锚杆支护巷道随掘钻探一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内煤矿掘进巷道的永久支护凭经验设计,巷道顶板的岩性及岩层结构不能及时探明,使永久支护设计不能随顶板情况而及时变更,有时因为支护强度不够而造成顶板事故,有时支护强度过剩造成浪费,降低了掘进速度和效益。巷道的锚杆(索)支护率已达80%左右,需要不断地钻孔和安装锚杆(索)对新暴露的围岩进行支护。另外在巷道掘进过程中,经常会遇到瓦斯突出、复合顶板、地下水、坚硬难截割岩层、断层等复杂地质条件,需要钻孔放炮或钻探。
     针对上述现状,.本文提出随掘钻探一体化思路,即以悬臂式掘进机为支撑平台,使悬臂式掘进机具有锚杆支护、地质钻探等更多的功能,将先进的钻探一体化钻机与悬臂式掘进机相结合,实现掘进巷道安全高效快速。
     论文研究的主要工作如下:
     (1)对目前国内外巷道掘进中使用的各种钻机进行分析比较,提出随掘钻探一体化思路,即以悬臂式掘进机为支撑平台,设计与悬臂式掘进机相配套的钻探一体化钻机,具有随掘锚杆支护、炮眼钻凿、瓦斯超前释放钻孔、岩性探测和地质钻孔等钻进的多种功能。
     (2)分析了单体液压锚杆钻机的结构原理,基于能量法顶板岩层可钻性的探测原理推导出液压锚杆钻机各参数的计算公式,进一步推导出液压锚杆钻机破碎比功的计算公式,通过检测破碎比功即可判定岩石的单向抗压强度,得到破碎比功主要取决于马达进油量、马达进油压力和给进液压缸的进油流量三个参数的结论。提出了通过检测液压锚杆钻机液压系统的油压和流量来推算顶板不同层位岩层的强度和岩层对应厚度的方法,为巷道顶板动态支护设计提供地质依据。
     (3)本文研究发现:巷道顶板的坚固性系数在岩层分界面处发生阶跃变化、在离层或软弱夹层处发生脉冲变化,对应到锚杆钻机的液压系统中的压力和流量参数也随之发生阶跃突变和脉冲突变。对单体液压锚杆钻机的动态特性进行分析,建立了钻机的给进油缸和马达的动态特性数学模型,重点对给进油缸的动态特性进行分析。得出以下结论:钻机在钻进顶板岩层的过程中,在岩层分界面处给进油缸的进油量会发生阶跃突变,在离层或软弱夹层处油缸的进油量会发生脉冲突变。
     (4)试验模拟岩层的制作:从矿井现场采掘工作面采集典型岩石标本,然后将岩石标本镶嵌在混凝土中,再用黄泥及混凝土等材料制作不同强度的模拟岩层。制作了各岩层的试块并做单向抗压试验。
     (5)研制构建了顶板岩层可钻性探测试验系统,运用流量变送器和压力变送器同步、连续、密集检测液压锚杆钻机钻进岩层时液压系统内各处的油压和流量值,并将数据转化为电压值传输到NI USB-6009数据采集卡。用LABVIEW软件编程显示各流量和压力变化的动态数据和曲线,同时将采集的数据保存到计算机,通过实测液压锚杆钻机钻孔时的液压系统中的流量和压力推测顶板的厚度和强度等岩层特性,效果良好,验证了所建数学模型的正确性。
Nowadays, permanent support of roadway is designed by experience at domestic coal mine, lithology and rock structure of roadway roof can not be detected in time, permanent support design can not be changed according to roof situation, sometimes roof accident occurs because of insufficient support strength, sometimes excessive supporting strength results in waste, excavation speed and efficiency is reduced. Bolt (steel cable) support rate of roadway has reached about80%, constant drilling and bolts installation is required to support newly exposed surrounding rock. Additionally, complex geological conditions, such as methane outburst, composite roof, groundwater, hard rock layers which are difficult to cut, and faults are often encountered during roadway excavation, so drilling, blasting, or detection is required.
     In view of the above situation, this paper presents integration idea of bolting, drilling, and detection along with roadway excavation. Roadheader is made as a platform which has functions of bolting support and geological drilling. Roadheader is made to combine with integration rig of bolting, drilling, and detection, so safe, quick, and efficient roadway excavation is achieved.
     Major researches in this paper are as follows:
     (1) Many kinds of drilling machines used for domestic and foreign roadway excavation are analyzed and compared, integration idea of drilling and detection along with roadway excavation is presented, that is to say, roadheader is made as a platform, integration rig of drilling and detection is designed, integration rig which matches roadheader has multiple functions of bolting, blast-hole drilling, methane releasing drillhole ahead of roadway excavation, lithology detection, and geological drilling, etc.
     (2) Structure and principle of single-prop hydraulic bolter are analyzed, parameters calculation formulae of hydraulic roof bolter are deduced based on energy detection principle on roof strata drillability, calculation formula of broken work ratio of hydraulic bolter is deduced, uniaxial compressive strength of rocks can be determined by detection of broken work ratio, conclusion is drawn that broken work ratio is mainly determined by three parameters of motor inflow, motor inlet pressure, and inflow of feed cylinder. Measurement method is presented that corresponding thickness and strength of roof layers can be determined through detecting pressure and flow in hydraulic system of hydraulic bolter, so geological basis can be provided to dynamic roof support design.
     (3) This paper found that there is a step change in firmness coefficient of roadway roof at the rock interface and a pulse change at fracture between separate strata or weak intercalated layer, and there is a step or pulse change of pressure and flow in the hydraulic system of bolt. Dynamic characteristics of the single-prop hydraulic bolter is analyzed, the dynamic characteristics mathematical models of feeding cylinder and motor are built, emphasis is put on dynamic characteristics analysis of feeding cylinder, conclusion is as follows:there is a step change in inlet flow of feeding cylinder at the rock interface or at fracture between separate strata or weak intercalated layer during drilling in the roof strata.
     (4) The manufacture process of simulation rock strata for test are as follows: typical rock samples are collected from working site of mine, then rock samples are embedded in the concrete, different strength simulation strata are made of yellow mud, concrete, and other materials. Test blocks of different rocks are made and tested to measure unidirectional compressive strength.
     (5) Test system is built to detect roof strata drillability, flow and pressure transmitters are used to detect pressure and flow in hydraulic system of bolter in drilling process synchronously, continuously, and densely. Data be translated into voltage values and transferred to NI USB-6009data acquisition card. LABVIEW software is made to display the dynamic data and curves of flow and pressure, at the same time the collected data are saved to the computer, layers characteristics such as thickness and strength can be inferred through detecting pressure and flow in hydraulic system of hydraulic bolter during drilling, the mathematical models which are built in this paper are proved to be correct.
引文
[1]孙正良.不良地质条件采用TBM的施工方法[J].石家庄铁道大学学报(自然科学版),2011,24(3):97-101
    [2]WU Yu, et al. Action mechanism of a mechanical end-anchorage bolt. Mining Science and Technology,20(2010):0625-0628
    [3]Debasis Deb, Kamal C. Das. Modelling of fully grouted rock bolt based on enriched finite element method. International Journal of Rock Mechanics & Mining Sciences,48(2011):283-293
    [4]刘洪涛,马念杰,袁聚良等.基于顶板结构分类的锚杆参数动态设计方法[J].中国煤炭,2010,36(5):58-61
    [5]张西斌,张勇,李春元等.大断面薄层状顶板回采巷道支护技术[J].煤炭科学技术,2011,39(7):5-8
    [6]娄掌印.多臂凿岩台车在矿山法暗挖隧道超前预注浆施工中的应用技术研究[J].隧道建设,2009,29(5):582-586
    [7]苑忠国主编.采掘机械[M].北京:冶金工业出版社,2009年8月第1版
    [8]Nihat Tosun. Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis, Springer-Verlag London Limited 2005, Turkey
    [9]宋海兵.单孔探放水快速封孔新技术的应用[J].能源技术与管理,2011(4):72-74
    [10]Martin Herrenknecht, Karin Bappler/,康宝生译.The technological innovation and application of shield and TBM [J].建筑机械化,2011(8):54-57
    [11]朱中华.全断面掘进机特性及其在引大入秦工程的应用[J].农业科技与信息,2010(14):23-24
    [12]刘世忠.锚索钻机施工探孔在巷道层位控制中的应用[J].煤炭科技,2011(3):43-44
    [13]陈汝南.井下锚杆机在地质探查中的应用[J].能源技术与管理,2010(6):88-89
    [14]谢飞鸿,孙伟,刘京学.层状复合顶板巷道稳定性分析[J].兰州交通大学学报,2009,28(3):12-16
    [15]Hanifi Copur, et al. A case study on the methane explosion in the excavation chamber of an EPB-TBM and lessons learnt including some recent accidents. Tunnelling and Underground Space Technology,27(2012):159-167
    [16]Jih-Hao Hung et al. Subsurface structure, physical properties, fault-zone characteristics, and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics,466 (2009):307-321
    [17]Redouane Zitoune, Francis Collombet. Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Applied science and manufacturing,38 (2007):858-866
    [18]C.C. Tsao, Y.C. Chiu. Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills. International Journal of Machine Tools & Manufacture,51(2011):740-744
    [19]Charlie Chunlin Li. A new energy-absorbing bolt for rock support in high stress rock masses. International Journal of Rock Mechanics & Mining Sciences,47(2010):396-404
    [20]王维锋.云煤一矿-23m胶带巷瓦斯异常区瓦斯防治[J].煤,2011,20(5):89-91
    [21]和万春.快速钻机在隧道施工地质预报中的应用研究[J].铁道建筑技术,2010(2):9-13
    [22]苏维涛.邢台矿区井下快速钻探技术研究[J].科技信息,2011(23):46-47
    [23]盖增雪.煤巷掘进工作面冒顶事故的预防及处理技术[J].河北煤炭,2011(3):19-20
    [24]李德军,尚文斌.特殊条件下锚网支护巷道冒顶机理分析[J].中国煤炭工业,2011(1):46-47
    [25]A.Bhatnagar, Manoj Khandelwal. An intelligent approach to evaluate drilling performance. Neural Comput & Applic. Springer-Verlag London Limited,2010
    [26]Jerzy Rojek, et al. Discrete element simulation of rock cutting. International Journal of Rock Mechanics & Mining Sciences,48 (2011):996-1010
    [27]方俊,郡泰宁,卢春华.钻参仪参数检测原理及传感器选型安装[J].探矿工程(岩土钻掘工程),2010,37(4):1-5
    [28]藤子军.对国内钻参仪实现监控钻进的可行性探讨[J].探矿工程(岩土钻掘工程)[J].2001(6):54-55
    [29]周劲辉.钻进时同步显示钻孔地层柱状图技术的研究与开发[D]:[博士学位论文].武汉:中国地质大学(武汉),2002
    [30]周劲辉,李晖,屠厚泽.钻进时同步显示钻孔地层柱状图技术探讨[J].地质与勘探,2001,37(40)
    [31]周劲辉,屠厚泽.识别所钻进地层的实钻试验研究[J].探矿工程,2003(增刊):194-196
    [32]贾明魁.锚杆支护煤巷冒顶事故研究及其隐患预测[J].中国矿业大学学报,2006,35(1):44-48
    [33]邢军,姜谙男,邱景平,孙晓刚.基丁DE-SVM的岩层可钻性预测研究[J].东北大学学报(自然科学版),2010,31(9):30-34
    [34]刘明军,李恒堂,姜在炳.GA-BP神经网络模型在彬长矿区测井岩性识别中的应用[J].煤田地质与勘探,2011,39(4):8-12
    [35]Gerald L. Finfinger et al. An approach to identifying geological properties from roof bolter drilling parameters. Proceedings 19th International Conference on Ground Control in Mining, Aug 8-10,2000, Morgantown, WV, USA
    [36]Olgay Yarali and Sair Kahraman. The drillability assessment of rocks using the different brittleness values. Tunnelling and Underground Space Technology,26(2011):406-414
    [37]Godfrey C. Onwubolu and Shivendra Kumar. Response surface methodology-based approach to CNC drilling operations. Journal of Materials Processing Technology,171 (2006):41-47
    [38]Syd S.peng et al. Mine roof geology information system:A method for quantitative void/fracture detection and estimation of rock strength for underground mine roof. http://www.coalage.com, May 2005
    [39]J. Sugawara et al. Weathered rock characterization using drilling parameters, Canadian Geotechnical Journal,6(2003):661-668
    [40]E. Yasar, P.G. Ranjith, D.R. Viete. An experimental investigation into the drilling and physico-mechanical properties of a rock-like brittle material. Journal of Petroleum Science and Engineering,76 (2011):185-193
    [41]李小豁著.掘进机截割的关键技术研究[M].北京:机械工业出版社,2008年1月第1版
    [42]王虹,李炳文主编.综合机械化掘进成套设备[M].徐州:中国矿业大学出版社,2008年7月第1版
    [43]田劫,杨阳,陈国强等.纵轴式掘进机巷道断面自动截割成形控制方法[J].煤炭学报,2009,34(1):111-115
    [44]毛君,李建刚,陈洪月.掘进机器人仿形截割建模与轨迹仿真研究[J].计算机仿真,2010,27(3):175-178
    [45]毛君,吴常田,谢苗.浅谈悬臂式掘进机的发展及趋势[J].中国工程机械学报,2007,5(2):240-242
    [46]王学成,张维果,刘英林.悬臂式掘进机现状及发展浅析[J].煤矿机械,2010,31(8):1-3
    [47]薛建志.液压钻车作业线和综掘机作业线在煤矿岩巷掘进中的应用[J].煤矿现代化,2010,98(5):59-60
    [48]董长龙,杨东兵,沈伟.奥钢联掘锚一体机在煤巷综掘中的应用[J].建井技术,2010, 31(3):39-42
    [49]郑金录,丁华,田素川,徐建文.澳思达煤矿掘锚一体化工艺特点[J].煤炭技术,2010(3):38-40
    [50]王虹.我国综合机械化掘进技术发展40a[J].煤炭学报,2010,35(11):1815-1820
    [51]付忠文,刘锋,鄂宇,王江平.掘锚护一体机[J].煤矿机械,2011,32(7):146-147
    [52]李云福.掘进机上固定钻探机装置应用[J].华北科技学院学报,2011,8(3):39-40
    [53]郭俊生.MB670掘锚机在斜沟井田的快速掘进[J].山西焦煤科技,2010(9):12-15
    [54]何金珠,赵晓夏.掘锚机快速掘进技术在万利一矿的应用[J].陕西煤炭,2012(2):99-101
    [55]柴敬,麻勇.机载锚杆钻机实现掘锚一体化的几点思考[J].煤矿机械,2009,30(5):5-7
    [56]张宇琛,赵继云,卢宁等.帮锚杆钻机液压操控平台[J].液压与气动,2011(1):43-44
    [57]李钦彬,鄂宇,周明.机载式侧帮锚杆机的设计研究[J].煤矿机械,2010,31(7):16-17
    [58]赵学雷,孟国营,李卫涛.煤巷掘锚一体自动化快速掘进关键技术研究与实践[J].煤矿机械,2010,31(12):183-185
    [59]常国徽,赵书兵,高燎原等.MYT-100/400型液压底锚钻机的研制与应用[J].中州煤炭,2011(4):15-16
    [60]季俊成.综掘工作面钻机连接掘进机液压系统的研究[J].煤炭技术,2011,30(3):29-30
    [61]王帅,王宁.MJH-320/630E型煤矿用机载锚杆钻机的结构及应用[J].矿山机械,2010,38(13):4-7
    [62]凡东,殷新胜,常江华,王贺剑.ZDY1000G型全液压坑道钻机的设计[J].煤田地质与勘探,2011,39(1):78-80
    [63]栗利民,卢春锋.掘探一体化设备在煤矿中的新应用[J].煤,2009,18(1):35-45
    [64]王伟,马昭.掘探一体化技术探讨[J].煤矿机械,2011,32(9):35-45
    [65]刘少伟,徐仁桂,张辉等.含软弱夹层煤巷层状顶板失稳机理与分类[J].河南理工大学学报(自然科学版),2010,29(1):23-27
    [66]高延法,张庆松编著.矿山岩体力学[M].徐州:中国矿业大学出版社,2000年11月第1版
    [67]Zhang Nong, Wang Cheng, Zhao Yi-ming. Rapid development of coalmine bolting in China. 2009, Published by Elsevier B.V
    [68]熊巨.井巷锚杆支护动态设计研究[J].山西焦煤科技,2011(6):31-33
    [69]蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2002年8月第1版
    [70]李德忠,夏新川,韩家根,涂敏,梁袁编著.深部矿井开采技术[M].徐州:中国矿业大学出版社,2005年10月第1版
    [71]孙旭威.我国掘锚一体技术发展分析与研究[J].煤矿机械,2010,31(3):49-51
    [72]余勇刚,代家林,朱战兵,王斌,项先忠.钻屑回注技术[J].天然气勘探与开发,2009,32(4):60-64
    [73]李炳文,万丽容,柴光远主编.矿山机械与设备[M].徐州:中国矿业大学出版社,2008年7月第1版
    [74]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2003年6月第1版
    [75]U. Atici, A.Ersoy. Correlation of specific energy of cutting saws and drilling bits with rock brittleness and destruction energy. Journal of materials processing technology,209(2009):2602-2612
    [76]S.H.Hoseinie, H.Aghababaei, Y.Pourrahimian. Development of a new classification system for assessing of rock mass drillability index (RDi). International Journal of Rock Mechanics & Mining Sciences,45(2008):1-10
    [77]张景松,杨春敏编著.流体力学[M].徐州:中国矿业大学出版社,2010年3月第3版
    [78]王守城,容一鸣主编.液压与气压传动[M].北京:北京大学出版社,2008年4月第1版
    [79]许贤良,王传礼,张军,张立祥编著.液压传动[M].北京:国防工业出版社,2011年3月第2版
    [80]A.E. Catania, A. Ferrari. Development and assessment of a new operating principle for the measurement of unsteady flow rates in high-pressure pipelines. Flow Measurement and Instrumentation,20(2009):230-240
    [81]邵春,张杰,鄢泰宁.一种基于全液压动力头钻机的钻进参数检测方法[J].煤田地质与勘探,2011,39(3):38-41
    [82]邵春,卢春华,鄢泰宁.长行程动力头钻机的瞬时机械钻速检测[J].矿山机械,2011,39(3):6-9
    [83]邵春,卢春华,鄢泰宁.一种基于地矿钻机的智能化钻参仪[J].地质与勘探,2010,46(5):972-976
    [84]Xunli Zhang, Paul Coupland et al. Monitoring of liquid flow through microtubes using a micropressure sensor. Chemical engineering research and design,87(2009):19-24
    [85]周传德主著.传感器与测试技术[M].重庆:重庆大学出版社,2009年6月第1版
    [86]杨将新,杨世锡主著.机械工程测试技术[M].北京:高等教育出版社,2008年6月第1版
    [87]邓飙,邱义,张宝生.液压缸行程检测技术研究现状[J].液压与气动,11(2008):60-63
    [88]Mingxi Deng. A new type of solution-concentration sensor using the effects of generation and detection of bulk acoustic waves with interdigital transducers. Applied Acoustics,71(2010):759-763
    [89]李娟主编.传感器与检测技术[M].北京:冶金工业出版社,2009年1月第1版
    [90]Filip Dahl, Amund Bruland et al. Classifications of properties influencing the drillability of rocks, based on the NTNU/SFNTEF test method. Tunnelling and Underground Space Technology, 44(2011):1-9
    [91]Lianyang Zhang, Ping Cao, K.C. Radha. Evaluation of rock strength criteria for wellbore stability analysis. International Journal of Rock Mechanics & Mining Sciences,47(2010):1304-1316
    [92]东兆星,吴士良主编.井巷工程[M].徐州:中国矿业大学出版社,2008年7月第1版
    [93]鄢泰宁主编.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001年8月第1版
    [94]阮毅,陈伯时主编.电力拖动自动控制系统-运动控制系统[M].北京:机械工业出版社,2012年2月第4版
    [95]Triet Hung Ho, Kyoung Kwan Ahn. Design and control of a closed-loop hydraulic energy-regenerative system. Automation in Construction,22(2012):444-458
    [96]姜继海,宋锦春,高常识主编.液压与气压传动[M].北京:高等教育出版社,2009年5月第2版
    [97]许贤良,王传礼主编.液压传动系统[M].北京:国防工业出版社,2008年5月第1版
    [98]吴振顺编.液压控制系统[M].北京:高等教育出版社,2008年5月第1版
    [99]Andrzej Odon, Zbigniew Krawiecki. Lab VIEW application for computer simulation of the conversion technique of dual-slope analog-to-digital converter. Measurement,44 (2011):1406-1411
    [100]岂兴明,田京京,夏宁编著.LABVIEW入门与实战开发100例[M].北京:电子工业出版社,2011年3月第1版
    [101]Andrzej Odon, Zbigniew Krawiecki. LabVIEW application for computer simulation of the conversion technique of dual-slope analog-to-digital converter. Measurement,44 (2011):1406-1411
    [102]L.Giannone, et al. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEWRT. Fusion Engineering and Design,85 (2010):303-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700