大角度V撑蝶形拱式连续梁桥受力性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁式桥是具有悠久历史的桥梁结构体系。按承重结构的静力体系划分,梁式桥包括简支梁、悬臂梁以及连续梁桥。近年,在建筑材料、设计理论、施工工艺水平大幅提高的基础上,以传统梁桥理论为基础进行桥梁结构形式的创新层出不穷,V撑蝶形拱式连续梁桥正是在此背景下出现的新型结构之一。其中,V撑(即V墩)的出现丰富了桥梁的艺术造型,同时彰显了增大整体刚度、减小跨径、改善主梁受力性能等优点。蝶形拱即拱肋向桥外侧有倾角,从远处观望,犹如振翅欲飞的蝴蝶。此桥型外观新颖,富有空间曲线美及力度感,具有明显的艺术造型与技术创新的特点,但V撑蝶形拱的构造复杂,设计和施工难度均相对较高。因此,准确的分析其结构的受力特征、了解结构破坏形式、开展其极限承载力的研究、获取结构在特定荷载工况下的安全储备能力,为今后同类桥型的设计、施工、监控提供可靠的参考和指导,具有重要的现实意义。
     本文结合黑龙江省黑河市大黑河岛蝶形拱式连续梁桥建设项目,该桥的V撑结构具有大夹角和双向V形的特点,为国内首例。通过理论分析、数值模拟、施工现场监测、神经网络等研究方法,研究了大角度V撑蝶形拱式连续梁桥对不同结构参数的敏感性规律、应力传感器埋设的合理位置的确定、明确风险分析的目标并确定结构失效风险最大阶段。主要工作内容包括结构的理论分析、现场应变传感器的埋设、数据的测试与分析、结构的数值模拟以及多参数敏感性规律的归纳总结。主要研究内容与成果如下:
     (1)通过数值模拟分析与现场实测相结合的方法,进行大角度V撑蝶形拱式连续梁桥不同参数的敏感性分析,通过人工神经网络技术与参数敏感性分析的结合,根据一个特定的系统和一个给定的基准状态,识别出对系统状态产生影响的参数,从而分析参数变化对系统状态的影响程度。总结了桥梁结构施工阶段及运营阶段的敏感性参数,为同类桥梁设计、施工提供理论支持。
     (2)应用有限元分析理论和大型有限元分析程序,建立了大黑河岛蝶形拱式连续梁桥的整桥静力分析模型并展开分析研究。通过结构内力的分布情况,选择结构受力不利、受力情况难以明确或重点关注的位置进行传感器的埋设,初步确定传感器的布置形式,并通过现场检测得出测试数据与模型分析的结果的对应关系,进行分析研究,提出了可全面而精确的获得结构受力信息的传感器布置方案,提高同类桥型施工监控与结构分析的工作效率及准确性,从而保障桥梁施工安全。
     (3)V撑蝶形拱式连续梁的动力性能研究。通过动力分析的基本方法和建模原则,建立了Midas/civil2010建立V撑蝶形拱式连续梁桥抗震分析模型,进行桥梁的自振特性分析。分别建立了考虑桩-土效应的分析模型和不考虑桩-土效应的分析模型,对两种模型前10阶自振特性进行研究,讨论了桩-土效应对结构振动响应的影响,分别应用反应谱法和时程分析法进行抗震分析,明确了动力分析中考虑桩-土效应的必要性,为同类型桥梁的结构优化提供参考。
     (4)建立了V撑结构的ANSYS空间有限元模型,通过局部应力的理论求解与振弦式传感器实测数据的对比分析,得到不同阶段V撑结构的应力分布状态。利用数据分析程序MATLAB(?)寸测试数据进行数值回归,结合人工神经网络技术,对影响结构破坏、失效的内部、外界风险因素进行预测,开展结构失效的风险分析。提出了基于层次分析—灰度理论—蒙特卡洛—有限元—神经网络(AHP-Gray theory-Monte Carlo-FEM-ANN)的风险分析综合方法。解决了以往风险决策多依赖于决策者经验和定性分析的问题,从而更具可靠性和可操作性。根据影响桥梁施工阶段的风险因素,提出了蝶形拱式连续梁桥施工阶段风险因素的防范对策。
     本文的研究工作为了解大角度V撑蝶形拱式连续梁桥结构提供了较为实用的研究方法与成果,为设计、施工、监控以及风险评估管理体系的建立起到一定的借鉴作用。
Beam bridge is a structural system with a long history. On the basis of static system, it can be classified into three types:simply supported beam, cantilever beam and continuous beam bridge. In recent years, with the development of building materials, design theory and construction technology, the innovation of bridge structures which is based on traditional bridge theory is endless. V-shaped pier of butterfly arch continuous girder bridge is just one of the new structures created under this background. Besides, V-shaped pier enriched the art forms of bridge. At the same time, it highlights the advantages of increasing the overall stiffness, reducing the span and improving the mechanical properties of the main beam. Ⅴ-shaped butterfly arch has lateral angle of the bridge, which, watched from a distance, is like a butterfly that spreads its wings to fly. The type of bridge has novel appearance, space curves and strength feeling and features of artistic design as well as technical innovation. But the structure of Ⅴ-shaped butterfly arch is complex; the design and construction are relatively difficult. Therefore, it has important practical value to analyze the stress characteristics of the structure accurately, master the forms of structure damage, carry out the study of the ultimate bearing capacity and obtain its secure reserve capacity under specified stress conditions. And it can provide reliable reference and instructions for the similar bridges' design, construction and monitoring.
     This paper refers to the Heihe Island butterfly arch-continuous beam bridge project in Heihe City, Heilongjiang Province. Its Ⅴ-shaped pier has characteristics of large angle and bidirectional Ⅴ-shaped, which is the first case in China. By some research methods such as theoretical analysis, numerical simulation, construction site monitoring and neural network, we study the regularity of large angle Ⅴ-shaped pier butterfly arch-continuous beam bridge's sensitivity to different structural parameters and the reasonable buried position of strain sensors, determine the biggest stage of the risk of structural failure. The main work includes the theoretical analysis, burying the strain sensors, data testing and analysis, numerical simulation of the structure, as well as concluding the regularity of multi-parameter sensitivity. The main research contents and results are as follows:
     (1) By combining the numerical simulation analysis with testing at the construction site, we analyze the large angle V-shaped pier butterfly arch-continuous beam bridge's sensitivity to different parameters. And by combining the artificial neural network technology with the parameter sensitivity analysis, we identify the impact on the state of the system parameters, and analyze the impact of parameter changes on the state of the system, after which we can identify the parameters that have impact on the system state according to a specific system and a given reference state. Parameters sensitivity at the construction and operation stage is summarized to provide theoretical support for similar bridge design and construction.
     (2) Set up the static state analysis finite element of Heihe Island butterfly arch-continuous beam bridge and carry out analysis and researches. Select the position which is unfavorable for structure stress, the position where the stress is not clear and the position focused on to bury the sensors. Then preliminary determine the layout form of the sensors and put forward optimization scheme of the layout form of the sensors that can offer comprehensive and accurate force information of the structure according to the correspondence relationship of the testing data at the construction site and model analysis results, which improving the efficiency and accuracy of similar bridge construction monitoring to ensure the safety of bridge construction.
     (3) Dynamic property research on V-shaped butterfly arch-continuous beam bridge. By the basic means and modeling principle of dynamic analysis, Midas/civil2010seismic analysis model of V-shaped butterfly arch-continuous beam bridge is set up to analyze the self-vibration characteristics of the bridge. Heihe Island Bridge models of both considering and not considering the pile-soil effect are established and analysis on the two models'self-vibration characteristics in the first10phases is carried out. The influence on pile-soil effects on vibration characteristics of the structure is also discussed. Response spectrum method and time history method are used to discuss seismic analysis of the bridge; it's clearly showed that taking pile-soil effects into consideration in the dynamic analysis is rather necessary. Methods above provide reference material for similar bridges in structure optimization.
     (4) Set up ANSYS space finite element model of V-shaped structure. By contrastive analysis on local stress theoretical results and vibrating wire transducer measured data, stress distribution of V-shaped structure in different phases can be obtained. MATLAB, a data analysis program, is used to carry out regression analysis on testing data. Combined with Artificial Neural Network, both the influence on the structural damage and the failure of internal and external risk factors can be forecast. Moreover, the venture analysis on structure failure can be carried out. In this paper, we propose a theory based on AHP.Gray-Monte Carlo-FEM-neural network synthesis methods for risk analysis, which can solve the problem that previous risk decision was relied on experience and qualitative analysis of decision makers. As a consequence, that makes it more reliable and operable. On the basis of the risk factors that has an impact on bridge construction phase, preventive measures for construction phase risk factors of Heihe Island butterfly arch continuous beam bridge are put forward.
     This article provides not only practical research methods and achievement to understand large angle V-shaped butterfly arch-continuous beam bridge deep but important references for building design, construction, monitoring and the establishment of risk evaluation system as well.
引文
[1]B Wang, C Wu, Y-h Hu,Z-y Mo. Relationship of first step height, step slope and cavity in X-shaped flaring gate piers[J]. Journal of Hydrodynamics, Ser. B 2007,19(3):349-355
    [2]K E Haynes, W M Bowen, C R Arieira, S Burhans, P L Salem,H Shafie. Intelligent transportation systems benefit priorities:an application to the Woodrow Wilson bridge[J]. Journal of Transport Geography 2000,8(2):129-139
    [3]A P Thrall, S Adriaenssens, I Paya-Zaforteza,T P Zoli. Linkage-based movable bridges:Design methodology and three novel forms[J]. Engineering Structures 2012,37(0):214-223
    [4]郑祖勇.长沙湘江南大桥主桥 V型撑 0#块施工[J].中外公路,2003,23(2):63-65
    [5]徐郁峰,苏成,谭林.新光大桥动力特性分析与测试[J].中外公路,2009,29(4):122-124
    [6]邵长宇.九堡大桥组合结构桥梁的技术构思与特色[J].桥梁建设,2009,(6):4
    [7]胡国伟,张宇宁,程文斌,张俊兵.大跨度连续刚构桥V型墩施工过程仿真技术研究与应用[J].中国铁路,2008,(5):42-45
    [8]王战国.大跨度预应力混凝土V型墩连续刚构桥的静力分析与工程控制[D].浙江大学硕士学位论文,2006
    [9]龚俊虎.大跨度V形墩连续刚构与拱组合桥受力特性研究[D].西南交通大学硕士学位论文,2009.43-59
    [10]勾红叶.大跨度预应力混凝土V形刚构拱组合桥受力行为研究[D].西南交通大学博士学位论文,2010
    [11]刘迎倩.大跨度V形连续刚构—拱组合桥稳定性分析[D].西南交通大学硕士学位论文,2009
    [12]柳鸣.大跨V构拱桥静动力计算和V构详细应力分析[D].西南交通大学硕士学位论文,2008
    [13]陈光林.大跨度钢管混凝土拱桥整体稳定性研究[D].武汉理工大学硕士学位论文,2004
    [14]罗旭.中山市长江大桥空间地震反应分析[D].华南理工大学硕士学位论文,2005
    [15]惠丕.V形墩连续刚构静力分析及施工控制[D].长安大学硕士学位论文,2011
    [16]R L T O.C.Zienkiewicz. The Finite Element Method 5th ed(The Basis)[M]. England:Elsevier Ltd.2000.
    [17]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [18]蔺鹏臻,刘世忠.桥梁结构有限元分析[M].北京:科学出版社.2008
    [19]刘娇.高墩大跨连续刚构桥非线性稳定分析[D].大连理工大学硕士学位论文,2007
    [20]B A Andrew Pozolo. Analytical prediction of transfer length in prestressed self-consolidating concrete girders using pull-out test results[J]. Construction and Building Materials 2011, 25(1026-1036
    [21]J-S Duan,R Rach. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations[J]. Applied Mathematics and Computation 2011,218(8):4090-4118
    [22]S Wang,C S Huang. A power penalty method for solving a nonlinear parabolic complementarity problem[J]. Nonlinear Analysis:Theory, Methods & Applications 2008, 69(4):1125-1137
    [23]Z Yao,K J R Rasmussen. Material and geometric nonlinear isoparametric spline finite strip analysis of perforated thin-walled steel structures-Numerical investigations[J]. Thin-Walled Structures 2011,49(11):1374-1391
    [24]H-K Ryu,S-P Chang. Ultimate strength of continuous composite box-girder bridges with precast decks[J]. Journal of Constructional Steel Research 2005,61(3):329-343
    [25]S-E Kim, S-H Choi,S-S Ma. Performance based design of steel arch bridges using practical inelastic nonlinear analysis[J]. Journal of Constructional Steel Research 2003,59(1):91-108
    [26]J Cheng, J-J Jiang, R-C Xiao,H-F Xiang. Ultimate load carrying capacity of the Lu Pu steel arch bridge under static wind loads[J]. Computers & Structures 2003,81(2):61-73
    [27]S Ates. Numerical modelling of continuous concrete box girder bridges considering construction stages[J]. Applied Mathematical Modelling 2011,35(8):3809-3820
    [28]M Dilena,A Morassi. Dynamic testing of a damaged bridge[J]. Mechanical Systems and Signal Processing 2011,25(5):1485-1507
    [29]M Dilena, A Morassi,M Perin. Dynamic identification of a reinforced concrete damaged bridge[J]. Mechanical Systems and Signal Processing 2011,25(8):2990-3009
    [30]C Dion, N Bouaanani, R Tremblay, C-P Lamarche,M Leclerc. Real-time dynamic substructuring testing of viscous seismic protective devices for bridge structures[J]. Engineering Structures 2011,33(12):3351-3363
    [31]M-C C Xue-Cheng Ping, Ji-Long Xie. Singular stress analyses of V-notched anisotropic plates based on a novel finite element method[J]. Engineering Fracture Mechanics 2008,3819-3838
    [32]W W Guo, H Xia, G De Roeck,K Liu. Integral model for train-track-bridge interaction on the Sesia viaduct:Dynamic simulation and critical assessment J]. Computers & Structures 2012, 112-113(0):205-216
    [33]G Kaliyaperumal, B Imam,T Righiniotis. Advanced dynamic finite element analysis of a skew steel railway bridge[J]. Engineering Structures 2011,33(1):181-190
    [34]K Martin, A Erkoreka, I Flores, M Odriozola,J M Sala. Problems in the calculation of thermal bridges in dynamic conditions[J]. Energy and Buildings 2011,43(2-3):529-535
    [35]J Wu,S R Chen. Probabilistic dynamic behavior of a long-span bridge under extreme events[J]. Engineering Structures 2011,33(5):1657-1665
    [36]李志刚.基于ANSYS的桩土效应分析[J].兰州工业高等专科学校学报,2011,18(5):53-56
    [37]唐世栋,李阳.基于ANSYS软件模拟桩的挤入过程[J].岩土力学,2006,27(6):973-976
    [38]王凤霞,何政,欧进萍.桩-土-结构动力相互作用的线弹性地震反应分析[J].世界地震工程,2003,19(2):58-66
    [39]王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究[J].岩土工程学报,2005,27(6):616-620
    [40]王先军,周文宇,蒋鑫ANSYS在模拟桩土接触中的应用[J].森林工程,2006,22(3):49-51
    [41]俞轩,郭小刚ANSYS在桩土接触非线性中的应用[J].山西建筑,2012,38(26):77-78
    [42]D Karmakar, S Ray-Chaudhuri,M Shinozuka. Seismic response evaluation of retrofitted Vincent Thomas bridge under spatially variable ground motions[J]. Soil Dynamics and Earthquake Engineering 2012,42(0):119-127
    [43]X Li, H Jiang, S Dan. Study on Seismic Safety Performance for Continuous Girder-Bridge based on Near-fault Strong Ground Motions[J]. Procedia Engineering 2012,45(0):916-922
    [44]X W Ye, Y Q Ni, K Y Wong,J M Ko. Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data[J]. Engineering Structures 2012,45(0):166-176
    [45]H Azimi, K Galal,0 A Pekau. A numerical element for vehicle-bridge interaction analysis of vehicles experiencing sudden deceleration[J]. Engineering Structures 2013,49(0):792-805
    [46]R A Dameron, D R Parker,T Dahlgren, Nonlinear time history analysis for the seismic retrofit of the Richmond-San Rafael Bridge, In:Bathe K J (ed), Computational Fluid and Solid Mechanics 2003, Oxford:Elsevier Science Ltd,2003, pp.212-216.
    [47]S-E Kim,H-T Thai. Nonlinear inelastic dynamic analysis of suspension bridges[J]. Engineering Structures 2010,32(12):3845-3856
    [48]N Memisoglu Apaydin. Earthquake performance assessment and retrofit investigations of two suspension bridges in Istanbul[J]. Soil Dynamics and Earthquake Engineering 2010, 30(8):702-710
    [49]R O Sana Koubaa, Bassem Zouari,Sami El-Borgi. Finite-element analysis of errors on stress and strain measurements in dynamic tensile testing of low-ductile materials[J]. Computers & Structures 2011,78-90
    [50]M T P.J.Withers, L.Edwards,P.J.Bouchard,D.J.Buttle. Recent advances in residual stress measurement[J]. International Journal of Pressure Vessels and Piping 2005,118-127
    [51]余瑞芬.传感器原理[M].北京:航空工业出版社.1995
    [52]邓晖.大跨度空间结构施工监测与分析[D].中南大学博士学位论文,2007:21-48
    [53]李建平.大跨度预应力连续刚构桥悬臂现浇段应变监测和分析[J].交通科技2008(4):31-33
    [54]王辉,徐洪磊.巴江河特大桥预应力现浇连续梁应力监测[J].湖南交通科技2009,35(3):117-120
    [55]J B S D.R.Tesarik, T.R.Yanske. Long-term stability of a backfilled room-and-pillar test section at the Buick Mine,Missouri,USA[J]. International Journal of Rock Mechanics and Mining Sciences 2009,1182-1196
    [56]陈常松,颜东煌,陈政清,涂光亚,田仲初.混凝土振弦式应变计测试技术研究[J].中国公路学报,2004,17(1):29-33
    [57]陈树礼,苏木标,张文学.混凝土连续梁桥施工阶段应力监测研究[J].石家庄铁道学院学报,2004,17(3):38-42
    [58]W T S D.J.Moura, I.A.Naas,Y. A.Tolon,K.A.O.Lima,M.M.Vale. Real time computer stress monitoring of piglets using vocalization analysis[J]. Computers and Electronics in Agriculture 2008,11-18
    [59]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003
    [60]K J A Paul H.Dehoff. Shear stress relaxation of dental ceramics determined from creep behavior[J]. Dental Materials 2004,717-725
    [61]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991
    [62]李立峰,邵旭东,程翔云.混凝土箱形梁桥的温度梯度研究[J].中南公路工程,2001,26(4):38-40
    [63]W L Sun Yong, Local Stress Analysis of the big intersection angle V-shaped pier of Butterfly Arch Continuous Girder Bridge, ICCTP2010, Beijing:ASCE,2010, pp.3453-3462.
    [64]H H S R.C.Spoorenberg, J.C.D.Hoenderkamp. Finite element simulations of residual stresses in roller bent wide flange sections[J]. Journal of Constructional Steel Research 2011,39-50
    [65]W G Bin Zhang. Three-dimensional stress state around quarter-elliptical corner cracks in elastic plates subjected to uniform tension loading[J]. Engineering Fracture Mechanics 2007,386-398
    [66]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社.2007
    [67]王呼佳,陈洪军ANSYS工程进阶分析实例[M].北京:中国水利水电出版社.2006
    [68]贾艳敏,高力.结构设计原理[M].北京:人民交通出版社.2004
    [69]刘艳萍.桥梁预应力钢筋混凝土结构局部有限元分析的ANSYS二次开发[D].华中科技大学硕士学位论文,2005
    [70]刘艳萍,杨新华,杨文兵.预应力钢筋混凝土局部有限元分析的ANSYS二次开发[J].华中科技大学学报(城市科学版),2005,22:87-90
    [71]熊世树,罗后兵,程稳征,姜文杰.预应力筋张拉过程的数值模拟与监测[J].华中科技大学学报(城市科学版),2007,24(1):17-20
    [72]A S Akintoye,M J MacLeod. Risk analysis and management in construction[J]. International Journal of Project Management 1997,15(1):31-38
    [73]V Carr,J H M Tah. A fuzzy approach to construction project risk assessment and analysis: construction project risk management system[J]. Advances in Engineering Software 2001, 32(10-11):847-857
    [74]N Aneziris, E Topali,I A Papazoglou. Occupational risk of building construction[J]. Reliability Engineering & System Safety 2012,105(0):36-46
    [75]T Cho,T S Kim. Probabilistic risk assessment for the construction phases of a bridge construction based on finite element analysis[J]. Finite Elements in Analysis and Design 2008, 44(6-7):383-400
    [76]G E Gurcanli,U Mungen. An occupational safety risk analysis method at construction sites using fuzzy sets[J]. International Journal of Industrial Ergonomics 2009,39(2):371-387
    [77]A Idrus, M Fadhil Nuruddin,M A Rohman. Development of project cost contingency estimation model using risk analysis and fuzzy expert system[J]. Expert Systems with Applications 2011,38(3):1501-1508
    [78]P K Marhavilas, D E Koulouriotis,S H Spartalis. Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites:Application on electric power industry and construction sector[J]. Reliability Engineering & System Safety 2013,112(0):8-25
    [79]R L Sousa,H H Einstein. Risk analysis during tunnel construction using Bayesian Networks: Porto Metro case study[J]. Tunnelling and Underground Space Technology 2012,27(1):86-100
    [80]Chenyun,Y Zichun. The BP Artificial Neural Network Model on Expressway Construction Phase Risk[J]. Systems Engineering Procedia 2012,4(0):409-415
    [81]王立峰,肖子旺,张振伟,贾艳敏,孙勇.大角度V撑蝶形拱式连续梁桥施工风险分析[J].交通运输工程学报,2012,v.12;No.57(03):28-36
    [82]F Zahedi. The Analytic Hierarchy Process:A Survey of the Method and its Applications[J]. Interfaces 2009,98
    [83]D R T. Ertay, U.R. Tuzkaya. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems[J]. Information Sciences 2006,237-262
    [84]Y-M Wanga,T M S E Jun Liub. An integrated AHP:DEA methodology for bridge risk assessment[J]. Computers & Industrial Engineering 2008,513-525
    [85]Ying-Ming Wang,T M S Elhaga. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks[J]. Expert Systems with Applications 2007.2,336-348
    [86]T L Saaty, Vargas, L.G. Prediction. Dordrecht:Projection and Forecasting[J]. Kluwer Academic Publishers 1991,
    [87]包龙生,刘克同,于玲,牛宏.基于灰色层次分析法的桥梁施工方案多目标风险分析及评价[J].沈阳建筑大学学报(自然科学版),2009,25(4):663-669
    [88]孙方田,马一太,李敏霞.基于灰色-层次理论的热水器综合评价研究[J].太阳能学报,2008,29(2):204-208
    [89]F Morgan-Sagastume, S Pratt, A Karlsson, D Cirne, P Lant,A Werker. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants[J]. Bioresource Technology 2011,102(3):3089-3097
    [90]单德山,李乔,张吉刚.蒙特卡罗法在桥梁损伤识别中的应用[J].重庆交通大学学报(自然科学版),2009,28(5):844-847
    [91]刘兆惠.基于灰色-径向基函数神经网络的交通事故多元预测模型[J].交通运输工程学报,2009,9(5):94-98
    [92]U Atici. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network[J]. Expert Systems with Applications 2011, 38(8):9609-9618
    [93]M H Bakr,M H Negm, Chapter Three-Modeling and Design of High-Frequency Structures Using Artificial Neural Networks and Space Mapping, In:Deen M J (ed), Advances in Imaging and Electron Physics:Elsevier,2012, pp.223-260.
    [94]Z Garkani-Nejad,H Rashidi-Nodeh. Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones[J]. Electrochimica Acta 2010,55(8):2597-2605
    [95]H M Gomes, A M Awruch,P A M Lopes. Reliability based optimization of laminated composite structures using genetic algorithms and Artificial Neural Networks[J]. Structural Safety 2011,33(3):186-195
    [96]N Minovski, S Zuperl, V Drgan,M Novic. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis:A case study[J]. Analytica Chimica Acta 2013,759(0):28-42
    [97]Z Sadovsky,C Guedes Soares. Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections[J]. Reliability Engineering & System Safety 2011,96(6):713-717
    [98]Hasancebi,T Dumlupinar. Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks[J]. Computers & Structures 2013,119(0):1-11
    [99]P A M Lopes, H M Gomes,A M Awruch. Reliability analysis of laminated composite structures using finite elements and neural networks[J]. Composite Structures 2010,92(7):1603-1613
    [100]X-f Shi, Z-l Wang, A Ping,L-k Zhang. Artificial emotion model based on reinforcement learning mechanism of neural network[J]. The Journal of China Universities of Posts and Telecommunications 2011,18(3):105-109
    [101]牛宏.大跨度连续刚构桥建设期风险分析研究[D].2009
    [102]I Dimov, R Georgieva,T Ostromsky. Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model[J]. Reliability Engineering & System Safety 2012,107(0):23-28
    [103]H Ji,Y Li. Reusing Random Walks in Monte Carlo Methods for Linear Systems[J]. Procedia Computer Science 2012,9(0):383-392
    [104]Y F Zhang, O Gicquel,J Taine. Optimized Emission-based Reciprocity Monte Carlo Method to speed up computation in complex systems[J]. International Journal of Heat and Mass Transfer 2012,55(25-26):8172-8177
    [105]W L Sun Yong, Risk Analysis of Butterfly Arch Continuous Girder Bridge's V-shaped pier During the Construction Process on the basis of the technique of artificial neural network, ICCTP2010, Beijing:ASCE,2010, pp.3401-3409.
    [106]N Subramanian,R Ramanathan. A review of applications of Analytic Hierarchy Process in operations management[J]. International Journal of Production Economics 2012, 138(2):215-241
    [107]J R Yu,W-Y Shing. Fuzzy analytic hierarchy process and analytic network process:An integrated fuzzy logarithmic preference programming[J]. Applied Soft Computing 2013, 13(4):1792-1799

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700