发动机机体疲劳可靠性模拟试验基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳可靠性是汽车关键零部件的重要性能指标之一,也是我国汽车产品设计技术与国际先进水平的主要差距所在。本文以CAE仿真分析方法和强化疲劳试验技术为手段,对发动机机体疲劳特性进行了深入研究,主要研究内容如下:
     1)基于有限元分析方法,对发动机机体疲劳模拟试验系统进行CAE仿真分析,建立了较为完备的试验模型,研究了疲劳试验中加载轴类型(半轴、全轴)及轴瓦装配参数(间隙、过盈量)对发动机机体相应部位的应力特性的影响。研究发现,与全轴传递方式相比,半轴传递作用下的轴瓦接触压力、主轴承座应力及轴承孔变形等均较大。应力随轴瓦装配过盈量增大而增大,而轴瓦间隙对应力的影响作用相对复杂。
     2)为实现发动机机体疲劳试验系统中裂纹发生诊断的自动化、智能化,通过经典时序分析方法对试验过程中采集的动态应变信号进行AR模型参数估计,时序模型中残差方差特征量对裂纹发生非常敏感,应变时序信号的微小变化便可使模型残差方差发生突变,因此,利用时间序列的残差方差可定性地诊断裂纹的发生。基于CAE仿真分析,对机体进行裂纹预制,并采用“应变相对变化量”方法对裂纹进行定位分析,通过损伤指标可以对裂纹的发生位置进行识别。损伤位置指标利用了各点应变的相关性,具有定位精度高的特性,论文采用对机体预制裂纹的方法进行了验证,通过计算可知定位误差约为2.25%。
     3)由于发动机机体的几何结构复杂,即使在简单载荷的作用下,结构复杂的部位仍然呈现多轴应力状态,如凸轮轴孔与主油道孔贯穿部位。这些部位需采用多轴疲劳损伤模型进行疲劳寿命预测。论文在现行的应用于标准缺口试件的多轴疲劳损伤模型的基础上,以临界平面内的剪切应变与正应变的非线性组合作为损伤控制参量,提出了一种新的基于临界平面的多轴疲劳损伤模型,并通过试验验证了该损伤模型的正确性。
     4)针对发动机机体生产成本较高,试验周期较长等特点,采用小样本试件对机体疲劳极限进行预测,以最小二乘法反推寿命为1000次的载荷为低周疲劳载荷点,将其应用于SAFL方法中对疲劳极限值进行预测,分别采用Gauss分布和Weibull分布进行疲劳可靠性统计。通过对多组疲劳试验数据的回归分析可知,Gauss分布统计的母体样本均值和方差与Weibull分布统计的差别甚微,但是试验数据的质量直接影响拟合的精度。
     5)采用标准裂纹和缺口构件对机体凸轮轴孔部位应力场进行等效,将断裂力学概念引入到机体疲劳极限预测中,通过疲劳试验结果与标准裂纹的对比将疲劳试验的结果与标准裂纹的对比,计算材料的疲劳裂纹扩展的门槛值,通过应力强度因子门槛值对相同材料、相同生产工艺的其它构件的疲劳极限载荷进行预测。
Fatigue reliability is one of the most important performances of critical automobile parts, and it is the principal element that restricts our automobile industry to achieve international level. In the paper fatigue properties of engine-block were lucubrated by means of CAE (Computer Aided Engineering) and strengthened fatigue test. The main contents are as follows:
     1) Simulation experiment system was modeled based on FE (Finite Element) analysis, and the relationship between shaft style (half-shaft, whole-shaft), assembly parameters of bearing (clearance, interference) and stress of engine-block was studied. The results show that compared with acting by half-shaft, the contact pressure of bearing, stress of main bearing wall and deformation of bearing hole acting by whole-shaft are greater.. Stress with the bearing assembly interference increases, but relationship between bearing clearance and stress is relatively complex.
     2) In order to realize automation and intelligentialize for fatigue crack diagnosis of engine-block fatigue test system, classical time-series analysis was applied to dynamic strain data acquired in fatigue test, and parameters of AR model were estimated. Residual variance of AR model is very sensitive to occurrence of crack, and the sbutle difference of strain lead to abrupt change of residual variance of AR model. Residual variance of AR model can diagnose the occurence of crack qualitatively in engine-block fatigue test. Engine-block with prefabricated crack was modeled by FE, and relative variation of strain was analysed, and damage index was applied to diagnose the position of crack. Damage index made full use of the relationship between all strain points, so it has high-accuracy for diagnosing position of crack, and position error is approximately2.25%.
     3) Engine-block has complex geometry, and thouth it was acted by simple load, the stress status can take on multiaxiality. For example, the position of intercrossing between camshaft hole and main oil hole is that. Fatigue life of these positons should be estimated by multiaxial fatigue damage model. On the basis of popular multiaxial damge model which had applied to the standard notched specimens generally, a new multiaxial damage model was proposed based on cirtial plane, which was made by nolinear combination of shear and normal strain on critical plane. Finally, the new damage model was verified by experiment.
     4) Considering high costs and large test period for the engine-block, a small number of specimens were used to predict fatigue limit of the engine-block. The load of low cycle life was estimated using least-squares method from test data. Fatigue limit was estimated by SAFL which was modified by load of low cycle life. Fatigue reliability was studied using Gauss and Weibull distribution respectively. The result of regression analysis on fatigue test data shows that mean and variance estimated by Gauss distribution were little different from that estimated by Weibull distribution, But the quality of test data affects fitting accuracy directly.
     5) Model of crack and notch was built by stress field of crack equivalent to camshaft hole, and fracture mechanics was applied to prediction of fagitue limit of engine-block. The threshold of stress intensity factor was estimated by comparing between test datum and crack model. Fatigue limit of other components with the same material, the same production process were estimated by threshold of stress intensity factor and the stress status.
引文
[1]整车出口快速增长我国车企加速走向世界:http://www.caam.org.cn/hangye/20111209/1405065349.html.
    [2]中汽协:2011年汽车产销增速为10-15%:http://auto.sina.com.cn/news/2011-01-10/1630701559.shtml.
    [3]中国汽车2030年年销量有望达到7500万辆:http://www.citygf.com/CA/012/201009/t20100920_753013.html.
    [4]汽车零部件行业技术现状:http://cn.china.cn/article/d880471.8ec12a,d2098_7470.html.
    [5]林晓斌.机械产品的一体化抗疲劳设计[J]. CAD/CAM与制造业信息化.2004.(1-2):29-30.
    [6]霍炜,赵红.国产汽车可靠性管理的探讨[J].青岛大学学报.2001.16(4):62-65.
    [7]Dong Shiyun, Xu Binshi, Wang Zhijian. Laser remanufacturing technology and its applications [J]. Proceedings of SPIE - The International Society for Optical Engineering.2008.(6825):1-6
    [8]Sutherland John W, Adler Daniel P. A comparison of manufacturing and emanufacturing energy intensities with application to diesel engine production. CIRP Annals-Manufacturing Technology [J]. 2008(57):5-8.
    [9]Zhang G Q, Engine crankshaft remanufacturing life prediction and experimental verification [J]. Advanced Materials Research.2011.(517):263-271.
    [10]徐滨士.工程机械再制造及其关键技术[J].工程机械.2009.(8):1-6.
    [11]徐滨士.中国再制造产业及再制造技术新进展[J].热喷涂技术.2010.(3):1-6.
    [12]向永华,徐滨士,吕耀辉等.发动机排气门等离子熔覆再制造[J].金属热处理.2010.(7):66-69.
    [13]董世运,刘彬,徐滨士等.发动机旧连杆缺陷超声检测研究[J].失效分析与预防.2011.(1):19-22.
    [14]徐滨士.绿色再制造工程的发展现状和未来展望[J].中国工程科学.2011.(1):4-10.
    [15]彭兴礼.汽车零部件再制造中的修复技术[J].现代零部件.2008.(1):69-70.
    [16]吴益文,华沂,蒋海宁等.汽车发动机缸体的再制造问题研究[J].检验检疫学刊.2009.(5):35-37.
    [17]朱云俊,任家隆.柴油机曲轴的再制造尺寸修复研究[J].机械设计与制造.2009.(8):176-178.
    [18]邢忠,姜爱良,谢建军等.汽车发动机再制造效益分析及表面工程技术的应用[J].中国表面工程.2004.(4):1-5.
    [19]徐滨士.中国再制造工程及其进展[J].中国表面工程.2010.(2):1-6.
    [20]张铜柱.汽车产品再制造模式及其可靠性分析[D].[博士学位论文].长春:吉林大学.2011
    [21]易正根,吴东兴,樊嘉天.轿车发动机高强度连杆开发[J].现代车用动力,2009.(4):36-39.
    [22]钱人一.轿车发动机机体的轻量化技术[J].汽车工艺与材料.2006.(6):1-4.
    [23]杨琪.浅谈汽车发动机的零部件用材发展趋势[J].MC现代零部件.2005.(4):86-89.
    [24]熊琳.内燃机曲轴设计(一)[J].机械制造.5(7):3-9.
    [25]熊琳.内燃机曲轴设计(二)[J].机械制造.5(7):37-44.
    [26]廖日东,左正兴,樊利霞.发动机零部件有限元技术应用的新进展[J].内燃机学报. 1999.17(2):190-197.
    [27]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望[J].内燃机学报.2002.20(2):179-184.
    [28]廖日东,左正兴.高速大功率车用内燃机机体组CAD的几个关键问题[J].兵工学报.2008.21(3):193-197.
    [29]LEE Hyun-seung, LEE Young-shin, KIM Jae-hoon. A Structural Analysis and Topology Optimization on Cylinder Block of Heavy Duty Diesel Engine [J]. International Journal of Modern Physics B. 2010.24.(15-16).2676-2681.
    [30]苏铁熊,左正兴,蔡坪.变结构参数结构设计方法及其在曲轴结构设计中的应用[J].坦克装甲车与发动机分册.1995.(4):44-48.
    [31]张培榕,翟兴远,Z12V190B型高速柴油机连杆静态电测强度分析[J],华中工学院学报,1980.(1):236-245.
    [32]夏春晶,刘玉凤,闫明等.失效分析与预防[J].2008.3(1):59-63.
    [33]MaXinwu, Wang Fang. The Fracture Analysis of Instop Gasket Using FEM Simulations [J]. ADVANCED SCIENCE LETTERS.2011.4:2573-2577. Cho S-S, Shin C-S, Lee C-S. Assessment of an engine cylinder head-block joint using finite element analysis [J]. International Journal of Automotive Technology.2010.11(1):75-80.
    [35]Serhat Erpolat, Demirhan Manav. Incorporating Residual Stresses Into Thermo-Mechanical Fatigue Analysis of Cylinder Head [J]. Proceeding of the ASME 201010th Biennial Conference on Engineering System Design and Analysis.2010.(49170):1-8.
    [36]Dong Woo Lee, Seok Swoo Cho Won Sik Joo. An estimation of failure stress condition in rocker arm shaft through FEA and microscopic fractography [J]. Journal of Mechanical Science and Technology. 2008.22(11).2056-2061.
    [37]Rahman M-M, Ariffin A-K, Jamaludin N. Finite Element Based Vibration Fatigue Analysis for a New Free Piston Engine Component [J]. Arabian Journal for Science and Engineering.2009.34:231-246.
    [38]Lu Zongjin. CAE in Durability Design for Modern Vehicles [R]. Presentation of LANDROVER.
    [39]Austen Ian M,林晓斌译.工程中的一体化疲劳耐久管理[J].中国机械工程,1998.9(11):3-7.
    [40]林晓斌.工程机械的抗疲劳设计理念及产品开发[J].建筑机械化.2009(9):35-38.(?)晓斌.零件失效分析和抗疲劳设计[J].热处理.2011.26(2):59-64.
    [42]Hong Su, Mark Ma, David Olson. Accelerated Tests of Wiper Motor Retainers Using CAE Durability and Reliability Techniques[J]. SAE Paper:2004-01-1644.
    [43]Taylor D S and Pan J. Fatigue Crack Initiation in Threaded Fasteners Using the Critical Plane Approach[J]. SAE Paper:2003-01-0697.
    [44]Su Hong, Thyagarajan Ravi, Brown Joel. Virtual Key Life Tests of Instrument Panels for Product Development[J]. SAE Paper:2004-01-1482.
    [45]Khosrovaneh Abolhassan, Pattu Ravi, Schnaidt William. Discussion of Fatigue Analysis Techniques in Automotive Applications[J]. SAE Paper:2004-01-0626.
    [46]Rabito M, Cavallo P. On Duty Simulation of a Trimmed Body Under Dynamic Loads:Modal Superposition Approach to Evaluate Fatigue Life[J]. SAE Paper:1999-01-3150.
    [47]Silva F S, Fatigue on engine pistons-A compendium of case studies [J]. Engineering Failure Analysis. 2006.13:480-492.
    [48]徐家炽.DC-1电动谐振式曲轴疲劳试验装置[J].内燃机工程.1991(2):6-16.
    [49]冯美斌.曲轴疲劳试验中的载荷标定方法及其误差[J].内燃机工程.1991(3):74-81.
    [50]谢丽颖.汽车发动机曲轴疲劳试验方法[J].汽车工艺与材料.2006(3):9-12.
    [51]俞小莉,周迅,刘震涛等.智能型曲轴弯曲疲劳试验系统[J].兵工学报.2004.25(3):368-371.
    [52]周迅,俞小莉.曲轴疲劳裂纹扩展速率测量的扫频法[J].浙江大学学报工学版.,2007.41(11):1886-1892.
    [53]周迅,俞小莉.谐振式曲轴疲劳试验中的失效判定[J].内燃机工程.2007.28(5):45-47.
    [54]ZHOU Xun, YU Xiaoli. Fatigue crack growth rate test using a frequency sweep method [J]. Journal of Zhejiang University SCIENCE A.,2008.9(3):346-350.
    [55]周迅,俞小莉,李迎.稳态疲劳载荷下曲轴剩余强度模型的试验研究[J].机械工程学报.,2006.42(4):213-217.
    [56]张先国发动机连杆疲劳试验方法研究[J].内燃机工程1998.19(3):40-44.
    [57]李慧远,何才汽车发动机连杆疲劳试验方法[J].汽车工艺与材料.2005(10):30-31.
    [58]刘震涛,刘宏瑞,叶晓等.发动机连杆拉压模拟疲劳试验台研制[J].机电工程.2011.28(6):663-658.
    [59]Benjamin West. Connecting Rod Fatigue Test Procedure[R]. AVL LIST GMBH.2003.08.05
    [60]吴波,侯岳,胡定云等.柴油机连杆疲劳试验的数值模拟研究[J].小型内燃机与摩托车2010.39(5):47-50.
    [61]俞小莉,翟听.柴油机燃烧室形状对活塞热负荷与机械负荷的影响[J].内燃机工程2002
    [62]俞小莉,沈瑜铭.活塞热疲劳试验技术-温度分布模拟系统[J]内燃机工程2000.21(4):58-61.
    [63]Bardenheier R, Rogers G. Experimental simulation of complex thermo-mechanical fatigue[J]. Experimental Mechanics in Nano and Biotechnology.2006. (326):1019-1022.
    [64]Mende C, Liedtke O, Schulz A. Design of a new experimental rig for thermal cyclic testing of combustor liner tiles[J]. PROCEEDINGS OF THE ASME TURBO EXPO 2008.2008.5:21-30. Rudrapatna NS, Peterson BH, Greying D. An experimental system for assessing combustor durability [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2010.2010.1:913-920.
    [66]田小青,刘世英,张文利等.柴油机活塞异形销孔结构设计与疲劳试验的综合性研究[J].内燃机工程.2008.29(1):52-55.
    [67]刘震涛,沈瑜铭.发动机活塞热疲劳模拟试验装置[J].车用发动机.1999(1):38-40.
    [68]刘震涛,俞小莉,齐放等.活塞热疲劳模拟试验技术的自动控制系统[J].内燃机工程2001.22(2):24-26.
    [69]刘耀东,郭金宝,刘瑞.发动机活塞液压脉冲机械疲劳试验方法研究[J].内燃机.2009(4):30-32.
    [70]杨云,袁劲松,沈毅力等.电液道路模拟振动台设计参数选择的研究[J].机床与液压.2004(3):50-51.
    [71]刘一江,李轶.基于迭代学习控制的电液伺服振动台研究[J].计算机仿真.2008.25(2):319-321.
    [72]杜永昌,管迪华.自适应控制汽车疲劳模拟试验研究[J].清华大学学报(自然科学版).1999.39(2):94-97.
    [73]陈学罡,李慧远,田雨苗.发动机气缸体疲劳试验研究[J].汽车工艺与材料.2006.(3):6-9.
    [74]刘震涛,张鹏伟,刘宏瑞.发动机机体液压疲劳试验系统.实用新型专利.ZL 2010 2 0662606.9.2010 12 07
    [75]姚磊.活塞销疲劳试验[J].内燃机配件.2007(1):31-32.
    [76]项松年.内燃机气门弹簧高频疲劳试验机[J].1981(2):78-83
    [77]王朝斌,叶常景.发动机附件台架疲劳试验工况的探索[J].汽车科技2010(2):61-64.
    [78]薛念文,周孔亢,陈龙等.拖拉机驾驶室可靠性疲劳试验研究[J].农业机械学报.2002.33(6):26-28.
    [79]Walter S. A history of fatigue. Engineering Fracture Mechanics[J].1996.54(2):263-300.
    [80]Lee Yung-li, Pan jwo, Hathaway Richard. Fatigue testing and analysis(theory and practice)[M]. 2005.pp.57-75.
    [81]朱涛.汽车关键零部件疲劳分析与试验综合研究[D].博士学位论文.北京:北京航空航天大学.2007.
    [82]Kim J T, Stubbs N. Model-Uncertainty Impact and Damage-Detection Accuracy in Plate Girder[J]. Journal of Structural Engineering.1995.121.(10):1409-1417.
    [83]Yam L H, Li Y Y, Wong W O. Sensitivity studies of parameters for damage detection of plate-like structures using static and dynamic approaches[J]. Engineering Structures.2002.24. (11):1465-1475.
    [84]Lee U, Shin J. A structural damage identification method for plate structures[J]. Engineering Structures. 2002.24.(9):1177-1188.
    [85]刘世元,杜润生,杨叔子.利用转速波动信号诊断内燃机失火故障的研究(1)——诊断模型方法[J].内燃机学报.2000.(3):315-319.
    [86]刘世元,杜润生,杨叔子.利用转速波动信号诊断内燃机失火故障的研究(2)——波形分析方法[J].内燃机学报.2000.(3):320-323.
    [87]刘世元,杜润生杨叔子.利用转速波动信号诊断内燃机失火故障的研究(3)——多特征综合方法[J].内燃机学报.2000.(4):395-398.
    [88]杨叔子,吴雅,轩建平.时间序列分析的工程应用(上、下)[M].武汉:华中科技大学出版社,2007.
    [89]羊拯民,张成宝.时序分析在汽车变速箱齿轮故障诊断中的应用[J].农业机械学报.2000.(3):92-95.
    [90]陈素维.时间序列在建筑结构振动分析中的应用[J].西安工程科技学院学报.2003.(2):179-181.
    [91]方泽南,傅尚新,张勇.时间序列在故障诊断中的应用[J].清华大学学报(自然科学版).1998.(9).
    [92]Thanagasundram S, Spurgeon S, Schlindwein F S. A fault detection tool using analysis from an autoregressive model pole trajectory[J]. Journal of Sound and Vibration.2008.317. (3-5):975-993.
    [93]Wang Wen-yi, Wong A K. Autoregressive Model-Based Gear Fault Diagnosis[J]. Journal of Vibration and Acoustics.2002.124.(2):172-179.
    [94]周迅.曲轴疲劳行为及可靠性的理论与试验研究[D].博士学位论文.杭州:浙江大学.2006.
    [95]王济,胡晓MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006,
    [96]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报(自然科学版).2000.(1):5-8.
    [97]周俐俐,沈鹃.基于曲率模态和柔度曲率的变截面钢梁多损伤静态识别[J].四川建筑科学研究.2008.(3):93-97.
    [98]Choi Sanghyun, Park Sooyong, Yoon Sungwon. Nondestructive damage identification in plate structures using changes in modal compliance[J]. NDT & E International.2005.38.(7):529-540.
    [99]Vandawaker R M, Palazotto A N, Cobb R G. Damage Detection through Analysis of Modes in a Partially Constrained Plate[J]. Journal of Aerospace Engineering.2007.20. (2):90-96.
    [100]Aleksander Karolczuk, Ewald Macha. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials[J]. International Journal of Fracture.2005.134. (3).267-304.
    [101]Ying-Yu WangWei-Xing Yao. Evaluation and comparison of several multiaxial fatigue criteria[J]. International Journal of Fatigue.2004.26. (1).17-25.
    [102]Dejan NinicHugh L. Stark. A multiaxial fatigue damage function[J]. International Journal of Fatigue. 2007.29. (3).533-548.
    [103]Andrea CarpinteriAndrea Spagnoli. Multiaxial high-cycle fatigue criterion for hard metals[J]. International Journal of Fatigue.2001.23. (2).135-145.
    [104]Dejan Ninic. A stress-based multiaxial high-cycle fatigue damage criterion[J]. International Journal of Fatigue.2006.28. (2).103-113.
    [105]Andrea Spagnoli. A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state[J]. International Journal of Mechanical Sciences.2001.43. (11).2581-2595.
    [106]Andrea Carpinteri, Ewald Macha. Expected principal stress directions under multiaxial random loading. Part Ⅰ:theoretical aspects of the weight function method[J]. International Journal of Fatigue.1999.21. (1).83-88.
    [107]LI J, ZHANG Z, SUN Q. Low-cycle fatigue life prediction of various metallic materials under multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures.2011.34. (4). 280-290.
    [108]Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress strain conditions[J]. Proceedings of the Institution of Mechanical Engineers.1973.187.745-755.
    [109]Wang Ying-Yu, Yao Wei-Xing. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading[J].International Journal of Fatigue.2006.28:401-408.
    [110]Shang De-guang, Wang De-jun. A new multiaxial fatigue damage model based on the critical plane approach[J]. International Journal of Fatigue.1998.20. (3).241-245.
    [111]尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [112]Tadeusz Lagoda, Ewald Macha. A critical plane approach based on energy concepts:application to biaxial random tension-compression high-cycle fatigue regime[J]. International Journal of Fatigue. 1999.21:431-443.
    [113]Morel F. A critical plane fatigue model applied to out-of-phase bending and torsion load conditions[J]. Fatigue & Fracture of Engineering Materials & Structures.2001.24 (3):153-164.
    [114]Das J, Sivakumar S M. An evaluation of multiaxial fatigue life assessment methods for engineering components[J]. International Journal of Pressure Vessels and Piping 1999.76 (10) 741-746.
    [115]高镇同.疲劳性能测试[M].北京:国防工业出版社,1980.
    [116]高镇同.疲劳应用统计学[M].北京:国防工业出版社.1986.
    [117]金属材料疲劳试验数据统计方案与分析方法GB/T 24176-2009/ISO 12107:2003.
    [118]周迅,俞小莉.曲轴疲劳试验及其数据统计分析方法的研究[J].内燃机工程,2007.28(2):51-55.
    [119]周迅.曲轴疲劳行为及可靠性的理论与试验研究[D].博士学位论文.浙江大学.2006.
    [120]Weibull W. Fatigue testing and analysis of results[M]. New York:The Macmillian Company.1961.
    [121]高镇同,傅惠民.疲劳强度的频率分布和疲劳强度特征函数[J].机械强度.1985.(2):27-34.[122]凌丹.威布尔分布模型及其在机械可靠性中的应用研究[J].电子科技大学.2011.
    [123]史景钊,张峰,陈新昌.基于Matlab的随机截尾数据下的Weibull分布参数估计[J].河南科学.2010.(5):584-587.
    [124]郭必柱,邓建.可靠性分析威布尔三参数估计方法比较分析[J].科学技术与工程.2010.(25):6117-6122.
    [125]史景钊,任学军,陈新昌.一种三参数Weibull分布极大似然估计的求解方法[J].河南科学.2009.(7):832-834.
    [126]史景钊,邵瑞娜,陈新昌.基于Matlab/Simulink的Weibull分布的极大似然估计[J].河南科学.2011.(4):466-468.
    [127]张锡清.混合三参数威布尔分布的参数估计[J].哈尔滨电工学院学报.1996.(1).
    [128]严晓东,马翔,郑荣.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版).2005.(3):301-305.
    [129]史景钊,陈新昌,张峰.基于Matlab和GM(1,1)模型的Weibull分布参数估计[J].江西科学.2010.(3):291-294.
    [130]Taylor D. Crack modelling:A novel technique for the prediction of fatigue failure in the presence of stress concentrations[J]. COMPUTATIONAL MECHANICS.1997.20(1-2):176-180.
    [131]Taylor D. Crack modelling:A technique for the fatigue design of components [J]. Engineering Failure Analysis.1996.3. (2):129-136.
    [132]Taylor D. The theory of critical distances[J]. ENGINEERING FRACTURE MECHANICS.2008.5(7): 1696-1705.
    [133]Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue in welded joints[J]. INTERNATIONAL JOURNAL OF FATIGUE.2002.24(5):509-518.
    [134]Elices M, Guinea G V. The cohesive zone model:advantages limitations and challenges[J]. Engineering Fracture Mechanics.2002.69(2):137-163.
    [135]Tovo R, Livieri P. An implicit gradient application to fatigue of sharp notches and weldments[J]. Engineering Fracture Mechanics Fracture and Damage in Engineering Applications, XXXIV National Conference of the AIAS.2007.74(4):515-526.
    [136]Tovo R, Livieri P. An implicit gradient application to fatigue of complex structures[J]. ENGINEERING FRACTURE MECHANICS.2008.75(7):1804-1814.
    [137]Jergeus H. A simple formula for the stress intensity factors of cracks in side notches[J]. International Journal of Fracture.1978.14:113-116.
    [138]Wormsen A. The application of asymptotic solutions to a semi-elliptical crack at the root of a notch[J]. Engineering Fracture Mechanics.2006.73. (13).1899-1912.
    [139]Liu Yongming Mahadevan Sankaran. Fatigue limit prediction of notched components using short crack growth theory and an asymptotic interpolation method[J]. Engineering Fracture Mechanics 2009.76(15): 2317-2331. (?)ddad M H, Dowling N E, Topper T H. J integral applications for short fatigue cracks at notches [J]. International Journal of Fracture.1980.16(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700