斜跨拱桥结构静力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜跨拱桥是近年来才发展起来的一种桥梁结构形式。该桥型采用单根拱肋斜交横跨主梁的空间布置形式,拱脚分别位于桥梁上下游两侧,拱肋和主梁之间通过吊索连接,吊索空间布置。该类桥型的出现为大跨径曲线梁桥的设计提供了一种新的备选方案。由于这种桥型特殊的空间布置形式,结构的受力也较为复杂。本文根据张家口通泰大桥设计过程中所遇到的问题和难点,主要从以下方面进行了研究:
     1.合理拱轴线的求解
     合理拱轴线的确定对拱桥的设计具有至关重要的意义。拱桥拱轴线是否合理直接关系到全桥的安全和经济两个方面的问题。偏态拱桥、斜跨拱桥等异型拱桥的出现也使合理拱轴线的求解变得较为复杂。本文基于集中荷载作用下拱桥的合理拱轴线为分段悬链线的假定,推导了拱桥合理拱轴线二阶微分方程,并采用数值解法对方程进行求解以确定对应荷载工况下拱肋的合理拱轴线;根据合理拱轴线的定义,拱肋在对应荷载的合理拱轴状态下,拱肋只承受轴力,不承担弯矩,此时拱肋可以简化为桁架体系,根据这种假设,提出了拱桥合理拱轴线的桁架近似数值解法。结合工程实际,验证了二阶微分方程数值方法和桁架近似数值解法的实用性。对于斜跨拱桥,在拱脚无吊索区段,拱轴线曲率较小,线形较为平直;在跨中吊索集中布置区段,拱轴线曲率较大,可采用多次抛物线进行拟合。
     2.斜跨拱桥稳定及其影响因素分析
     斜跨拱桥作为一种近年来才发展起来的一种新型桥梁结构形式,由于其典型的空间受力特性,结构受力异常复杂。本文分别采用特征值求解方法和基于弹塑性理论的双重非线性有限元法对张家口通泰大桥的稳定问题进行了分析。与常规拱桥不同,斜跨拱桥的失稳模态不再是单纯的面内失稳或面外失稳,而是表现为面内和面外失稳的复合形式。针对通泰大桥,拱肋的面内抗弯刚度和矢跨比的变化,对结构的整体稳定性有较大影响;与吊索均布的常规拱桥相比,斜跨拱桥由于吊索布置相对集中,其合理矢跨比较常规拱桥更大,一般在0.35左右较为合理。通过研究两座斜跨拱桥稳定性发现,两座斜跨拱桥的第一类稳定系数和第二类稳定系数的比值分别为4.8和6.16,该比值高于常规拱桥。因此在采用第一类稳定分析对斜跨拱桥的整体稳定进行验算时,与常规拱桥相比,斜跨拱桥需要更高的第一类稳定系数。
     3.斜跨拱桥合理成桥状态分析
     基于能量原理,考虑空间效应的影响,研究了无约束优化方法和有约束优化方法在斜跨拱桥合理成桥状态求解过程中的的应用;讨论了两种优化方法在求解斜跨式拱桥合理成桥索力时的适用性;仅采用以结构应变能最小为目标函数的无约束优化方法不能求解出斜跨拱桥的合理成桥索力,通过构造索力均匀化函数再次优化能够得到较为均匀的索力。基于能量法的有约束优化方法,通过施加合理的约束条件,能够有效地求解斜跨拱桥合理成桥状态对应的索力;通过对关键断面内力的限制,可以方便的考虑活载效应的影响。对比研究结果表明,对于斜跨拱桥除了主梁的弯曲应变能外,主梁的扭转应变能也是影响合理成桥状态的主要因素。合理成桥状态下,斜跨拱桥拱肋和主梁均存在较大的扭矩,拱肋和主梁应采用箱形截面。
     4.斜跨拱桥模型实验研究
     为了研究斜跨拱桥的整体结构特性,并检验所采用的设计及计算理论的适用性,以张家口通泰大桥为原型,根据相似理论,建立了全桥1:25缩尺试验模型。通过有限元分析和试验结果的对比验证了:现有的空间杆系有限元计算理论能够满足这种新型桥梁结构设计计算的需要,深化了对斜跨拱桥结构受力特性的理解。为实际工程的设计与力学性能研究提供依据,并为同类型桥梁的设计提供参考。
Diagonal-span arch bridge is a new type of bridge developed in recent years. This bridge type using a spatial arrangement with a single arch oblique across the main beam, the two arch springers are respectively located at the upstream and downstream of the bridge, and spatial hangers are used to connect the arch with the mian beam. The emergence of this bridge type provides a new alternative for long-span curved bridge. As the special spatial arrangement, the inner forces of this bridge type are also more complicated than others. Based on the problems and difficulties encountered in the design of Tongtai Bridge in Zhang jia-kou, the following aspects are studyed in this paper:
     1. The solving method of the reasonable arch axis
     The determination of reasonable arch axis is very important in the design of arch bridge. The arch axis is reasonable or not, is directly related to the aspects of security and economy. The appearance of special-shape arch bridge, such as skewed arch bridge and diagonal-span arch bridge, make solving the reasonable arch axis become more complex. Based on the assumption of the reasonable arch axis is a inverted segmented catenary under concentrated loads, this paper derives the second order differential equations of the reasonable arch axis, and solves the equations with numerical method to obtain the reasonable arch axis under the corresponding load cases; Arch rib can be simplified as a truss system based on the definition of reasonable arch axis when the arch rib is only exposed to axial force under the corresponding load case, according to this assumption, this paper proposed an approximate numerical method to solve the reasonable arch axis of the truss system. Combined with the actual engineering, verify the practicality of the numerical solution method of the second order differential equations and the simplified truss. For the diagonal span arch bridge, in the arch rib near the arch springer without hangers, the curvature of the arch axis is small, the arc axis relatively flat; in the middle of the arch rib, the hangers are centralized arrangement, the curvature of the arch axis is greater, parabola of higher degree can be used to fit the arch rib axis.
     2. The analysis of stability of diagonal-span arch bridge and its influence factors
     As a new type of bridge structure, curved diagonal-span arch bridge is developed in recent years, as for its typical characteristics of spatail arrangement the structural performance is very complex. This paper uses eigensolvers method and double nonlinear finite element method based on the theory of elastic-plastic to solve the stability of Tongtai Bridge respectively. Compared with conventional arch bridge, under the ultimate load the failure modes of diagonal-span arch bridge performed to be the combination of the in-plan and out-of-plan buckling modal. In the method using eigenvalue analysis, the Tongtai Bridge has large stability factors under different load cases. For Tongtai Bridge, the rib-plane bending stiffness and the rise-to-span ratio changes can greatly affect the overall stability of the structure. Compared with the conventional arch with the hangers are uniform layout, since the hangers of diagonal span arch are relatively arranged concentratly, the rise-to-span ratio of the diagonal-span arch bridge is greater than conventional arch bridge, generally about0.35is more reasonable. By studying stability of the two diagonal-span arch bridge we found that the two diagonal arch stability factors of the first class and second class stability coefficient ratios were4.8and6.16, the ratio is higher than the conventional arch bridge. Therefore, when the first category is adaped to analysis the overall stability on the diagonal-span arch bridge, compared with the conventional arch bridge, the diagonal-span arch bridge require higher first class stability factor.
     3. Analysis of reasonable finished state of diagonal-span arch bridge
     Based on the energy principle with the consideration of spatial effects, this paper researched the application of unconstrained optimization method and constrained optimization method in solving a reasonable finished state of diagonal-span arch bridge; It discussed the applicability of the two optimization methods in solving hanger forces of reasonable finished state of diagonal-span arch bridge; Cable tension forces of reasonable finished state of diagonal-span arch bridge can not be solved by unconstrained optimization methods which only demand the minimum structural strain energy as the objective function, but relative uniform cable tension forces can be obtained by analysis of unconstrained optimization which objective function reconstructed through adding appropriate weighting factor. The constrained optimization method based on energy method can be effectively used to determine the reasonable finished state of diagonal-span arch bridge. By limiting the force of the key sections, the live load effects can be considered. Comparative study results show that for diagonal-span arch bridge in addition to the main beam bending strain energy, the main beam torsional strain energy can also be a main factor of reasonable finished state of diagonal-span arch bridge. Under the reasonable finished state, there is a big torque in the main beam and the arcrib, for the diagonal-span arch bridge the box-section should be used in main beam and the arcrib.
     4. Model experimental research of diagonal-span arch bridge
     In order to study the overall structure characteristics of the diagonal span arch bridge characteristics and verify the correctness of the design and calculation methods, based on the similarity theory, a full-bridge1:25reduced scale test model of Zhangjiakou Tongtai Bridge is built. Through the comparison of finite element analysis and experimental results verified that the design theory and calculation method used in this new type bridge structure is adpable. and the understanding of the structure characteristics of the diagonal span arch bridge has deepened. The conclutions provide the basis for the actual engineering design and provide a reference for the same type of bridge.
引文
[1]顾安邦主编.范立础主审.桥梁工程(下册)[M].北京:人民交通出版社,2004.
    [2]李生智,王玮瑶,邬妙年.异型拱桥[M].北京:人民交通出版社,1996.
    [3]李乔,李丽.异型拱桥结构内力分析[J].公路交通科技,2000,1(18):31-35.
    [4]贺栓海.拱桥挠度理论[M].北京:人民交通出版社,1996.
    [5]顾懋清,石绍甫.拱桥(上册)[M].北京:人民交通出版社,2005.
    [6]万鹏,大跨度钢拱桥极限承载力综合三因素检算方法研究[D].四川:西南交通大学,2005.
    [7]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [8]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [9]吴恒立.拱式体系的稳定计算[M].北京:人民交通出版社,1979.
    [10]项海帆,高等桥梁结构理论[M].北京:人民交通出版社.,2001年.
    [11]小西-郎.钢桥.戴振蕃译.北京:中国铁道出版社[M],1983.
    [12]Tetsuya Yabuki, Sriramulu Vinnakota. Stability of Steel Arch-Bridges A State-of-The-Art RePort[J]. SM Arellives.1984,9:115-158.
    [13]Walter J.Austin, F, Timothy J.Ross. Elastic Buckling of Arches Under Symrnretrical Loading[J]. Journal of The Structural Division.1976,102(STS):1085-1095.
    [14]Shigeru Kuranishi,Tetsuya Yabuki. Some Numerical Estimations of Ultimate In-Plane Strength of Two-Hinged Steel Arches[J]. Structural Eng./Earthquake Eng.1979,287:155-158.
    [15]Tetsuya Yabuki, Sriramulu Vinnakota, Shigeru Kuranishi. Lateral Load Eeffet On Load Carrying Capaeity of Steel Arch Bridge Structures[J]. Journal of The Struetural Division.1983,109(10): 2434-2449.
    [16]Philip R.Calhoun, Donald A. Dadeppo. Nonlinear Finite Element Analysis of Clamped Arches[J]. Journal of The Structural Division[J].1983,109(3):599-612.
    [17]Piy-L, Trahairns.In-Plane Inelastie Buekling And Strengths of Steel Arehes[J]. J.Struct.Engrg, ASCE 1996; 122(7):734-7.
    [18]Yong-Linpi, N.s.Trahair. Inelastie Lateral Buckling Strength And Design of Steel Arehes[J]. Engineering structures.2000(22):993-1005.
    [19]Godden, W.G The Lateral Buckling of Tied Arehes[J]. Ice Proceedings, Eng. Divisions (HPHSW).1954,3,(8):496-514.
    [20]Geogr Wastlund. Stability Problems of Compressed Steel Members And Arch Bridges[J]. Journal of The Structural Division.1960,86(ST6):47-71.
    [21]Sadao Komatsu, Tatsuro Sakimoto. Ultimate Load Caryring Capacity of Steel Arches[J]. Journal of The Struetural Division.1977,103(STIZ):2323-2336.
    [22]Tatsuor Sakimoto, Toshitaka Yamao, Sadao Komatsu. Experimental Study On The Ultimate Sterngth of steel Arches[J]. Struetural EngE/arthquakeEng.1979,286:139-149.
    [23]Tatsuro SAKIMOTO, Sadao KOMATSU. Ultimate Strength of Steel Arehes Under Lateral Loads[J]. Structural Eng/Earthquake Eng.1979,292:83-94.
    [24]Tatsuro Skaimoto And Sadao Komatsu. Ultimate Strength Formula For Steel Arehes[J].Joumal of Structural Engineering.1983,109(3):613-627.
    [25]Sakimoto T Komatsu S. Ultimate Strength Formula For Steel Acrhes[J]. Journal of Structural Engineering.1983,109(3):715-727.
    [26]A.S. Vlahinos,J. Ch.ErmoPoulos, Yang-Cheng Wang. Buckling Analysis of Steel Arch Bridges[J]. J.Construet. Steel Research.1993,26:59-71.
    [27]Tetsuya YABUKI, Shigeru KURANISHI. Evaluation of Stability Strength For Deek-TyPe Steel Arch Bridges[J]. Structural Eng./Earthquake Eng.1993,10(3):1175-1275.
    [28]Chang-New Chen. A Finite Element Study on Biufreation And Limit Point Bueking of Elastie-Plastic Arches[J]. Computers And Structures,1996;60(2):189-196.
    [29]Tetsuya Yabuki, Shigeru Kuranishi. Ultimate Strength Design of Steel Arch BridgeStruetures[J]. Iabse Proceedings P-84/85.1985,1:57-64.
    [30]Laurent Ney Vineent De Ville De Goyet. Optimum Bracing of The Arches of Tied-Arch Bridges[J]. J.Construet. Steel Research.1991,18:239-249.
    [31]Seung-Eock Kim, Se-Hyu Choi, Sang-Soo Ma. Performance Based Design of Steel Arch Bridges Using Practical Inelastic Nonlinear Analysis[J]. Journal of Constructional Steel Reseacrh. 2003,59:91-108.
    [32]W G Godden.Thonr Pson, JC. An ExPerimental Study of A Model Tied-Arch Bridge[J].Ice Proceedings.1959,14(12):383-394.
    [33]Leonard Kelman Stevens. Carrying CaPaeity of Mild-Steel Arehes[J]. Ice Proeeedings,Eng. Divisions(HPHS W).1956,3(8):493-514.
    [34]李国豪,石洞,黄东洲.拱—析梁组合体系侧倾稳定分析有限元法[J].同济大学学报,1983,(2):1-14.
    [35]黄东洲,李国豪.拱析梁组合体系桥梁的弹性和弹塑性侧倾稳定性分析[J].同济大学学报.1991,19(1):1-11.
    [36]金伟良.大跨度拱桥的横向稳定性研究[D].大连理工大学博士论文,1988.
    [37]向中富.中承式拱桥横向屈曲临界荷载实用计算[J].重庆交通学院学报,1994,14(1):27-31.
    [38]彭俊生,张金平.人跨度拱桥儿何非线性稳定分析[J].西南交通人学学报,1993(3):13-15.
    [39]谢幼藩,赵雷.万县长江大桥420m钢筋混凝土箱形拱的施工稳定性分析[J].桥梁建设,1995,(1):77-81.
    [40]赵雷,张金平.大跨度拱桥施工阶段非线性稳定分析若干问题的探讨[J].铁道学报,1995,17(1):76-84.
    [41]贺拴海,宋一凡,周彦军CFST拱桥承载能力分析[J].西安公路交通大学学报.1998,18(4):132-136.
    [42]杨永清.钢管混凝土拱桥横向稳定性研究[D].西南交通大学博士论文.1998.
    [43]王林祥,武际可.集中载荷作用下圆拱梁的静分叉问题[J].计算力学学报.1999,16(3):271-282。
    [44]陈宝春,陈友杰.钢管混凝土拱肋面内受力全过程试验研究[J].工程力学.2000,17(2):44-50。
    [45]徐升桥.丫髻沙大桥的非线性分析[J].铁道标准设计.1999(8、9):5-7.
    [46]袁红茵.大跨径钢管混凝土拱桥非线性效应及合理设计探讨[.J].中外公路.2001,21(5):30-32
    [47]奉龙成,汪宏,赵人达.大跨径钢筋混凝土拱桥受力行为的几何材料非线性祸合分析[J].公路交通科技2000,29(3):20-26.
    [48]戴公连,李德建,曾庆元.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析[J].中国公路学报.2001,14(1):48-51.
    [49]戴公连,李德建,曾庆元.单拱面预应力混凝土系杆拱桥空间稳定极限承载力分析[J].中国公路学报.2002,15(2):44-47.
    [50]李德建,戴公连,曾庆元.钢管混凝土拱桥弹塑性极限承载力分析的截面内力塑性系数法[J].中南工业大学学报(自然科学版).2004,4(3):321-323.
    [51]颜全胜,韩人建.解放大桥钢管混凝士系杆拱桥的非线性稳定[J].华南理工大学学报.1999,27(11):98-203.
    [52]颜全胜,骆宁安,韩大建.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报.2000,25(6):64-65.
    [53]颜全胜,骆宁安,韩大建,王卫锋.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报.2000,28(6):64-68.
    [54]张建民,郑皆连,秦荣.南宁永和大桥双重非线性稳定分析[.J].公路交通科技.2003,20(1):58-62.
    [55]张建民,肖汝诚.巫峡长江大桥极限承载能力分析[J].公路交通科技.2004.21(2:)37-40.
    [56]钱莲萍,项海帆.空间拱桥结构侧倾稳定性的实用计算[J].同济大学学报,1989,17(2):161-172.
    [57]刘煌.卢浦大桥的静力与稳定分析[D].同济大学硕士学位论文.20023.
    [58]邱顺冬.大跨度中承式无推力拱桥极限承载力的分析与研究[D].同济大学硕十学位论文.2003.3.
    [59]陈进,江见鲸,肖汝诚.大跨度钢拱桥结构极限承载力分析[J].工程力学.2003,20(2):7-9.
    [60]陈进,江见鲸,肖汝诚.大跨度钢拱桥极限承载力的参数研究[J].中国公路学报.2003,16(2):45-47.
    [61]刘洪伟.新光大桥结构体系研究[D].大连理工大学硕士学位论文.2004.3.
    [62]王立中.中承式钢箱拱桥拱肋的稳定性分析[J].铁道标准设计.2004.(4):42-44.
    [63]童丽萍,郭静.中山一桥结构体系施工阶段的稳定分析[J].桥梁建设.2004,1:20-23.
    [64]王定文,刘爱荣,张俊平等.空间组合拱桥有限元分析[J].城市道桥与防洪2004,5(3):37-40.
    [65]谢旭,李辉,黄剑源.大跨度两铰钢拱桥面内稳定分析[J].土木工程学报.2004,37(8):43-49.
    [66]程鹏,童根树.圆弧拱平面内弯曲失稳一般理论[J].工程力学,2005,22(1):93-101.
    [67]崔军.大跨度钢管混凝土拱桥受力性能分析[D].杭州市:浙江大学,2003.
    [68]曾国锋,范立础,章关永.应用复合梁单元实现钢管混凝土拱桥的极限承载力分析[J].铁道学报,2003,25(5):97-101
    [69]颜全胜,王颁钢管混凝土拱肋面内弹塑性承载力分析[J].昆明理工大学学报,2003,28(5):110-113
    [70]Tetsuya Nonaka, AsgharAli. Dynamic Response of Half Through Steel Arch BridgeUsing Fiber Model[J].Journal of Bridge Engineering[J].2001,6(6):482-488.
    [71]林元培.斜拉桥[M].北京:人民交通出版社,2004:5-30
    [72]霍学晋.异型拱桥的非线性受力行为研究及动力特性分析[D].四川:西南交通大学.2011.
    [73]颜东煌.斜拉桥合理设计状态确定与控制[D].湖南大学博士学位论文,2001.
    [74]施笃铮,汪劲丰,项贻强,等.斜拉桥施工过程中的索力控制与优化研究[J].中国公路学报,2002,15(2):57-60.
    [75]杜蓬娟,张哲,谭素杰.斜拉桥合理成桥状态索力确定的优化方法[J].公路交通科技,2005,22(7):82-84.
    [76]戚良俊.预应力混凝土斜拉桥成桥和施工阶段索力优化理论研究和实践!D].重庆交通大学硕
    士学位论文,2008.
    [77]刘邵平.大跨度多肋拱桥施工控制索力优化分析研究[D].重庆交通大学硕士学位论文,2009.
    [78]任亮,方志,上官兴.钢管混凝土拉索组合拱桥索力优化研究[J].工程力学,2010,27(5):153-158.
    [79]杨光.异型拱桥的拱轴线优化和稳定分析[D].大连理工大学硕士学位论文,2008.
    [80]巴良柯夫.拱桥计算(拱与拱上结构联合作用)[M].北京:人民铁道出版社,1964.
    [81]阿斯特瓦差屠洛夫.垂直悬杆及斜悬杆式桥拱的计算[M].北京:人民交通出版社,1955.
    [82]蒋孝煜.有限元基础[M].北京:清华大学出版社,1984.
    [83]杨允表,李坚,彭俊.大跨度中承式杆拱桥拱轴线的调整[J].上海公路,2001,(1):19-22.
    [84]刘九生,王国鼎.大跨径拱桥拱轴线允许偏差的探讨[J].华东公路,2000,127(6):17-18.
    [85]林阳子,黄侨,任远.拱桥拱轴线的优化与选形[J].公路交通科技,2007,3(24):59-63.
    [86]蒋启平.三次样条插值确定拱桥拱合理轴线的方法探讨[J].武汉理工学报,2001,1(25):101-104.
    [87]张晶.考虑轴向变形的合理拱轴线的有限元优化[J].建筑与结构设计,2008,3(37):37-40.
    [88]罗辉.-种新型的拱轴线及拱圈优化设计[J].桥梁建设,1997,2:14-17.
    [89]刘其伟.对无铰拱弹性压缩引起的拱轴线偏离影响的探讨[J].公路,1996,9:10-14.
    [90]Timoshenko S P.弹性稳定理论.北京:科学出版社,1958.
    [91]王国鼎,钟圣斌.拱桥[M].北京:人民交通出版社.1997。
    [92]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社.1991。
    [93]李国豪主编.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社.19%。
    [94]将友谅.非线性有限元法[M].北京:北京工业学院出版社.1988。
    [95]华少中.钢管混凝土拱桥考虑水平荷载的侧倾稳定非线性分析[D].浙江大学学位论文.2003.
    [96]殷荫龙,陈学源.拱屈曲的二阶分析方法[J].工程力学,1986,3(1).
    [97]汪风平.大跨度拱桥非线性稳定分析[J].工程与建设,2006,20(4):332-333.
    [98]彭俊生,张金平.大跨度拱桥几何非线性稳定分析[J].西南交通大学学报,1993,91(91):105-111.
    [99]张治成,徐芸青,王云峰等.大跨度中承式拱桥侧向性稳定的空间有限元分析[J].中南公路工程,2003,28(3):13-15,22.
    [100]李新勇,刘志明,张淑红.重庆菜园坝长江大桥稳定分析[J].工业建筑,2007,37:632-634.
    [101]王士勇.拱桥结构稳定浅析[J].工程与建设,2007,21(2):121-122,138.
    [102]张建民,郑皆连,秦荣.拱桥稳定性研究与发展[J].广西交通科技,2000,25(12):1-8.
    [103]吴家龙.弹性力学[M].上海:同济大学出版社,1987.
    [104]Rubin M B. Buckling of elastic shallow arches using the theory of a Cosserat point. Journal of Engineering Mechanics.2004,130(2):216-224.
    [105]刘钊,吕志涛.有横撑系杆拱桥的侧向稳定承载力[J].工程力学.2004,(3):21-24,54.
    [106]毕尔格麦斯特G稳定理论[M].北京:中国建筑工业出版社,1974.
    [107]张建民,郑皆连,秦荣.拱桥稳定性研究与发展[J].广西交通科技.2000,25(增刊):1-8.
    [108]Dinnik A N. Buckling and Torsion[M]. Moscow,1955.
    [109]Austin W J. In-Plane Bending and Buckling of Arches[J]. ASCE.1971, Vol.97(No.ST5): 1575-1593.
    [110]Timoshenko S P.弹性稳定理论[M].北京:科学出版社,1958.
    [111]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991.
    [112]Wastlund G. Stability problems of Compressed Steel Members and Arch Bridge[J]. PorcASCE. 1960,86(ST6).
    [113]Shukla S N, Ojalvo M. Lateral Buckling of Parabolic Arches with Tilting Loads[J]. Proc,ASCE. 1971,97(ST6).
    [114]陈彦江.大跨度钢管混凝土拱桥的横向稳定研究[D].哈尔滨:哈尔滨工业大学,2001.
    [115]程进,江见鲸,肖汝诚等.拱桥结构极限承载力的研究现状与发展[J].公路交通科技.2002,19(4):57-59.
    [116]Chatterjee P N. On the Deflection Theory of Ribbed Two-Hinged Elastic Arches:(Thesis Ph.D): The University of Illinois,1948.
    [117]Y.B. Yang, W. McGuire. Stiffness Matrix for Geometric Nonlinear Analysis[J]. J Struct Engrg, ASCE.1986,112(4):853-877.
    [118]S. Kitipomchai, S.L. Chan. Nonlinear Finite Analysis of Angle and Tee Beam-colums[J]. ASCE. 1987,113(ST):69-77.
    [119]C. Bom, S. Chiostrini. A Nonlinear Approach to the Stability Analysis of Space Beam Structures[J]. Int J Space Structure.1989,4(4):193-217.
    [120]W.R. Spillers. Geometric Stiffness Matrix for Space Frames. Computers & Structures[J].1990, 36(1):29-37.
    [121]Y.B. Yang, S.R. Kuo., J.D. Yau. Use of Straight-Beam Approach to Buckling of Curved Beams[J]. J Struct Engrg ASCE.1991,117(7).1963-1978.
    [122]R.K. Wen. Nonlinear Curved Beam Elements for Arch Structures[J]. J Struct Engrg, ASCE.1991, 117(11):3496-3515.
    [123]Y.B. Yang, S.R. Kuo. Curved Beam Elements for Non-linear Analysis[J].. J Engrg Mech, ASCE. 1989,115(4):840-855.
    [124]A.S. Nazmy and A.M.A. Del-Ghaffar. Three-Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges[J]. Computers & Structures.1993,49(6):25-36.
    [125]Z.Q. Chen, T.J.A. Agar. Geometric Nonlinear Analysis of Flexible Spatial Beam Structurc[J]. Computer & Structure.1993,49(6):25-36.
    [126]陈宇文.哑铃型钢管混凝土拱桥的面内弹塑性分析[J].惠州学院学报.2006,(3):95-99.
    [127]袁刚.大跨度钢管混凝土拱桥空间稳定与极限承载力的双重非线性分析[J].湖南城市学院学报:自然科学版2005,(2):20-22,25.
    [128]陈宝春,秦泽豹.钢管混凝土(单圆管)肋拱面内极限承载力的参数分析[J].铁道学报.2004,(4):87-92.
    [129]颜全胜,徐升桥.大跨度钢管混凝土拱桥的稳定承载力分析[J].铁道标准设计.2003,(7):16-18.
    [130]申明文,朱玉晓,等.钢管混凝土拱的稳定与极限承载力分析[J].结构工程师.2002,(1):24-30.
    [131]陈荣刚,郑振飞.钢管混凝土肋拱桥极限承载力分析[J].华东公路.2002,(2):13-16.
    [132]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报.1992,25(2):55-60.
    [133]Sadao Komatsu, Tatsuro Sakimoto. Ultimate Load carrying Capacity of Steel Arches. Journal of the Structural Division[J]. ASCE.1977,103(ST12):2323-2336.
    [134]谢幼藩,陈克济.拱桥面内稳定性计算的探讨[J].西南交通大学学报.1982,(1):1-11.
    [135]周文伟.大跨度铁路钢管混凝土拱桥空间稳定极限承载力分析[D].长沙:长沙铁道学院,1999.
    [136]结构工程试验中心拱桥课题组.万县长江大桥钢筋混凝土拱模型试验研究[J].西南交通大学学报.1994,29(4):362-367.
    [137]羊日华.茅草街大桥模型试验与受力性能分析[D].长沙:长沙理工大学,2005.
    [138]崔军,孙炳楠,楼文娟等.钢管混凝土桁架拱桥模型试验研究.[J]工程力学.2004,21(5):83-86.
    [139]韦建刚.钢管混凝土对称弯压拱分枝点失稳问题研究[D].福州:福州大学.
    [140]陈宝春,韦建刚,林嘉阳.钢管混凝土(单圆管)单肋拱空间受力试验研究[J].工程力学.2005,23(5):99-106.
    [141]王頠,瞿伟廉.钢管混凝土弹塑性极限承载力研究现状[J].华中科技大学学报(城市科学版).2004,(2):4446.
    [142]胡大琳,艾夫·哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析[J],中国公路学报.1998,(2):45-51.
    [143]颜全胜,骆宁安,韩大建等.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报(自然科学版).2000,28(6):64-68.
    [144]赵长军,王峰君,陈强等.大跨度钢管混凝土拱桥空间稳定分析[J].公路.2001,(2):15-18.
    [145]王頠.钢管混凝土拱桥弹塑性极限承载力分析:(硕士学位论文).广州:华南理工大学,2002.
    [146]颜全胜,王頠.钢管混凝土拱肋面内弹塑性承载力分析[J].昆明理工大学学报(理工版).2003,28(5):110-113.
    [147]童蔷.钢管混凝土拱结构的非线性分析[D].成都:四川大学,2000.
    [148]毛裕青.钢管混凝土拱桥的极限承载力研究[D].上海:同济大学,2000.
    [149]程耿东.工程结构优化设计基础[M].北京:水利电子出版社,1983.
    [150]于阳,斜跨拱桥合理成桥索力的优化方法[D].辽宁:大连理工大学,2008.
    [151]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [152]陈卫东,蔡萌林.于诗源.工程优化方法[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [153]李熠,颜东煌,李学文.混凝土斜拉桥合理成桥状态研究[J].重庆交通大学学报(自然科科版),2008(6):1017-1023.
    [154]杨俊,基于影响矩阵的大跨桥梁合理成桥状态与施工控制研究[D].湖北:武汉理J工大学交通学院,2008.
    [155]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    [156]Kasuga,H.Arai,J.E.breen,K.Furuawa. Optimization cable-stayed Adjustmentsineons in concret Cable-stayed Bridge[J]. Journal of Structure Engineering.1995-4,121 (4):685-694.
    [157]M.S.Troitsky.Cable-stayed Bridge Theory and Design[M]. London:Granada Publishing Ltd.1977.
    [158]张国泉,徐雷.无支架施工的系杆拱桥吊杆索力优化[J].上海公路,2005(4):17-20.
    [159]叶建龙,孙建渊,石洞.梁拱组合桥柔性吊杆张拉力的确定及分析[J].城市道桥与防洪,1999(4):21-24.
    [160]杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设,1989(3):18-22.
    [161]童林,李传习,上官兴.钢管混凝土拱梁组合体系桥吊杆成桥索力的确定[J].长沙交通学院学报,2004(3):11-15.
    [162]杜蓬娟,张哲.斜拉桥合理成桥状态索力确定的优化方法[J].公路交通科技,2005(7):82-84.
    [163]陆揪,徐有光.斜拉桥最优化索力的探讨[J].中国公路学报,1990(1):1-6.
    [164]杜蓬娟.混凝土斜拉桥施工过程控制理论研究[D].大连:大连理工大学土木水利学院,2003.
    [165]杜蓬娟,张哲.斜拉桥索力张拉过程的最优控制[J].计算力学学报,2005(3):326-328.
    [166]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998(3):235-239.
    [167]肖汝诚.斜拉桥索力优化及其工程应用[J].计算力学学报,1998(1):118-126.
    [168]肖汝诚.关于截面内力与位移调整计算的影响矩阵法[J].华东公路,1991(5):24-28.
    [169]颜东煌.斜拉桥合理成桥状态的确定方法和施工控制理论研究[D].长沙:湖南大学,2001.
    [170]颜东煌,李学文,刘光栋等.用应力平衡法确定斜拉桥主梁的合理成桥状[J].中国公路学报,2000(3):56-60.
    [171]宋广君.琴桥模型试验研究[M].大连:大连理工大学,2004.
    [172]刘爱荣,张俊平,赵新生,李永河,梅力彪.中山一桥模型试验及理论分析.中国公路学报.2005,(3):75-79,83.
    [173]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005
    [174]陈开利,余天庆,习刚.混合梁斜拉桥的发展与展望.桥梁建设.2005,(2):1-4.
    [175]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [176]谷音,郑振.白塔大桥模型实验分析[Ml.福州大学学报:自然科学版.2000,(5):72-76.
    [177]刘世忠.新城系杆拱桥模型试验研究[M].工程力学.2000,(A02):739-742.
    [178]章关永.桥梁结构试验[M].北京:人民交通出版社,2001.
    [179]安群慧,刘自明.荆州长江公路桥整体模型试验研究[M].桥梁建设.2002,(2):15-18,22.
    [180]李乔,田学民.铁路大跨度提篮式系杆拱桥全桥模型试验[J].中国铁道科学.2003,(1):88-93.
    [181]林铸明,夏契,梁川,王德禹.铝合金舟桥甲板结构极限承载能力模型试验与数值分析[J].力学季刊.2004,(4):509-517.
    [182]陈星烨,马晓燕,宋建中.大型结构试验模型相似理论分析与推导[J].长沙交通学院学报.2004,20(1):11-14.
    [183]周炎新.确定斜拉桥合理成桥状态的综合方法研究[D].西安:长安大学,2002.
    [184]滕启杰,钢管混凝土拱桥的极限承载力研究[D].辽宁:大连理工大学,2008.
    [185]曾国锋.钢管混凝土系杆拱桥极限承载力研究[D].上海:同济大学,2003.
    [186]肖汝城.确定大跨径桥梁结构合理设计状态的理论与方法[D].上海:同济大学,1996.
    [187]Wen-Liang Qiu, Chin-Sheng Kao, Chang-Huan Kou, Jeng-Lin Tsai. Stability Analysis of Special-Shape Arch Bridge[J]. Tamkang Journal of Science and Engineering.2010,13(4):365-373.
    [188]中华人民共和国行业标准.钢管混凝土拱桥设计规范(校审稿)[S].钢管混凝土拱桥设计规范编制组,2004.
    [189]中华人民共和国行业标准.铁路桥涵设计基本规范[S].中华人民共和国铁道部,2005.
    [190]重庆市公路工程行业标准.公路钢管混凝土拱桥设计规范[S].人民交通出版社,2011.
    [191]吴学华,斜跨拱桥结构特点及力学性能分析[D].辽宁:大连理工大学,2009.
    [192]贺拴海,李春风,吕婷,周勇军.钢筋混凝土系杆拱桥稳定性影响参数[J].长安大学学报(自然科学版),2008(4):43-46.
    [193]冯仲人,乔长江.钢管混凝土拱桥矢跨比对稳定性影响的研究[J].交通科技,2006(2):9-10.
    [194]王维.钢管混凝土拱桥矢跨比对稳定性的影响[J].科技咨询,2007(14):58-59.
    [195]王会利,自锚式斜拉—悬索协作体系桥结构性能分析与试验研究[D].辽宁:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700