,在总结国内外研究成果的基础上,通过大比例模型试验与三维精细化有限元分析,系统地研究了该结构的力学性能,探讨了在分析此类结构不同问题时与之相适应的简化分析计算方法。论文的主要工作如下:
     首次进行了大宽跨比正交异性板鱼腹式薄壁箱梁桥的大比例有机玻璃模型试验研究,系统测试了结构的整体力学性能;通过试验结果和两种有限元模型计算值的对比分析,揭示了此类复杂结构的整体力学性能。比较了腹板和横隔板间顶板和底板应力分布状态,得到了该结构控制截面的正应力分布规律。为此类结构在工程上的推广应用提供了参考依据。
     基于最小势能原理,假定剪力滞翘曲函数为余弦函数模式,利用能量变分原理,推导出单箱多室(奇数)薄壁箱梁剪力滞控制微分方程和边界条件,并给出了微分方程的解析表达式;结合大比例有机玻璃模型,建立了全桥精细化三维有限元模型,通过数值分析、解析解与模型试验,对比分析了单箱五室两跨连续箱梁结构的顶底板的剪力滞系数的分布规律,并首次研究了斜曲边腹板对多室箱梁剪滞效应的贡献。
     以薄板的平面应力问题和薄板弯曲问题为对象,将带有纵向加劲肋的薄壁箱梁结构正交异性板换算为等厚度材料正交异性板,选取四节点矩形单元,构造出一种新的考虑材料正交异性的四节点位移形有限元列式,通过算例验证了计算方法的可靠性,本文计算方法可方便地纳入位移法通用有限元程序系统中。
     从钢箱梁与铺装结构一体化的角度出发,展开钢箱梁与铺装层相互作用的局部力学性能分析。以最不利工况为基础,讨论通过改变影响桥面铺装结构性能的参数:钢桥面板厚度、钢纤维混凝土铺装层厚度、沥青混凝土铺装层厚度及钢桥面顶板加劲肋密度等,通过精细化局部三维有限元数值模型,分析了钢桥面板和钢纤维混凝土铺装层的变形、应力(应变)随各参数变化的规律。给出了各参数的合理取值界限。
     基于梁格法的优化理论,以结构的单位长度用钢量为目标函数。把横隔板间距、横隔板厚度、横隔板高度、加劲肋高度、加劲肋厚度、加劲肋数量和桥面板厚度等七个参数作为优化设计变量。以结构的变形和容许应力限值作为主要约束条件,研究了以目标函数为标准的参数优化设计取值。
A new type of streamlined girder (lenticular cross section) bridge with thin-walled steelbox girder is proposed in this paper. The main characteristics of this bridge are thin-walled,multi-cell, with large width-span ratio and that use orthotropic top/bottom/longitudinal-diaphragm plates. The aim of this study is to investigate the effect of the wholebehavior in thin-walled box girder bridges with large width-to-span ratios through bothexperimental and numerical studies. In the same time, several sifferent simple analysismethord are discussed. The main work in this paper is as follow:
     A large-scale Plexiglas model is tested under different loading cases. The materialparameters are obtained from physical characteristics tests and tensile tests. The deflectionsand strains in each control section are tested. It is the first time to test this whole bridge modelof streamlined girder (lenticular cross section) bridge with thin-walled steel box girder.Inaddition, two different stimulation models were introduced. It is illustrated that the propertiesof this class of bridges. The stress distribution in top plate and bottom plate between adjacentwebs and diaphragms are compared. It is a good reference to the future application of thistype of structure.
     One theritical methord is presented to analysis the shear lag effection in this bridge. Basedon principle of minimum potential energy, a cosine function is defined as warping function.Then, a control differential eguation are induced by variation method. Finally, the stress anddeflection general formulas of a two spans continous mutil-cell box girder are given. Basedon the testing, shear lag of top plate and bottom plate in a two spans continous five-cell boxgirder are analyzed. It is the first time to study the contribution of streamlined web to thewhole structure in shear lag.
     The steel plate is considered as a shell, thus the analysis can be separated into two parts:one is the problem of the plane stress, the other is the theory of the thin slab bending. Thestructure with continuous longitudinal stiffened box girder bridge is converted to ananisotropy material plate with uniform thickness. A new finite element determinant is builtand programmed. Based on the continuous longitudinal stiffened box girder bridge, thecomparative analysis among fined finite element model, experiment model and thecomputational method in this study has been investigated. The results show that thecomputational method in this study can meet the engineering requirements and save too muchtime in modeling and post processing.
     In order to adjust the stiffness ratio of the traditional orthotropic bridge deck as well as thepavement overlay. In this paper, an orthotropic steel bridge deck stiffened with the pavementoverlay is analyzed. The pavement consists of the cement-based and asphalt-based overlays. Several parameters are choosen to analysis the structural mechanics utilizing thefinite-element method. Then, the porper range of each parameter is given.
     Optimal design is seek to satisfy all performance requirements as well as to minimize thecost of construction. With high-speed computers, finite element methods, and efficientoptimization algorithms, structural optimization techniques have expanded for the design ofadvanced and complex structures. Based on the the grillage method in optimal design, thesteel consumption is choosen as the object function. There are seven parameters, such as thedistance between adjacent diapgragms, the thickness and height of diapgragm and stiffeningrib, the number of the stiffening rib and the thickness of the top plate. The constraintconditions are the deflection and allowable stress. The final values of the optimal parametersare given.
引文
[1]张士铎编著.桥梁设计理论.北京:人民交通出版社,1984.
    [2]程翔云.梁桥理论与计算.第一版.北京:人民交通出版社,1990,298-300.
    [3] Moffatt K R,bowling P J. British shear lag rules for composite girders of the StructuralDivision,ASCE,1978,104(7):1123-1130.
    [4] Song Q C, Scordelis A C. Shear lag analysis of T, I, and box beams. J. Struct. Eng rg.,ASCE,1990a,116(5):1290-1305.
    [5]李立峰.正交异性钢箱梁局部稳定分析理论及模型试验研究,博士学位论文.长沙:湖南大学,2005
    [6]颜海.大跨度斜拉乔扁平钢箱梁整体-局部相关稳定问题,上海:同济大学博士学位论文,2003.
    [7]罗如登.高速铁路正交异性整体钢桥面结构形式、受力性能和设计计算方法研究,博士学位论文.长沙:中南大学,2010.
    [8]丁晓冬,余良辉等.美国旧金山奥克兰新海湾大桥U肋桥面板焊接变形控制方法.中国钢结构协会第五次全国会员代表大会暨学术年会论文集.2007.
    [9]乔朋,斜拉桥扁平钢箱梁主梁剪力滞效应研究,博士学位论文.西安:长安大学,2009.
    [10]郭金琼.箱形梁设计理论.北京:人民交通出版社,2006.
    [11]Yaping Wu, Shizhong Liu, Yuanlin Zhu, Yuanming Lai. Matrix Analysis of Shear Lag andShear Deformation in Thin-Walled Box Beams. Journal of Engineering Mechanics,2003,129(8),944-950.
    [12]Zhu HTY, Michael CH. The shear lag effects on welded steel single angle tension members.Journal of Constructional Steel Research2009;65(5):1171-86.
    [13] Yamaguchf Eiki. Stress concentration and deflection of simply supported box girderincluding shear lag effect. Structural Engineering and Mechanics2008;28(2):207-20.
    [14] Sanguanmanasak Jaturong. Stress concentration due to shear lag in continuous boxgirders. Engineering Structures2007;29(7):1414-21.
    [15]辛济平,万国朝,张文,鲍卫刚等译.美国公路桥梁设计规范-荷载与抗力系数设计法.北京:人民交通出版社,1997.
    [16]铁道部第三勘测设计院.日本铁路结构设计标准和解释-混凝土结构.天津:铁道部第三勘测设计院资料,1996.
    [17]中华人民共和国铁道部.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3).北京:中国铁道出版社,2005.
    [18]中华人民共和国铁道部.高速铁路设计规范(试行).北京:中国铁道出版社,2009.
    [19]中华人民共和国铁道部.京沪高速铁路设计暂行规定.北京:中国铁道出版社,2005.
    [20]郝超,张杰等.大跨度钢斜拉桥流线形扁平钢箱梁中纵隔板作用分析.中南公路工程,2002(4):45-47.
    [21]苏庆田,吴冲等.斜拉桥扁平钢箱梁的有限混合单元法分析.同济大学学报(自然科学版),2005(6):742-746.
    [22]周建林,吴冲.大跨度斜拉桥扁平钢箱梁悬臂拼装截面变形分析.桥梁建设,2006(l):29-32.
    [23]王应良,许春荣等.流线型扁平钢箱梁横隔板的应力分析和设计.公路,1999(2):13-16.
    [24]徐金勇,颜全胜等.斜拉桥扁平空腹钢箱梁悬拼施工时的截面变形.华南理工大学学报,2007(3):127-131.
    [25]曾明根,苏庆田,吴冲.大跨斜拉桥扁平钢箱梁受力计算.桥梁建设,2007(3):17-20.
    [26]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报,1983,16(1):1-13.
    [27]程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞.土木工程学报,1991,24(1):52-64.
    [28]罗旗帜,俞建立.变截面箱梁的负剪力滞.重庆交通学院学报,1997(3):18-25.
    [29]Evans H.R. TaherianA.R. Prediction of the Shear Lag Effect in Box Girders [J].Proceedings of the Institution of Civil Engineers (London). Part1Design&Construction,1977,63(2):69-92.
    [30]程翔云.铜陵长江公路大桥桥面结构有效分布宽度试验研究.中国公路桥梁工程学会论文集.北京:人民交通出版社,1994.
    [31]张士铎,邓小华,王文明.箱形薄壁梁剪力滞效应.北京:人民交通出版社,1998.
    [32]万臻,李乔,毛学明.П型截面主梁斜拉桥剪力滞效应研究.西南交通大学学报,2004,39(5).
    [33]程翔云,李立峰.变高度箱梁桥剪力滞效应的三结合分析法.公路,2008,(1),104-108.
    [34]Hani A.S.,Julio F.D,Shear Lag of Open and Closed Thin-walled Laminated Composite Beams.Joumal of Reinforced Plastics and ComPosites,2005,24(7):673-690.
    [35]Reissner E. Analysis of shear lag in box beam by the principle of the minimum potentialenergy. Applied methematics.1946,4(3):267-278.
    [36]Kuzmanovie B.o.,Graham H. J.. Shear Lag in Box Girder.Journal of the Structural DivisionProeeedings of ASCE,1981,107(9):1701-1712.
    [37]Dezi L,Mentrasti L. Nonuniform Bending Stress Distribution (Shear Lag). Journal ofStructural Engineering, ASCE,1985.
    [38]郭金琼等.箱梁剪滞效应分析.土木工程学报,1983,16(1):1-13.
    [39]郭金琼.箱形梁设计理论.北京:人民交通出版社,1991.
    [40]张士铎,丁芸.变截面悬臂箱梁负剪力滞差分解.重庆交通学院学报,1984.
    [41]魏丽娜,方放.变截面箱梁桥剪滞效应分析中翼板纵向位移函数的选择.桥梁建设,1996.
    [42]张士铎.荷载横向作用位置对箱型梁剪力滞效应的影响.湖南大学学报,1995.
    [43]吴亚平等.荷载横向变位下箱梁顶板与底板的剪滞效应分析.土木工程学报,2007.
    [44]韦成龙.薄壁箱梁剪力滞分析的多参数翘曲位移函数及其有限元法.铁道学报,2000.
    [45]倪元增.槽型宽梁的剪力滞问题.土木工程学报,1986.
    [46]韦成龙.薄壁曲线箱梁桥剪滞效应分析的一维有限单元法.中国公路学报,2000.
    [47]黄剑源.城市高架桥的结构理论与计算方法.北京:科学出版社,2001.
    [48]钱寅泉.单室箱桥的剪力滞分析.中国公路学报,1989.
    [49]谢旭.薄壁箱型梁剪力滞效应分析的刚度法,工程力学,1995.
    [50]倪元增,钱寅泉.弹性薄壁梁桥分析.北京:人民交通出版社,2000
    [51]魏丽娜.变截面箱形梁桥剪滞效应的近似计算方法.土木工程学报,1997.
    [52]张元海,李乔.宽翼缘T梁剪滞效应分析的改进方法.兰州交通大学学报,2004.
    [53]刘寒冰.用变分法分析预应力钢-混凝土组合T梁的剪力滞效应.公路交通科技.
    [54]吴亚平等.多室箱梁剪滞效应的变分法分析.兰州铁道学院学报,1992.
    [55]Dezi L.,Gara F.,Leoni G.,et al,Time-dependent Analysis of shear lag Effect in CompositeBeams.Journal of Engineering Mechanies,2001,127(l):71-79.
    [56]Razaq Pur A.G.,Hangang Li.Thin-Walled Multicell Box Girder Finite Element.JournalStructural Engineering,1991,117(10):2953-2971.
    [57]Maleolm D.J.,Redwood,R.G..Shear Lag in Stiffened Box Girders.Journal of the structuralDivision, Proeeedings of ASCE,1970,96(7):1403-1419.
    [58]Alghamdi S.A.,Ali R.M..Characterization of Key Static and Dynamic Design Issues ofTwincell Steel Box Girders.Saudi Arabia,KACST Riyadh,1999.
    [59]Lertsima C., Chaisom Phob T., Yamaguehi E.. Stress Concentration due to Shear Lag inSimply Supported Box Girders.Engineeing Structures,2004(26):1093-1101.
    [60]张育智,李乔,唐亮等.双索面斜拉桥主梁剪力滞效应研究.四川建筑科学研究,2006,32(4):20-22.
    [61]张玉平,李传习.顶板、底板和斜腹板厚度对斜拉桥箱梁剪力滞效应的影响.长沙交通学院学报,2008,24(2):23-28.
    [62]项海帆,姚玲森.高等桥梁结构理论.人民交通出版社,2002.
    [63]雷俊卿.大跨度桥梁结构理论与应用.清华大学出版社,北京交通大学出版社,2007.
    [64] P. J. Dowling, A.S.Bawa. Influence Surfaces for Orthotropic Steel Bridge Decks. Proc.Instn Civ. Engrs.1975,59(3):149-168.
    [65]P. J. Dowling. The Behaviour of Orthotropic Steel Deck Bridge. Developments in BridgeDesign and Construction. University College Cardiff,1971:557-576.
    [66] A.Samanta, M. Mukhopadhyay. Finite Element Static and Dynamic Analyses of Folded Plates.Engineering Structures,1999(21):277-287.
    [67]G.A.M.Ghoneim,P.G.Glockner.Experimental Inves Loads. Experimental Mechanics, March,1977:81-87.
    [68]M.S.Troitsky, A.K.Azad. Analysis of orthotropic Steel Bridge Decks by a StiffnessMethod. Proc. Instn Civ. Engrs.1973,55(6):441-461.
    [69] N.E.Shanmugam. Strength of Axially Loaded Orthotropic Plates. Journal of StructureEngineering,113(2)1987:322-333.
    [70] A.H.Sheikh, M.Mukhopadtyay. Geometric Nonlinear Analysis of Stiffened Plates by theSpline Finite Strip Method. Computers and Structures,2000(76):765-785.
    [71]罗立峰,钟鸣,黄造成.混凝土桥面铺装概述.国外公路,1999(6):23-26.
    [72]徐军,陈忠延.正交异性钢桥面板的结构分析.同济大学学报,1999(4):170-174。
    [73]张运良,傅衣铭.具脱层的正交各向异性梁-板的屈曲分析.湖南大学学报,2000:17-23.
    [74]伏魁先,刘学信,黄华彪.斜拉桥面内整体失稳分析.铁道学报.1993(4):87-93。
    [75]胡兆同,黄安录.钢板箱形梁的畸变与横隔板设置.西安公路交通大学学报,1998(18):82-85.
    [76]王荣辉,曾庆元.薄壁箱梁空间计算的板梁单元法.铁道学报,1999(10):94-98.
    [77]郭少华,曾庆元.上承式钢板梁动力特性分析.1999(9):70-74.
    [78]王应良,强士中.正交异性板的极限承载力分析.新结构新材料新工艺,1999(4):46-48.
    [79]胡光伟,钱振东,黄卫.正交异性钢箱梁桥而第二体系结构优化设计.东南大学学报(自然科学版),2001,31(3):76-78.
    [80] Robert J. Connor. A Comparison of the In-service Response of an Orthotropic Steel Deckwith Laboratory Studies and Design Assumption. Lehigh University,May2002.
    [81]魏奇芬,张晓春.大跨径钢桥箱梁面板下梯形加劲肋参数变化对铺装层应力的影响分析.公路交通科技,2005,22(4):69-71.
    [82]傅威,徐勋倩.正交异性钢桥面系的多目标正交设计.南通大学学报,2005,4(2):31-34.
    [83]明图章,胡光伟,黄卫.大跨径钢桥面铺装体系多目标优化设计.土木工程学报,2007,40(2):70-73.
    [84]姚波,张磊,程刚.开口加劲肋正交异性钢桥面铺装力学行为特性研究.公路交通科技,2008,25(12):113-116.
    [85]郁春松.正交异性钢箱梁桥面板的优化设计.硕士学位论文.长沙:湖南大学,2011.
    [1]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001.
    [2]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [3]土木工程结构试验与检测.周明华主编.东南大学出版社.2002
    [4]土木工程结构试验.姚谦峰陈平编著.中国建筑工业出版社.2001
    [5]Hui Zhang, R. DesRoches, Zijiang Yang, Shizhong Liu. Experimental and analytical studieson a streamlined steel box girder. Journal of Constructional Steel Research,2010,66(7):906-914.
    [6]Hui Zhang, Zijiang Yang and Shizhong Liu. Different Simulation Methods in Thin-walledSteel Box Girder. The4th International Symposium on Lifetime Engineering of CivilInfrastructure.2009.852-856.
    [7]张慧,杨子江,刘世忠,吴辉.纵向加劲钢箱梁桥的简化分析.城市道桥与防洪2012No.1105-108.
    [8]苏庆田等.斜拉桥扁平钢箱梁有限混合单元法分析.同济大学学报,2005(6).
    [9]魏先祥,赖远明.相似方法的原理及应用[M].兰州:兰州大学出版社,2001.
    [10]《塑料拉伸性能的测试》.中华人民共和国国家标准GB/T1040.2006.
    [11]公路桥涵设计通用规范JTG D60-2004.人民交通出版社.2004.
    [1]张元海.箱形梁桥剪滞效应和温度效应理论研究及其应用:[西南交通大学博士学位论文],成都:土木工程学院,2008,30-41.
    [2]罗旗帜.基于能力原理的薄壁箱梁剪力滞理论与试验研究.湖南大学博士学位论文,2005.
    [3]罗旗帜,娄奕红,杜嘉斌,刘文浩.变高度连续曲线箱梁的剪力滞效应.铁道学报,2007,5,79-84.
    [4]陈玉骥,罗旗帜,刘光栋.薄壁曲线箱梁考虑材料弹塑性的剪力滞效应.工程力学,2008,25(4):21-25.
    [5]程翔云,李立峰.变高度箱梁桥剪力滞效应的三结合分析法.公路,2008(1),104-108.
    [6]张元海,林丽霞,李乔.薄壁箱梁挠曲性能的矩阵分析.铁道学报,2011,33(5),104-108.
    [7]韦成龙,李斌,刘小燕.分离式双肋截面主梁剪滞效应分析的传递矩阵法.桥梁建设,2008(2),31-37.
    [8]程海根,强士中.钢-砼组合箱梁考虑滑移时剪力滞效应分析.中国铁道科学,2003,24(6),49-52.
    [9]王慧东,强士中.压弯荷载下薄壁箱梁剪力滞效应的变分解.北京工业大学学报,2006,32(11)982-987.
    [1] Vlasov VZ. Thin-walled elastic beams. Washington, DC: National Science Foundation;(1961).
    [2]罗旗帜,娄奕红,杜嘉斌,刘文浩.变高度连续曲线箱梁的剪力滞效应.铁道学报,2007,5,79-84.
    [3]王慧东,强士中.压弯荷载下薄壁箱梁剪力滞效应的变分解.北京工业大学学报,2006,32(11)982-987.
    [4]程翔云.箱梁在压弯荷载共同作用下的剪力滞.土木工程学报,1991,24(1):52-64.
    [5]韦成龙,李斌,刘小燕.分离式双肋截面主梁剪滞效应分析的传递矩阵法.桥梁建设,2008,(2),31-37.
    [6]卜铭,胡贤成,田仲初,李建斌.具有单横坡的箱梁剪力滞效应分析及试验研究.中外公路,2007,27(1):104-107.
    [7]Pelikan W, Esslinger M. Die Stahlfahrbahn–Berechnung and Konstruktion. M.A.N.Forschungsheft, No.71957.
    [8]Hui Zhang, R. DesRoches, Zijiang Yang, Shizhong Liu. Experimental and analytical studieson a streamlined steel box girder, Journal of Constructional Steel Research (2010),v66,906-914.
    [9]赵选民.实验设计方法.科学出版社,2010.
    [1]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001
    [2]徐军,陈忠延.正交异性钢桥面板的结构分析.同济大学学报,1999,27(2):170-174.
    [3]方萍,伍波.钢桥面板及铺装的静载试验和有限元分析[J].华东公路,2000(4):35-39.
    [4]赵欣欣.正交异性钢桥面板疲劳设计参数和构造细节研究.中国铁道科学研究院博士学位论文.2010.
    [5]甄晓霞.大跨径钢桥桥面铺装体系研究.西南交通大学博士学位论文.2010.
    [6]黄晓明,王捷,陈仕周.大跨钢桥桥面铺装结构受力分析[J].土木工程学报,1999,32(1):63-66.
    [7]段乃民,莫介臻,徐伟.大跨径钢桥面结构有限元优化分析[J].中外公路,2006,26(5):59-64
    [8]胡光伟,钱振东,黄卫.正交异性钢箱梁桥而第二体系结构优化设计.东南大学学报(自然科学版),2001,31(3):76-78.
    [9] Robert J. Connor. A Comparison of the In-service Response of an Orthotropic Steel Deck withLaboratory Studies and Design Assumption [D]. Lehigh University, May2002.
    [10]魏奇芬,张晓春.大跨径钢桥箱梁面板下梯形加劲肋参数变化对铺装层应力的影响分析.公路交通科技,2005,22(4):69-71.
    [1]颜海.大跨度斜拉乔扁平钢箱梁整体-局部相关稳定问题[D],上海:同济大学博士学位论文,2003.
    [2]李立峰.正交异性钢箱梁局部稳定分析理论及模型试验研究[D],博士学位论文.长沙:湖南大学,2005.
    [3]日本运输省铁道局和(财)日本铁道综合技术研究所.技术标准代号.铁道构造物等设计标准及解说钢桥、结合梁桥第1篇铁路钢桥.出版地:出版者,日本:2000-7.
    [4]欧洲规范3(Eurocode3):钢桥.
    [5]AISC Design Manual for Orthotropic Steel Plate Deck Bridges,AISC1963.
    [6]AASHTO LRFD Bridge Design Specifications. S1Units First Edition. Washington D.C.1994.
    [7]Panos M.Pardalos,H.Edwin Romeijn, Hoang Tuy. Recent Developmentsand Trends in GlobalOptimization. Journal of Computational and Applied Mathematics.2000,124:209~228.
    [8]钱令希.工程结构优化设计.北京:水利电力出版社.1983.
    [9]刘国华,汪树玉.拱坝体形状优化设计方法及工程应用.计算结构力学及其应用.1994,11(4):461~469.
    [10]戴烽滔,尹邦信.框架结构优化设计.西南科技大学学报.2003,18(4):40~43.
    [11]戴公连,李德建.桥梁结构空间分析设计方法与应用.北京:人民交通出版社,2001-10.
    [12]徐昌文.船舶结构优化设计的研究进展.上海交通大学学报.1998,32(11).
    [13]衣伟,宋玉普,张燕坤.近海多功能混凝土平台选型与优化.海洋学报.1999,21(3).
    [14] Haug A.K.,Fjeld S.Floating Concrete Platform Hull Made of Lightweight Aggregate. EngineeringStructures.1996,18(11).
    [15]山村信道.闭口断面钢桥面板的实用计算计算法.桥梁与基础.1981,44-51.
    [16]高岛春生.道路桥的横分配实用计算法.现代社,1974,157-184.
    [17]郑凯峰,唐继舜,王应良.江阴长江大桥钢箱梁计算报告,成都:西南交通大学,1994,1-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700