用户名: 密码: 验证码:
东平湖浮游植物群落结构与驱动因子及蓝藻水华可能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东平湖是南水北调东线工程重要调蓄湖泊和输水通道,其水质优劣对南水北调东线水质有重要影响。目前,对湖泊浮游植物的研究比较普遍,但对东平湖浮游植物、蓝藻水华以及水华防控的研究鲜有报道。因此,分析东平湖浮游植物群落结构、分布特征、环境因子以及蓝藻水华发生的可能性,可为南水北调东线工程以及东平湖水污染防治提供技术指导,同时也可为将来研究调水工程对湖泊藻类的影响提供详实资料。
     论文第一部分综述了藻类、湖泊藻类、淡水湖泊藻类、东平湖藻类的研究方法及其研究进展,提出本论文的研究目的和方法。
     论文第二部分采用定性和定量调查法,对东平湖浮游植物分布特征和群落结构进行分析。2010年5月~2012年10月,东平湖水体共检出浮游藻类8门103属207种(包括变种),其中绿藻门种属比例占绝对优势(44.0%),其次为硅藻门(23.7%)和蓝藻门(14.0%),其他种类较少。东平湖总藻细胞密度、绿藻细胞密度和蓝藻细胞密度均表现出夏秋季节明显高于冬春季节的特点,各监测点夏秋季节的蓝藻细胞密度均处于较高水平,蓝藻细胞密度变化趋势差别不大。浮游藻类的季节演替模式为:硅藻-隐藻-绿藻(春季)——蓝藻-绿藻-硅藻(夏秋季)——绿藻-隐藻-硅藻(冬季)。运用修正的卡森营养状态指数法和营养状态指数法评价东平湖营养状态,研究表明东平湖属于轻度富营养化状态;通过冗余分析和Pearson相关性分析东平湖影响浮游藻类种群结构变化的环境因子,发现东平湖浮游藻类生长的主要驱动因子是温度、透明度和化学需氧量。
     论文第三部分基于水华产生的物理、化学、生物等影响因素分析了东平湖蓝藻水华发生的可能性。分析结果表明,东平湖蓝藻生长的主要驱动因子是温度、透明度和化学需氧量;夏秋季节蓝藻优势种群为湖泊伪鱼腥藻,为非水华指示蓝藻,另外随着东线工程的逐步实施,东平湖水质在不断改善,因此目前发生蓝藻水华的可能性较小;夏秋季节东平湖水体中的依沙束丝藻优势度仅次于湖泊伪鱼腥藻,其己被证实产蓝藻毒素并可能具有形成水华的潜力,应对其加强监测和研究。
     论文第四部分对东平湖和南四湖浮游藻类种群进行了对比分析。研究结果表明,不同的水文水利条件造成两湖泊水体理化指标存在一定差异,从而导致了两湖泊浮游藻类种群在时空分布特征、季节演替规律、优势种属和环境驱动因子等方面的不同。
Dongping Lake has been employed in the east route of the South-to-North Water Diversion Project as one of the significant storing lakes and water channels. At present, studies on phytoplankton in lakes have been well reported, but the report about phytoplankton, cyanobacterial bloom together with its preventation and control in Dongping Lake still has been regarded as a negligible plate. Thus, investigations of phytoplankton community, distribution characteristics, environmental factors and the possibility of cyanobacterial blooms in Dongping Lake can provide technical guidance for the east route of the South-to-North Water Diversion Project and pollution control in this Lake, and afford detailed information for researching the impact of the South-to-North Water Diversion Project on phytoplankton in the future.
     Chapter one in this paper represents the research progress on algae, lake algae, freshwater lake algae and Dongping lake algae, and then put forward the research purposes and methodology for this study.
     Chapter two focuses on the phytoplankton distribution charateristics and the community structures using qualitative and quantitative methods. From May2010to October2012,207phytoplankton species which belong to103genera in8phyla have been identified in Dongping Lake. Chlorophyta accounting for44.0%of the total phytoplankton species was dominant, followed by Bacillariophyta (23.7%) and Cyanophyta (14.0%) and less other species. The total algae density, Chlorophyta density and Cyanophyta density in summer and autumn were all higher than the other two seasons. The cyanobacteria density of each monitoring station in summer and autumn which were all at higher levels showed little change. The seasonal succession patterns of phytoplankton were as follows:Bacillariophyta-Cryptophyta-Chlorophyta (spring), Cyanophyta-Chlorophyta-Bacillariophyta (summer and autumn), Chlorophyta-Cryptophyta-Bacillariophyta (winter). The eutrophic status of Dongping Lake was evaluated by modified trophic state index method (TSIM) and trophic state index method. The results indicated that the lake was lightly eutrophicated. The environmental factors influencing the phytoplankton population community structure of Dongping Lake were also analyzed through redundancy analysis and Pearson correlation analysis. Temperature, transparency and chemical oxygen demand were regarded as the main driving factors influencing the phytoplankton growth.
     Based on physical, chemical, biological and other factors causing algae blooms, chapter three analyzes the possibility of cyanobacterial blooms in Dongping Lake. The results indicated that the main factors on cyanobacteria growth were temperature, transparency and chemical oxygen demand, and the preponderant species of cyanobacteria in summer was Pseudanabaena limnetica which was not indicators of cyanobacterial blooms. Besides, the water quality of Dongping Lake was getting better with the implementation of the water diversion project. Thus, cyanobacterial blooms was less likely appeared. Aphanizomenon issatschenkoi, following Pseudanabaena limnetica which was the most dominant species in Dongping Lake, was confirmed to be able to produce microcystin and might have the potential of forming water blooms. Thus, we should strengthen monitoring and investigation of Aphanizomenon issatschenkoi in the future.
     The differences of phytoplankton community between Dongping Lake and Nansi Lake are compared in chapter four. The results shows that different hydrological condition caused the differences of physical and chemical indicators in two lakes, leading to the differences of phytoplankton community in spatial and temporal distributions, seasonal succession patterns, dominant species and environmental driving factors.
引文
[1]胡鸿钧,李尧英,魏印心等.中国淡水藻类[M].上海:上海科学技术出版社,1980:5-6.
    [2]周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2000,62.
    [3]Reynolds C S. The Ecology of Freshwater Phytoplankton [M]. Cambridge: Cambridge University Press,1984,83-122.
    [4]Bergenfield M J, Boss E, Siegel D A, Shea D M. Carbon-based ocean productivity and phytoplankton physiology from space [J]. Global Biogeochemical Cycles, 2005,19(1):14.
    [5]Mata M T, Martins, A, Caetano N S. Microalgae for biodiesel production and other applications [J]. Renewable and Sustainable Energy Reviews,2010,14(1): 217-232.
    [6]左魁昌,左椒兰,胡智泉等.藻类在环境保护中的作用及其资源化利用研究进展[J].环境污染与防治,2011,33(2):90-93.
    [7]Comin F A,Menendez M,Lucena J K. Proposal for macrophyte restoration in eutrophic coastal lagoons[J]. Hydrobiologia,1990,200(1):427-436.
    [8]Lepists L, Raike A, Pietilainen O P. Long-term changes of phytoplankton in a eutrophieated boreal lake during the past one hundred years of (1893-1998)[J] Algol Stud,1999,94:223-244.
    [9]张洁,计勇,麻夏等.抚河干流浮游藻类群落调查及水质评价[J].湖北农业科学,2013,52(2):306-312.
    [10]刘建康.高级水生生物学[M].北京:科学出版社,1999,45-48.
    [11]Kamenir Y, Dubinsky Z, Zohary T. Phytoplankton size structure stability in a meso-eutrophic subtropical lake[M]. Kluwer Academic Publishers,2004, 89-104.
    [12]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京:高等教育出版社,2004.
    [13]Sedwick P, Blain S, Queguiner B. Resource limitation of Phytoplankton growth in the Crozet Basin, Subantaretic Southern Ocean[J]. Deep-Sea Research,2002, 49:3327-3349.
    [14]Quiblier C, Leboulanger C, Sane S. Phytoplankton growth control and risk of cyanobacterial blooms in the lower Senegal River delta region[J].Water Research, 2008,42:1023-1034.
    [15]张玮,林一群,郭定芳等.不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响[J].水生生物学报,2006,30(3):318-322.
    [16]钟娜,杨维东,刘洁生等.不同氮源对利玛原甲藻(Prorocentrum lima)生长和产毒的影响[J].环境科学学报,2008,28(6):1186-1191.
    [17]刘东艳,孙军,陈宗涛等.不同氮磷比对中肋骨条藻生长特性的影响[J].海洋湖沼通报,2002,2:39-44.
    [18]Thompon P. The response of growth and biochemical composition to variations in day-length, temperature and irradiance in the marine diatom[J]. Journal of Physiology,1999,35:1215-1223.
    [19]Dortch Q, Clayton J J R, Thoresen S. Species differences in accumulation of nitrogen pools in phytoplankton[J]. Marine Biology,1984,81:237-250.
    [20]Hodgkiss I J, Ho K C. Are change in N/P rations in coastal waters the key to increased red tide blooms[J]. Hydrobiologia,1997,852:141-147.
    [21]李天深.氮、磷营养盐对链状亚历山大藻(东海株)生长和产毒的影响研究[D].北京:中国科学院研究生院,2007.
    [22]康燕玉,梁君荣,高亚辉等.氮、磷比对两种赤潮藻生长特性的影响及藻间竞争作用[J].海洋学报,2006,28(5):117-122.
    [23]Vezie C, Rapala J, Vaitomaa J, et al. Effect of nitrogen and phosphorus on growth of toxic and nontoxic microcystis strain and on intracellular microcystin concentrations [J]. Microbial Ecology,2002,43:443-454.
    [24]邹景忠,李福东,黄长江.赤潮生物的营养生理[M].北京:科学出版社,2003.
    [25]胡晗华,石严峻,丛威等.不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性[J].应用与环境生物学报,2004,10(6):735-739.
    [26]潘晓华,石庆华,郭进耀等.无机磷对植物叶片光合作用的影响及其机理的研究进展[J].植物营养与肥料学报,1997,3(3):201-208.
    [27]Lim C H, Ozkanca R, Flint K P. The effects of osmotic stress on survival and alkaline phosphatase activity of Aeromonas hydrophila[J]. Microbiology Letters, 2006,137(1):19-24.
    [28]Chen M T, Li J, Dai X. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa[J]. Limnology,2011,12(2):187-192.
    [29]Bojan T, Fessehaye W Z, Geoffrey C M, et al. Parameters affecting the growth and hydrogen production of the green alga Chlamydomonas reinhardtii[J]. International Journal of Hydrogen Energy,2011,36(13):7872-7876.
    [30]Wang X, Hao C B, Zhang F, et al. Inhibition of the growth of two blue-green algae species (Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbon dioxide[J]. Bioresource Technology,2011,102(10): 5742-5748.
    [31]Nutrents B A, Stevenson R, Bothwell L, et al. Algal Eeology Freshwater Benthie Ecosystems[M]. London:Aeademie Press Incorporated,1996,184-27.
    [32]王菁,陈家长,孟顺龙.环境因素对藻类生长竞争的影响[M].中国农学通报,2013,29(17):52-56.
    [33]West W, West G S. On the Periodicity of the Phytoplankton of some British Lakes[J]. Botanical Journal of the Linnean Society,1912,40(277):395-398.
    [34]Pearsall W H. Phytoplankton in the English Lakes:II. The Composition of the Phytoplankton in Relation to Dissolved Substances[J]. The Journal of Ecology, 1932,20(2):241-262.
    [35]Chandler D C, Weeks O B. Limnological Studies of Western Lake Erie:V. Relation of Limnological and Meteorological Conditions to the Production of Phytoplankton in 1942[J]. Ecological Monographs,1945,15(4):435-457.
    [36]Gessner F. The Vertical Distribution of Phytoplankton and the Thermocline[J]. Ecology.1948,29(3):386-389.
    [37]Verduin J. Phytoplankton and Turbidity in Western Lake Erie[J]. Ecology,1954, 35(4):550-561.
    [38]Anderson G C, Comita G W, Engstrom H V. A Note on the Phytoplankton-Zooplankton Relationships in Two Lakes in Washington[J]. Ecology,1955,36(4):757-759.
    [39]Griffith R E. Analysis of Phytoplankton Yields in Relation to Certain Physical and Chemical Factors of Lake Michigan[J]. Ecology,1955, 36(4):543-545.
    [40]Davis C C. Evidence for the Eutrophication of Lake Erie from Phytoplankton Records[J]. Limnology and Oceanography,1969,14(3):275-283.
    [41]Hamilton D H. Nutrient Limitation of Summer Phytoplankton Growth in Cayuga Lake[J]. Limnology and Oceanography,1969,14(4):579-590.
    [42]Vivienne C. Seasonal variation in phytoplankton from lake rotorua and other inland waters, New Zealand,1966-67 [J]. New Zealand Journal of Marine and Freshwater Research,1969,3(1):98-102.
    [43]Koenig E R, Tew R W, Deacon J E. Phytoplankton Successions and Lake Dynamics in Las Vegas Bay, Lake Mead, Nevada[J]. Journal of the Arizona Academy of Science,1972,7(3):109-111.
    [44]J. null, R. null. Phytoplankton and their Dynamics in Oligotrophic and Eutrophic Lakes[J]. Annual Review of Ecology and Systematics,1978,9:475-478.
    [45]Lewis W M. Dynamics and Succession of the Phytoplankton in a Tropical Lake: Lake Lanao, Philippines [J]. Journal of Ecology,1978,66(3):849-880.
    [46]Melack J M. Temporal Variability of Phytoplankton in Tropical Lakes[J]. Oecologia,1979,44(1):1-7
    [47]PAUL J G. The eutrophication of Cayuga Lake:a historical analysis of the phytoplankton's response to phosphate detergents [J]. Freshwater Biology,1982, 12(2):149-153.
    [48]John M M, Peter K, Thomas R F. Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake[J]. Oecologia,1982,52(3):321-326.
    [49]Sweet J. Phytoplankton composition and distributions in Waldo Lake, Oregon[J]. Lake and Reservoir Management,2000,16(1):63-70.
    [50]Wojciechowska W, Solis M. Small scale distribution and composition of phytoplankton in a shallow lake[J]. Ekologia Polska-Polish Journal of Ecology, 2001,49:89-90.
    [51]Judith, Rosaluz. Phytoplankton composition and biomass in a shallow monomictic tropical lake[J]. Hydrobiologia,2002,467(1/3):91-98.
    [52]Kilinc, Sabri. The phytoplankton community of Yenicaga Lake (Bolu, Turkey)[J]. Nova Hedwigia,2003,76(3):429-442.
    [53]Susana R, Ellen V, Ronald G, et al. A multivariate analysis of phytoplankton and food web changes in a shallow biomanipulated lake[J]. The Plant Journal,2003, 36(3):683-685.
    [54]Matsuzaki M, Mucci J L N. Phytoplankton community in a recreational fishing lake, Brazil[J]. Revista de Saude Publica,2004,38(5):679-683.
    [55]Wei Y, Yu M. Phytoplanktonic desmids community in Donghu Lake, Wuhan, China[J]. Chinese Journal of Oceanology and Limnology,2005,23(1):91-98.
    [56]Kirillova T, Kirillov V, Lovtskaya O. The Dynamics of Phytoplankton Pigment Characteristics of Lake Teletskoye[J]. Hydrobiologia,2006,568:45-50.
    [57]Elliott J A, Persson I, Thackeray S J, et al. Phytoplankton modelling of Lake Erken, Sweden by linking the models PROBE and PROTECH[J]. Ecological Modelling,2007,202(3):421-426
    [58]Ryan N J, Mitrovic S M, Bowling L C. Temporal and spatial variability in the phytoplankton community of Myall Lakes, Australia, and influences of salinity[J]. Hydrobiologia,2008,14(1):69-86.
    [59]Marija T, Emin T, Zlatica T. Phytoplankton Dynamics in the Vrana Lake (Cres Island)[J]. Ribarstvo,2009,67(3):101-105.
    [60]Clement N, Stephen M B. Temporal distribution of phytoplankton in Lake Nyamusingiri in the Albertine Rift Valley, Uganda[J]. African Journal of Ecology,2010,48(4):865-868.
    [61]Ngupula G W. ASE Mbonde2 and CN Ezekiel.Spatial and temporal patterns of phytoplankton abundance and composition in three ecological zones in the Tanzanian waters of Lake Victoria[J]. African Journal of Aquatic Science 2011, 36(2):197-206.
    [62]胡雪芹,王强,马明睿等.淀山湖叶绿素a分布特征及其与浮游植物密度相关性研究[J].华东师范大学学报(自然科学版),2012,4:1.
    [63]Muscio C M. Seasonal Succession of Phytoplankton in Lake Prince, Suffolk, Virginia:Preliminary Report [J]. Journal of Phycology,2000,36(3):50-51.
    [64]Wu J. The succession of phytoplankton and the ecological effects of eutrophication control measures in Hangzhou West Lake[J]. China Environmental Science-Chinese Edition, 2001,21:540-544.
    [65]Tahir A, Olcay O. Comparison of seasonal variation of phytoplankton and chlorophyll-a values of Abant and Yedigoller Lakes[J]. Journal of Fisheries and Aquatic Sciences,2002,19(3):381-383.
    [66]Ahmet K C, Bulent S. Seasonal Distribution of Phytoplankton in Orduzu Dam Lake (Malatya, Turkey)[J]. Turkish Journal of Botany,2004,28(3).
    [67]Laugaste R, Haberman J. Seasonality of zoo-and phytoplankton in Lake Peipsi (Estonia) as a function of water temperature [J]. Proceedings of the Estonian Academy of Sciences, Biology, Ecology,2005,54(1):18-19.
    [68]Mohamed Z N, Nihal G, Shams E D. Seasonal Dynamics of Phytoplankton Community in the Bitter Lakes and Temsah Lake[J]. Egyptian Journal of Aquatic Research,2006,32(1):198-201.
    [69]Soylu E N, Maraslioglu F, Gonulol A. Phytoplankton seasonality of a shallow turbid lake[J]. Algological Studies,2007,123:95-110.
    [70]Ayalew W. Seasonal variation of phytoplankton biomass in Lake Tana (Ethiopia)[J]. Tropical Freshwater Biology,2008,17(2):877-884.
    [71]Motylkova I V, Konovalova N V. Seasonal dynamics of phytoplankton in a lagoon-type lake Izmenchivoye (Southeast Sakhalin)[J]. Russian Journal of Marine Biology,2010,38(2):86-92.
    [72]Popovskaya G I. Ecological monitoring of phytoplankton in Lake Baikal[J]. Aquatic Ecosystem Health & Management,2000,3(2):215-217.
    [73]Effler, S W, Brooks C M M, Driscoll C T. Changes in deposition of phytoplankton constituents in a Ca2+ polluted lake[J]. Environmental Science & Technology,2001,35(15):3082-3084.
    [74]Nystrom B. Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva[J]. Water Research,2002,36(8):2020-2021.
    [75]Weyhenmeyer G A, Adrian R, Gaedke U. Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation[J]. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen, 2003,28(3):1436-1439.
    [76]Doe S G, Rippey B. Classifying and measuring the ecological status of lakes using phytoplankton[J]. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen,2003,28(3):1452-1455.
    [77]Michael R T, Kim J R, Robert M S. Sensitivity of Phytoplankton to Copper in Lake Superior[J]. Journal of Great Lakes Research,2004,30(1):245-255.
    [78]Lessmann D, Hofmann H, Beulker C. Effects of winter temperature on phytoplankton development in acidic mining lakes[J]. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen,2006,29(3): 1423-1426.
    [79]Salmaso N, Morabito G, Buzzi F. Phytoplankton as an Indicator of the Water Quality of the Deep Lakes South of the Alps[J]. Hydrobiologia,2006,563: 167-188.
    [80]Shigeko K, Syuhei B, Toru Y, et al. Preliminary report on evaluating the effects of agricultural drainage on phytoplankton growth in Lake Biwa[J]. Japanese Journal of Limnology (Rikusuigaku Zasshi),2007,68(3):403-413.
    [81]Ptacnik R, Lepisto L, Willen P, et al. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe [J]. Aquatic Ecology,2008, 42(2):227-230.
    [82]Sharov A M. Phytoplankton as an indicator in estimating long-term changes in the water quality of large lakes[J]. Water Resources,2008,35(6):228-670.
    [83]Redden A M, Rukminasari N. Effects of increases in salinity on phytoplankton in the Broadwater of the Myall Lakes, NSW, Australia[J]. Hydrobiologia,2008, 14(1):87-97.
    [84]Piehler M, Dyble J, Moisander P, et al. Interactions between nitrogen dynamics and the phytoplankton community in Lake George, Florida, USA[J]. Lake and Reservoir Management,2009,1:1-14.
    [85]Nowrouzi S, Valavi H. Effects of Environmental Factors on Phytoplankton Abundance and Diversity in Kaftar Lake[J]. Journal of Fisheries and Aquatic Science,2011,6(2):130-135.
    [86]Vincent G, Lucie B, Orlane A, et al. Risk of herbicide mixtures as a key parameter to explain phytoplankton fluctuation in a great lake:the case of Lake Geneva, Switzerland[J]. Ecotoxicology,2012,21(8):2306-2309.
    [87]Rakocevic J. Summer aspect of phytoplankton communities in some Montenegrin lakes:are there changes after more than two decades[J]. Archives of Biological Sciences,2012,64(2):745-755.
    [88]Andrei G, Ramesh D. Understanding the mechanisms of blooming of phytoplankton in Lake Shira, a saline lake in Siberia (the Republic of Khakasia)[J]. Journal of Physics A:Mathematical and General,2002,36(2): 333-340.
    [89]Trifonova I S, Pavlova O A. Assessment of the trophic state of Lake Ladoga Tributaries and the Neva River by phytoplankton[J]. Water Resources,2004, 31(6):732-741.
    [90]Tekanova Y V, Timakova T M. Assessment of the Current Trophic State of Lake Onega by Primary Production of Phytoplankton[J]. Hydrobiological Journal, 2007,43(5):87-9.
    [91]Dean A P, Martin M C, Sigee D C. Resolution of codominant phytoplankton species in a eutrophic lake using synchrotron-based Fourier transform infrared spectroscopy[J]. Phycologia,2006,46(2):151-159.
    [92]Figueredo C C, Giani A. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil):Conditions favoring a persistent bloom of Cylindrospermopsis raciborskii[J]. Limnologica,2009,39(4):264-272.
    [93]Jansson M, Bergstrom A K, Drakare S, et al. Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden[J]. Freshwater Biology,2001,48(5):653-666.
    [94]Maberly S C, King L, Dent M M, et al. Nutrient limitation of phytoplankton and periphyton growth in upland lakes[J]. Freshwater Biology,2002,47(11): 2136-2138.
    [95]Carina P, Wilhelm G. Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient[J]. Journal of Plankton Research,2004,26(9):1005-1007.
    [96]Yasuhiro S, Toshiya K, Takeshi S, et al. Nutrient limitation of the primary production of phytoplankton in Lake Baikal[J]. Limnology,2006,7(3):225-228.
    [97]Beamud S G, Diaz M M, Pedrozo F L. Nutrient limitation of phytoplankton in a naturally acidic lake (Lake Caviahue, Argentina)[J]. Limnology,2010,11(2): 103-105.
    [98]Xu H, Paerl H W, Qin B Q, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China[J]. Limnology and Oceanography,2010:55(1),2010,420-432.
    [99]Geoff P, Anne L S, Birger S, et al. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive[J]. Hydrobiologia,2013, 704(1):75-81.
    [100]Maiko K, Yutaka H, Hisako O. Phosphorus and nitrogen limitation of phytoplankton growth in eutrophic Lake Inba, Japan[J]. Limnology,2013, 14(1):51-58.
    [101]Rivera R C, Solano M D, Zapata A A, et al. Phytoplankton diversity in a tropical high mountain lake[J]. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen,2005,29(1):18-38.
    [102]Maria L L, Beatrix E B. Patterns in taxonomic and functional diversity of lake phytoplankton[J]. Freshwater Biology,2010,55(6):1349-1350.
    [103]Mitrofanova E Y. Diversity of centric diatoms in the phytoplankton of a deep oligotrophic lake as a factor and indicator of the stability of its ecosystem:The example of Lake Teletskoye, Altai Mountains, Russia[J]. Russian Journal of Ecology,2011,42(3).
    [104]Irina I, Luz A, Roberto E, et al. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states[J]. Hydrobiologia,2012,698(1):203-210.
    [105]Gabor B, Bela T, Balazs A L, et al. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems[J]. Hydrobiologia,2012,698(1):251-262.
    [106]Filip S, Melita M, Dubravka. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations[J]. Hydrobiologia, 2013,209(1):143-150.
    [107]王扬才,陆开宏.蓝藻水华的危害及治理动态[J].水产学杂志,2004,17(1):90-93.
    [108]王桂芹,张东鸣,陈勇等.水体富营养化的原因、危害及防治对策[J].吉林农业大学学报,2000,22:116-118.
    [109]王丽卿,施荣,季高华等.淀山湖浮游植物群落特征及其演替规律[J].生物多样性,2011,19(1):48-56.
    [110]Berman T, Yacobi Y Z, Polingher U. Lake Kinneret phytoplankton:stability and variability during twenty years(1970-1989)[J]. Aquatic Sciences,1992, 54(2):104-127.
    [111]Polli B, Simona M. Qualitative and quantitative aspects of the evolution of the planktonic populations in Lake Lugano [J]. Aquatic Sciences-Research Across Boundaries,1992,54:303-320.
    [112]孙栋,段登选,王志忠等.东平湖水质监测与评价[J].淡水渔业,2006,36(4):14
    [113]刘红彩,郭金峰,王俊鹏等.东平湖鱼类调查报告[J].山东畜牧,2008,9: 34-35.
    [114]刘庆春,石兰瑛,尹虎城等.浅谈东平湖旅游资源与气候舒适度[M].科技情报开发与经济,2008,18(31):221-222.
    [115]师吉华,王钦东,李秀启等.东平湖水生生态系统变迁及富营养化评价[J].长江大学学报(自然科学版),2011,8(4):242-243.
    [116]Dou S Z, Sun Z C, Cao Y, et al. Hydrobios and Control of Eutrophication in Dongping Lake, Shandong Province[J]. Acta geologica sinica,2002,74: 329-333.
    [117]Guo P Y, Lin Y Z, Li Y X. Study on phytoplankton and evolution of water quality in Dongping Lake[J]. Transactions of Oceanology and Limnology,1997, 4:37-42.
    [118]王志忠,巩俊霞,陈述江等.东平湖水域浮游植物群落组成与生物量研究[J].长江大学学报(自然科学版),2011,8(5):235-240.
    [119]冷春梅,巩俊霞,王亚楠等.东平湖2007年浮游植物调查及分析[J].山东农业大学学报(自然科学版),2009,40(4):513-516.
    [120]Tian C, Pei H Y, Hu W R, et al. Assessment of trophic status for Dongping Lake using comprehensive trophic state index and diversity indices[J]. Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on:1-4.
    [121]Zhang J L, Zheng B H, Liu L S, Wang L P, et al. Seasonal variation of phytoplankton in the DaNing River and its relationships with environmental factors after impounding of the Three Gorges Reservoir:a four-year study [J]. Procedia Environmental Sciences,2010,2:1479-1490.
    [122]Tian C, Lu X T, Pei H Y, et al. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China[J]. Environmental Monitoring and Assessment,2013,185(3):2627-2645.
    [123]Feng S, Li L X, Duan Z G, et al. Assessing the impacts of South-to-North Water Transfer Project with decision support systems[J]. Decision Support Systems, 2007,42(4):253-261.
    [124]王丰川,刘加珍,陈永金.东平湖湿地不同土地利用方式草本植物特征分析[J].安徽师范大学学报,36(2):147-152.
    [125]邢友华,董洁,李晓晨,姜瑞雪.东平湖表层沉积物中磷的吸附容量及潜在释放风险分析[J].农业环境科学学报,2010,29(4):746-751.
    [126]何德进,邢友华,姜瑞雪,程丽.东平湖水体中氮磷的分布特征及其富营养化评价[J].环境科学与技术,2010,33(8):45-49.
    [127]宋洪宁,杜秉海,张明岩,付伟章,路晓萌,李正华,丁延芹.环境因素对东平湖沉积物细菌群落结构的影响[J].微生物学报,50(8):1065-1071.
    [128]胡方凡.袁河浮游藻类群落结构及其与环境因子关系的研究[D].南昌大学,2011:5-10.
    [129]王淑芳.水体富营养化及防治[J].环境科学与管理,2005,30(6):63.
    [130]Sommer U, & Gliwicz Z M. The PEG-model of seasonal succession of planktonic events in fresh lake.Hydrobiologia,1986,106:433-471.
    [131]Luoma S N, & Bryan B W. A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the Polychaere Nereis diversicolor[J]. Estuarine, Coastal and Shelf Science,1982,15:95-108.
    [132]Mao W B, Pang Q J, & Fu L S. Effect and Measures of Soil an Water Loss on Water Quality of Dongping Lake[C].12 ISCO Conference Beijing,2002.
    [133]陈茜.浙江省主要常见淡水藻类图集(饮用水水源)[M].北京:中国环境科学出版社,2010.
    [134]Leps J, Smilauer P. Multivariate Analysis of Ecological Data using CANOCO[M]. Cambridge University Press, Cambridge,2003:50-51.
    [135]胡正峰,张磊,邱勤,韩光,李兴琼.温度条件对澎溪河藻类生长的影响[J].江苏农业科学,2010(2):384-386.
    [136]Zhang Z Y, Ni W, Luo Y, et al. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China[J]. Physics and Chemistry of the Earth,2011,36(9):360-365.
    [137]Chen J, Zhang D W, Xie P, Wang Q, et al. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms[J]. Science of the Total Environmen,2009,407,3317-3322.
    [138]Lin S, Shen J Z, Liu Y, et al. Molecular evaluation on the distribution, diversity, and toxicity of Microcystis (Cyanobacteria) species from Lake Ulungur-a mesotrophic brackish desert lake in Xinjiang, China[J]. Environmental Monitoring and Assessmen,2011,175:139-150.
    [139]Liu W C, Chen W B, Kimura, N. Impact of phosphorus load reduction on water quality in a stratified reservoir-eutrophication modeling study[J]. Environmental Monitoring and Assessment,2009,159:393-406.
    [140]张青田,王新华,林超,等.不同氮源对铜绿微囊藻增殖的影响[J].水生态学杂志,2011(4):115-120.
    [141]Zhang H, Yu Z L, Huang Q, et al. Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa[J]. Limnologica,2011,41:70-77.
    [142]Wehr, J. D., & Descy, J. P.. Use of phytoplankton in large river management[J]. Journal of Phycology,1998,34:741-749.
    [143]Komarkova, J. Fish stock as a variable modifying trophic pattern of phytoplankton[J]. Hydrobiologia,1998,369:139-152.
    [144]Mulderij G, Nes E H V, Donk E V. Macrophyte-phytoplankton interactions:the relative importance of allelopathy versus other factors[J]. Ecological Modelling, 2007,204:85-92.
    [145]Tsuchida A, Hara Y, & Seki H. Spring bloom in a hypereutrophic lake, Lake Kasumigaura, Japan-V:factors controlling natural population of phytoplankters[J]. Water Research,1984,18,877-883.
    [146]Masaki A, & Seki H. Spring bloom in a hypereutrophic lake, Lake Kasumigaura, Japan-IV:Inductive factors for phytoplankton bloom[J]. Water Research,1984, 18:869-876.
    [147]Cai L, Zhu G, Zhu M, et al. Effects of temperature and nutrients on phytoplankton biomass during bloom seasons in Taihu Lake[J]. Water Science and Engineering,2012,5(4):361-374.
    [148]Perdrozo F L, Temporetti P F, Beamud G, et al. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research,2008,178:205-212.
    [149]Cai Q M, & Gao X Y. Dynamic variations of water quality in Taihu Lake and multivariate analysis of its influential factors[J]. Chinese Geographical Science, 1997,7:72-82.
    [150]Hong S S, Bang S W, Kim Y O, et al. Effects of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang reservoir, Korea[J]. Journal of Freshwater Ecology,2002,17:507-520.
    [151]Pennock J R. Temporal and spatial variability in phytoplankton ammonium and nitrate uptake in the Delaware Estuary[J]. Estuarine, Coastal and Shelf Science, 1987,24:841-857.
    [152]Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton[J]. Marine Ecology Progress Series,1990,61:183-201.
    [153]Mengesha S, Dehairs F, Elskens M, et al. Phytoplankton Nitrogen Nutrition in the Western Indian Ocean:Ecophysiological Adaptations of Neritic and Oceanic Assemblages to Ammonium Supply [J]. Estuarine, Coastal and Shelf Science,1999,48,589-598.
    [154]Blankenship B K. Ammonia deposition raising concerns in bay watershed[J]. Chesapeake Bay Journal,1998,7:10.
    [155]Schindler D W. Evolution of phosphorus limitation in lakes[J]. Science,1977, 195:260-262.
    [156]Smith V H. Eutrophication of freshwater and coastal marine ecosystems:a global problem[J]. Environmental Science and Pollution Research,2003,10: 126-139.
    [157]Jennifer C, Mary O, & Alan D S. Phytoplankton response to light and internal phosphorus loading from sediment release[J]. Freshwater Biological,2008,53: 2530-2542.
    [158]Dodds W K, Smith V H, & Lohman K. Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams [J]. Canadian Journal of Fisheries and Aquatic,2002,59:865-874.
    [159]Berg J M, Tymoczko J L, & Stryer, L. Biochemistry,5edn[M]. New York:W. H. Freeman 2002:973.
    [160]Hecky R E, & Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments:a review of recent evidence on the effects of enrichment. Limnology and Oceanography,1988,33:796-822.
    [161]Arhonditsis G, Brett M T, & Frodge J. Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA[J]. Environmental Management,2003,31:603-618.
    [162]Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie, 1966,62:1-28.
    [163]Redfield B C. The biology control of chemical factors in the environment. American Scientist,1958,46:205-221.
    [164]Tian C, Lu X, Pei H, Hu W, Xie J,2012. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China[J]. Environmental Monitoring and Assessment.2013,185(3):2627-2645..
    [165]Sheng H, Zhan X Y, Guo H C. An Analysis of Weather Conditions Effecting on Outbreak of Cyanobacteria Bloom in Dianchi Lake. Proceedings of 13th World Lake Conference Volume 2[C]. China Agricultural University Press, Beijing. 2010:2179-2184.
    [166]Mischke U. Cyanobacteria associations in shallow polytrophic lakes:influence of environmental factors[J]. Acta Oecologica,2003,24:S11-S23.
    [167]Case M, Leca E E, Leitao S N, SantAnna E E, Schwamborn R, Antonio T M J.Plankton community as an indicator of water quality in tropical shrimp culture ponds[J]. Marine Pollution Bulletin,2008,56:1343-1352.
    [168]Lobner D, Piana P M T, Salous A K, et al. β-N-methylamino-L-alanine enhances neurotoxicity through multiple mechanisms [J]. Neurobiology of Disease,2007, 25:360-366.
    [169]Stewart I, Carmichael W W, Sadler R, et al. Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins[J]. Environmental Health,2009,8:52.
    [170]Chen J, Zhang D W, Xie P, et al. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms [J]. Science of the Total Environment,2009,407:3317-3322.
    [171]Gong Y, Ao H Y, Liu B B, et al. Effects of inorganic arsenic on growth and microcystin production of a Microcystis strain isolated from an algal bloom in Dianchi Lake, China[J]. Chinese Science Bulletin,2011,56(22):337-2342.
    [172]Dokulil M T, Teubner K. Cyanobacterial dominance in lakes[J]. Hydrobiologia, 2000,438:1-12.
    [173]Xu H, Paerl H W, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China[J]. Limnology and Oceanography,2010,55:420-432.
    [174]Wang Y, Chen F. Decomposition and phosphorus release from four different size fractions of Microcystis spp. taken from Lake Taihu, China[J]. Journal of Environmental Sciences,2008,20:891-896.
    [175]Wood S A, Selwood A I, Rueckert A,et al. First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand[J]. Toxicon,2007a,50:292-301.
    [176]Wood S A, Rasmussen J P, Holland R T, et al. First report of the cyanotoxin anatoxin-a from Aphanizomenon issatschenkoi (Cyanobacteria)[J]. Journal of Phycology,2007b,43:356-365.
    [177]Carmichael W W,1992. Cyanobacteria secondary metabolites-the cyanotoxins[J]. Journal of Applied Bacteriology,72:455-459.
    [178]ter-Braak, C. J. F., Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User's Guide:Software for Canonical Community Ordination (Version 4.5)[M]. New York:Microcomputer Power, Ithaca,2002.
    [179]Smith V H, Tilman G D, Nekola J C. Eutrophication:impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems [J]. Environmental Pollution,1999,100(1-3):179-196.
    [180]Vilicic D. Phytoplankton population density and volume as indicators of eutrophication in the eastern part of the Adriatic Sea[M]. Hydrobiologia,1989, 174:117-132.
    [181]Heisler J, Glibert P, Burkholder J. Eutrophication and harmful algal blooms:A scientific consensus[J]. Harmful Algae,2008,8:3-13.
    [182]An W C, Li X M. Phosphate adsorption characteristics at the sediment-water interface and phosphorus fractions in Dongping Lake, China, and its main inflow rivers[J]. Environment Monitoring and Assessment,2009,148:173-184.
    [183]Zhang X, Xie P, Chen F, Li S, Qin J. Driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status[J]. Freshwater Biology,2007,52:1463-1475.
    [184]Heinonen P. On the annual variation of phytoplankton biomass in Finnish inland waters[J]. Hydrobiologia,1982,86:29-31.
    [185]Wang X, Qin B, Gao G, Wang Y, Tang X, Otten O. Phytoplankton community from Lake Taihu, China, has dissimilar responses to inorganic and organic nutrients[J]. Journal of Environmental Sciences,2010,22(10):1491-1499.
    [186]Shen Y, Chen D. Effect of different light cycle on growth of Microcystis aeruginosa and Microcystis viridis[J]. Journal of Lake Sciences,2004,16(3): 285-288.
    [187]Torremorell A, Bustigorry J, Escaray R, Zagarese H E. Seasonal dynamics of a large, shallow lake, laguna Chascomus:The role of light limitation and other physical variables[J]. Limnologica,2007,37:100-108.
    [188]Cai Q M, Gao X Y. Dynamic variations of water quality in Taihu Lake and multivariate analysis of its influential factors[J]. Chinese Geographical Science, 1997,7:72-82.
    [189]Wang Y, Huang C, Zhang W, Chen C. Stepwise regression statistical analysis between water bloom algae and related environmental factors [C]. Conference on water pollution control and ecological restoration technology of China, 2008.
    [190]Wang X, Lu Y, He G, Han J, Wang T. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake:A 5-year study[J]. Journal of Environmental Sciences,2007,19:920-927.
    [191]Alam M G M, Jahan N, Thalib L, Wei B, Maekawa T. Effects of environmental factors on the seasonally change of phytoplankton populations in a closed freshwater pond[J]. Environment International,2001,27:363-371.
    [192]Tsuchida A, Hara Y, Seki H. Spring bloom in a hypereutrophic lake,-Lake Kasumigaura, Japan-V:Factors controlling natural population of phytoplankters[J]. Water Research,1984,18:877-883.
    [193]Barbiero R P, Kann J. The importance of benthic recruitment to the population development of Aphanizomenon flos-aquae and internal loading in a shallow lake[J]. Journal of Plankton Research,1994,16:1591-1588.
    [194]Hansson L A. Algal recruitment from lake sediments in relation to grazing, sinking, and dominance patterns in the phytoplankton community [J]. Limnology and Oceanography,1996,41(6):1312-1323.
    [195]Jin X C, Chu Z S, Yang B, Zheng S F, Pang Y, Zeng Q R. Effects of temperature on growth, photosynthesis and buoyancy regulation of the cyanobacteria Microcystis flos-aquae and Planktothrix mougeotii[J]. Acta Scientiae Circumstantiae,2008(1):50-55.
    [196]Reynolds C S. Growth and buoyancy of Microcystis aeruginosa Kiitz. emend. Elenkin in a shallow eutrophic lake[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences,1973,184:29-50.
    [197]Kruger G H J, Eloff J N. The effect of temperature on specific growth rate and activation energy of Microcystis and Synechococcus isolates relevant to the onset of natural blooms[J]. Journal of the Limnological Society of South Africa, 1978,4:9-20.
    [198]Tian C, Pei H, Hu W, Xie J. Variation of cyanobacteria with different environmental conditions in Nansi Lake, China[J]. Journal of Environmental Sciences,2012,24(8):1394-1402.
    [199]Gilbride K A, Frigon D, Cesnik A, Gawat J, Fulthorpe R R. Effect of chemical and physical parameters on a pulp mill biotreatment bacterial community [J]. Water Research,2006,40:775-787.
    [200]周云龙,于明.水华的发生,危害和防治[J].生物学通报,2004,06:11-14.
    [201]孔繁翔,马荣华,高俊峰,吴晓东.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.
    [202]李英,蒋固政.水华成因分析与防治措施研究进展[J].环境科学与工程,2009,3(12):15-20.
    [203]Feng S, Li L X, Duan Z G,et al. Assessing the impacts of South-to-North Water Transfer Project with decision support systems[J]. Decision Support Systems, 2007,42(4):253-261
    [204]Gli wicz ZM. Predictability of seasonal and diel events in tropical and temperate lakes and reservoirs. In:Tundisi JG, Straskraba M (eds) Theoretical reservoir ecology and its applications[M]. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, Leiden,1999,99-122.
    [205]Leita-o M, Le'glize L. Long-term variations of epilimnetic phytoplankton in an artificial reservoir during a 10-year survey[J]. Hydrobiologia,2000,424:39-49.
    [206]Watts CJ. Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Australian reservoirs[J]. Hydrobiologia,2000,431:27-39.
    [207]Zebek E. Seasonal changes in net phytoplankton in two lakes with differing morphometry and trophic status (northeast Poland)[J]. Arch. Pol. Fish.,2009, 17:267-278.
    [208]Campbell CE, Knoechel R, Copeman D. Evaluation of factors related to increased zooplankton biomass and altered species composition following impoundment of a Newfoundland reservoir[J]. Can J Fish Aquat Sci,1998,55: 230-238.
    [209]Reynolds CS. Phytoplankton assemblages in reservoirs. In:Tundisi JG, Stras kraba M (eds) Theoretical reservoir ecology and its applications[M]. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, Leiden,1999,439-456.
    [210]Negro A I, De Hoyos C, Vega J C. Phytoplankton structure and dynamics in Lake Sanabria and Valpara so reservoir (NW Spain)[J]. Hydrobiologia,2000, 424:25-37.
    [211]Lampert W, Sommer U. The ecology of inland waters [M]. Warszawa,1996, 391.
    [212]Sommer U, Gliwicz Z M, Lampert W, Duncan A. The PEG model of seasonal succession of planktonicevents in fresh waters [J]. Arch. Hydrobiol.,1986,106: 433-471.
    [213]Reynolds C S. Scales of disturbance and their role in plankton ecology [J]. Hydrobiologia,1993,249:157-171.
    [214]Harris GP, Baxter G. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir [J]. Fresh Biol,1996,35: 545-560.
    [215]Walz N, Welker M. Plankton development in a rapidly flushed lake in the River Spree system (Neuendorfer See, Northeast Germany) [J]. J Plankton Res,1998, 20:2071-2087.
    [216]No-ges T, No-ges P, Laugaste R Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake[J]. Hydrobiologia,2003,506(509):257-263.
    [217]Huisman J, Sharples J, Stroom J M, Visser P M, Kardinaal W E A, Verspagen J M H, Sommeijer B. Changes in turbulent mixing shift competition for light between phytoplankton species[J]. Ecology,2004,85:2960-2970.
    [218]Leita-o M, Leglize L. Long-term variations of epilimnetic phytoplankton in an artificial reservoir during a 10-year survey[J]. Hydrobiologia,2000,424:39-49.
    [219]Koma rkova J, Koma rek O, Hejzlar J. Evaluation of the long term monitoring of phytoplankton assemblages in a canyonshape reservoir using multivariate statistical methods[J]. Hydrobiologia,2003,504:143-157.
    [220]Finger D, Bossard P, Schmid M, Jaun L, Muller B, Steiner D, Schaffer E, Zeh M, Wuest A. Effect of alpine hydropower operation on primary production in a downstream lake[J]. Aquat Sci,2007,69:240-256.
    [221]Borges P A F, Train S, Rodriguez L C. Spatial and temporal variation in phytoplankton in two subtropical Brazilian reservoirs[J]. Hydrobiologia,2008, 607:63-74.
    [222]Naselli-Flores L. Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors[J]. Hydrobiologia,2000,424:1-11.
    [223]Naselli-Flores L, Barone R. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality [J]. Hydrobiologia,2005,548:85-99.
    [224]Reynolds C S. Phytoplankton periodicity:the interactions of form, function and environmental variability [J]. Freshwat. Biol.,1984,14:111-142.
    [225]Reynolds C S, Huszar V L M, Kruk C, Naselli-Flores L, Melo S. Towards a functional classification of the freshwater phytoplankton[J]. J. Plankton. Res., 2002,24:417-428.
    [226]吴忠兴,虞功亮,施军琼,李仁辉.我国淡水水华蓝藻-束丝藻属新记录种[J].水生生物学报,2009,33(6):1140-1144.
    [227]Blomqvist P. Phytoplankton responses to biomanipulated grazing pressure and nutrient additions-enclosure studies in unlimed and limed Lake Njupfatet, central Sweden[J]. Environmental Pollution,2001,111(2):333-348.
    [228]Qin X B, Huang P Y, Liu M H, Ma C X, Yu H X. Phytoplankton assemblage classification in Anbang river wetland in summer[J]. South China Fisheries Science,2007,3(6):1-7.
    [229]Tian C, Pei H Y, Hu W R, Xie J. Variation of cyanobacteria with different environmental conditions in Nansi Lake, China[J]. Journal of Environmental Science,2012,24:1394-1402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700