用户名: 密码: 验证码:
弹道中段目标逆合成孔径雷达成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹道中段目标作高速轨道运动且目标微动,运动形式复杂多变,平动补偿后通常为非匀速旋转目标,传统成像方法很难得到聚焦良好的ISAR图像。论文以宽带雷达弹道中段目标的成像与识别为背景,在分析中段目标的ISAR回波特征的基础上,重点研究了中段目标ISAR成像技术。论文主要研究内容概括如下:
     第一章阐述了论文的研究背景及意义,概述了ISAR成像系统的发展现状,归纳了目前ISAR成像技术的研究现状,介绍了论文的研究工作。
     第二章对弹道中段目标的ISAR回波特性进行了系统探讨。首先分析了弹道中段目标的弹道特性、宽带雷达特性和自旋、进动、翻滚等几种典型的弹道目标微动形式,以此为基础建立了弹道微动目标的LFM雷达回波模型;然后从微动目标ISAR成像系统的脉冲响应和微动产生的多谱勒效应两个角度分析了弹道目标微动对ISAR像的影响:最后利用静态电磁散射数据模拟生成的中段目标动态回波数据,从仿真试验角度分析验证了微动对ISAR像的影响。
     第三章研究了基于GRT-Clean方法的中段目标ISAR成像技术。根据成像积累时间内,匀加速转动目标的回波在方位向上可表示为多分量的LMF信号,提出了基于GRT-Clean的匀加速转动目标ISAR成像方法,利用GRT-Clean技术估计得到目标回波各分量的时频参数,从而消除目标平动补偿后匀加速旋转对成像的影响,获得聚焦的目标ISAR图像。该方法误差稳定,有效解决了中段目标ISAR成像中回波信号计算量与估计精准度的结合问题,具有工程应用价值。仿真试验结果表明了所提方法的有效性。
     第四章研究了基于波数域方法的中段目标ISAR成像技术。根据成像积累时间内,非匀速旋转目标的回波在波数谱域为二维傅里叶空间的非均匀采样,提出了基于NUFFT的二维平面非匀速旋转目标ISAR成像方法,利用NUFFT变换重构得到目标二维成像平面的均匀波数谱,获得聚焦的目标ISAR图像。该方法不依赖于模型的假设和参数的估计,具有较强的适应性。仿真试验结果表明了所提方法的有效性。
     第五章研究了基于稀疏信号处理的中段目标ISAR成像技术。针对中段目标自旋、进动较快,现有雷达脉冲重复频率不够,导致目标回波方位向采样稀疏的问题,提出了基于稀疏信号处理的中段复杂运动目标ISAR成像方法。该方法根据中段目标的雷达回波模型,结合稀疏信号理论,推导得到中段目标回波信号的稀疏表示,然后通过稀疏信号处理方法,获得聚焦的ISAR图像。仿真数据试验验证了所提方法的有效性。
     第六章研究了基于EMD和HHT的瞬时频率ISAR成像技术。运用经验模态分解(EMD)理论和希尔伯特—黄(HHT)理论,建立了将HHT谱应用于时频成像的模型。进行了基于EMD和HHT方法的ISAR成像仿真,以仿真结果为依据,分析HHT方法的特点和限制条件。为了解决复杂目标成像时的“重影”和放射状模糊的问题,根据EMD的频率分解特性,滤除了回波信号中的快变化分量(高频部分),利用慢变化分量(低频部分)成像,得到了相对清晰的成像结果。
     第七章总结了论文的研究成果,指出需要进—步研究的问题。
For ballistic mid-course targets, in addition to highspeed orbital motion, the target undergoes micro-motion dynamics, such as spin, precession and tumbling. The micro-motions induce modulations on the echoes that generate sidebands about the target's Doppler frequency shift, which made the ISAR imaging be more complex. With the research background of target imaging and recognition for the wideband radar, this dissertation researches inverse synthesis aperture radar (ISAR) imaging for ballistic mid-course targets based on the mid-course targets micro-motion modulation effects analysis of the wideband radar echoes.
     Firstly, the research background is introduced, and the development of inverse synthesis aperture radar system for ballistic missile defense system is reviewed. Then technology development of ISAR imaging is summarized, and problems of ISAR imaging for targets with complex motion are analyzed. At last, the main contents of the dissertation are introduced.
     In chapter2, several typical micro-motion forms for mid-course targets are analyzed to get ISAR imaging model of micro-motion dynamics. According to the complex motion of mid-course targets, the wideband radar echo model of ballistic mid-course targets after dechirping is firstly built. Then, the influence of micro-motion on ISAR imaging based on the established imaging model was presented. Computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model is realized. Finally, the simulated echo is used for ISAR imaging, and the echo model is verified by the imaging result.
     In chapter3, ISAR imaging for mid-course targets with uniformly accelerative rotation is researched. In ISAR, after rang compression and envelope alignment, the target can be equivalent to turntable imaging target. The motion of ballistic targets is very complex, after translational motion compensation, these targets cannot approximate to uniformly rotating targets, which means that traditional range-Doppler method can hardly achieve the desired ISAR imaging quality. To solve the problem, a new ISAR imaging algorithm based on the GRT and Clean method are proposed. Experiments based on simulation datas show the validity of the algorithm.
     In chapter4, ISAR imaging for mid-course targets with non-uniform rotation is investigated. Doppler frequency is time-varying due to non-uniform rotation, which results in ISAR images degradation. New ISAR imaging algorithm is proposed for the nonumform rotating target in2-D plane. The basic idea is to reconstruct the uniform sampling wavenumber spectrum of nonuniform rotating targets via the NUFFT transform. It is important to note that the proposed method does not assume any particular target motion model and has no parameter estimation. So it is more adaptable for realistic motion of targets. The result of simulated data shows the effectiveness of the method.
     In chapter5, an imaging method for mid-course targets within a small aspect sector is presented with the application of sparse signal processing. This method can form. ISAR images with higher resolution from compensated incomplete measured data, improve the clarity of the images and make feature structure much more clear, which are helpful for target recognition. The simulation results indicate that this method can provide clear ISAR images with high contrast under complex motion case.
     In chapter6, ISAR imaging for mid-course targets based on instantaneous frequency method is investigated. Firstly the performances of HHT transform and Hilbert/Huang time-frequency distributions in instantaneous frequency extraction are analyzed. Then new ISAR imaging algorithm based on EMD and HHT is proposed for time-frequency imaging of mid-course targets, and its performance is discussed afterwards. Experiments based on simulation datas show the validity of the algorithm.
     Chapter7is the summary of the dissertation. It also discusses the future work to be further researched.
引文
[1]刘绍球,高淑霞等,空间对抗发展态势研究,系统工程与电子技术,1995,12:17-27.
    [2]今日传奇之长空利剑,纪实频道.2007年09月.
    [3]张健志,何玉彬,争夺制天权—太空的探研、开发与争夺,北京:解放军出版社,2007.
    [4]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].国防科学技术大学博士学位论文,湖南长沙,2004.03.
    [5]http://www.newssc.org.
    [6]http://gb.cri.cn.
    [7]杨华,陈昌明,高桂清,马东辉.美国反导系统的发展历史及技术现状[J].飞航导弹,2001,(7):11-15.
    [8]Lemnios William Z, Grometstein Alan A. Overview of the Lincoln laboratory ballistic missile defense program [J]. Lincoln Laboratory Journal,2002,13(l):9-32.
    [9]张光义等.空间探测相控阵雷达[M].北京:科学出版社,2001年.
    [10]Camp W. W., Mayhan J. T. and O'Donnell R. M., Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites, Lincoln Laboratory Journal, 2000,12(2):267-280.
    [11]Hemler P. F., Radar imaging understanding for complex space object, SPIE, 1381,55-65.
    [12]Cheryl L. R., Neural networks for exo-atmospheric target discrimination, SPIE,1998,3371:119-128.
    [13]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [14]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [15]Donald R. High resolution radar [M]. Artech House,1987.
    [16]Brown W M. Synthetic aperture radar [J]. IEEE Transcations on Aerospace and Electronic Systems.1967,3(2):217-229.
    [17]Wiley C A. Synthetic aperture radar [J]. IEEE Transcations on Aerospace and Electronic Systems.1985,21(3):440-443.
    [18]张澄波.综合孔径雷达[M].北京:科学出版社,1989.
    [19]张直中.微波成像技术[M].北京:科学出版社,1990.
    [20]Gombert G, Beckner F. High resolution 2-D ISAR image collection and processing[C]. Dayton, OH,USA,1994:371-377.
    [21]Lazarov A D, Minchev C N. ISAR image reconstruction technique with stepped frequency modulation and multiple receivers[C]. Washington, DC, United States,2005:1149-1153.
    [22]Soumekh M, Nugroho S, Jones S, Rysdyk R, et al. ISAR imaging of an airborne DC-9[C]. Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing. Minneapolis, MN, USA,1993:465-468.
    [23]Brown W M, Fredericks R J. Synthetic aperture radar imaging of rotating objects[J]. Proc. Of the 13th annual radar symposium.1967.
    [24]Dale A A, Adam K, Jack L W. Development in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems.1984,20(4):363-398.
    [25]Camp W W, Mayhan J T and O'Donnell R M. Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000,12(2):267-280.
    [26]Brown W M, Fredericks R J. Range-Doppler Imaging with Motion Through Resolution Cells[J]. IEEE Transactions on Aerospace and Electronic Systems.1969, 5(1):98-102.
    [27]Walker J L. Range Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems.1980,16(1):23-52.
    [28]Chen C C. Multi-frequency imaging of radar turntable data[J]. IEEE Transactions on Aerospace and Electronic Systems.1980,16(1):15-22.
    [29]Chen C C, Andrews H C. Target motioninduced Radar Imaging[J]. IEEE Transactions on Aerospace and Electronic Systems.1980,16(1):2-14.
    [30]Camp W W, Mayhan J T and O'Donnell R M. Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000,12(2):267-280.
    [31]Lemnios W Z, Grometstein A A. Overview of the Lincoln Laboratory Ballistic Missile Defense Program[J]. Lincoln Laboratory Journal.2002,9(32):9-32.
    [32]Camp W. W., Mayhan J. T. and O'Donnell R. M., Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites, Lincoln Laboratory Journal, 2000,12(2):267-280.
    [33]Camp W W, Mayhan J T and O'Donnell R M. Wideband radar for ballistic missile defense and Range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000,12(2):267-280.
    [34]李洲,尹照平,美国弹道导弹目标特性测量雷达的发展[J],飞行器测控学报,2001,20(1):42-49.
    [35]李斌.导弹防御系统雷达目标跟踪、成像及识别技术研究[D].长沙:国防科学技术大学,2008.
    [36]Goodman R A. High Fidelity Ground to Air Imaging Radar System[C]. IEEE National Radar Conference. March, Atlanta, GA, USA,1994:1578-1592.
    [37]Itoh T M, Donohoe G W. Motion Compensation for ISAR via Centroid Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems.1996, 32(7):1191-1197.
    [38]www.fhr.fgan.de/fhr/fhr_c589_en.html.
    [39]Mehrholz D., Space object observation with radar, Advance Space Research, 1993,13 (8):33-43.
    [40]Mehrholz D., Radar observation in low earth orbit, Advance Space Research, 1997,19 (2):203-212.
    [41]Mehrholz D., Radar Technique for the Characterization of Meter-sized Objects in Space, Advance Space Research,2001,28(9):1259-1268.
    [42]Mehrholz D., Magura K., Radar tracking and observation of noncooperative space objects by reentry of SALYUT-7/KOSMOS-1686, Proceeding Internet Workshop on Salyut-7/Kosmos-1686 Reentry, ESOC, Darmstadt(D),1991.
    [43]Mehrholz D., Leushacke L., etc, Detecting, tracking and imaging space debris, ESA, Bulletin 109,2002.2.
    [44]Martorella M, Berizzi F. Time windowing for highly focused ISAR image reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems.2005, 41(3):992-1007.
    [45]Cooke T, Martorella M, Haywood B, Gibbins D. Use of 3D ship scatterer models from ISAR image sequences for target recognition[J]. Digital Signal Processing. 2006,16(2006):523-532.
    [46]Lu Guangyue, Bao Zheng. Range-Instantaneous-Doppler algorithm in ISAR based on Instant Frequency Estimation. SPIE,1998.198-201.
    [47]Chen V C, Qian S. Joint time-frequency transform for radar range-Dopplor imaging[J]. IEEE Trans. on Aerospace and Electronic System.1998,34(2):486-499.
    [48]黄培康等编著,雷达目标特征信号,北京:宇航出版社,1993.
    [49]刘永坦等著,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,2001.
    [50]保铮,邢孟道,王彤编著,雷达成像技术,北京:电子工业出版社,2005.
    [51]国家高技术计划信息获取与处理专家组,逆合成孔径雷达论文集,(863)十周年汇报,1996,3.
    [52]Chen C. C., Andrews H. C, Target-motion-induced Rader Imaging, IEEE Transactions on Aerospace and Electronic Systems,1980,16(1):2-14.
    [53]Delise G. Y., Wu H., Moving target imaging and trajectory computation using ISAR, IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):887-889.
    [54]王根原,保铮,逆合成孔径雷达运动补偿中包络对齐的新方法,电子学报,1998,26(6):5-8.
    [55]邢孟道,保铮,郑义明,用整体最优准则实现ISAR成像的包络对齐,电子学报,2001,29(12A):1807-1811.
    [56]黄小红,邱兆坤,陈曾平,逆合成孔径雷达运动补偿中一种包络对齐新方 法,信号处理,2006,22(2):230-232.
    [57]Wang G., Bao Z., The minimum entropy criterion of range alignment in ISAR motion compensation, Proceeding Conference Radar'97, Edinburgh UK, 1997,Oct.:14-16.
    [58]Wang J., Kasilingam D., Global Range Alignment for ISAR, IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):351-357.
    [59]Zhu D., Wang L., Tao Q., Zhu Z., ISAR range alignment by minimizing the entropy of the average range profile,2006 IEEE:813-818.
    [60]廖海山,向家彬,胡国旗,基于最小熵准则的ISAR成像快速包络对齐方法,空军雷达学院学报,2006,20(3):177-179.
    [61]邢孟道,保铮,一种逆合成孔径雷达成像包络对齐的新方法,西安电子科技大学学报,2000,27(1):93-96.
    [62]刘永坦等著,雷达成像技术,哈尔滨:哈尔滨工业大学出版社,2001.
    [63]卢光跃,保铮,ISAR成像中具有游动部件目标的包络对齐,系统工程与电子技术,2000,22(6):12-14.
    [64]黄小红,邱兆坤,陈曾平,逆合成孔径雷达运动补偿中一种包络对齐新方法,信号处理,2006,22(2):230-232.
    [65]曹敏.空间目标高分辨雷达成像技术研究[D].长沙:国防科技大学,2008.
    [66]Zhu D Y, Wang L, Yu Y.S, Tao Q N, and Zhu Z D. Robust ISAR Range Alignment via Minimizing the Entropy of the Average Range Profile[J]. IEEE Geoscience and Remote Sensing letters.2009,6(2):204-208.
    [67]Eerland K. K., Application of ISAR on aircraft, IEEE International Radar Conference, Paris, May 1984:618-623.
    [68]Wang Y., Ling H., and Chen V. C., ISAR motion compensation via adaptive joint time-frequency technique, IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):670-677.
    [69]Li J., Ling H., Use of Genetic Algorithms in ISAR Imaging of Targets with higher order motions, IEEE Transactions on Aerospace and Electronic Systems,2003, 39(1):343-351.
    [70]Bocker, R. P., Henderson, T. B., Jones, S. A., A new inverse synthetic aperture radar algorithm for translational motion compensation, Proc. SPIE-Int Soc. Opt. Eng., 1991,1569:298-310.
    [71]Berizzi F., Martorella M., Haywood B.,A survey on ISAR autofocusing technique, IEEE International Conference on Imaging Processing,2004:9-12.
    [72]Martorella M., Berizzi F., Haywood B., Contrast maximization based technique for 2-D ISAR autofocusing, IEE Proceedings on Radar, Sonar and Navigation.,2005,152(4):253-262.
    [73]Martorella M., Berizzi F., Bruscoli S., Use of Genetic Algorithms for Contrast and Entropy optimization in ISAR autofocusing, EURASIP Journal on Applied Signal Processing, Volume 2006:1-11.
    [74]Steinberg B. D., Radar imaging from a distorted array:the radio camera algorithm and experiments, IEEE Transactions on Antennas and Propagation,1981, 29(5):740-748.
    [75]Steinberg B. D., Microwave imaging of aircraft, International Radar Conference, Paris,1988:618-623.
    [76]Steinberg B.D., Experimental localized radar cross section of aircraft, Proceeding of IEEE,1989,77(5):663-669.
    [77]保铮,叶炜,ISAR运动补偿聚焦方法的改进,电子学报,1996,24(9):83-88.
    [78]Wahl D. E., Eichel P. H., Ghiglia D. C., Phase gradient autofocus-A robust tool for high resolution SAR phase correction, IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):827-835.
    [79]Li J., Wu R., Chen V. C., Robust autofocus algorithm for ISAR imaging of moving targets, IEEE Transactions on Aerospace and Electronic Systems, 2001,37(3):1056-1068.
    [80]保铮,邓文彪,杨军,ISAR成像处理中的一种运动补偿方法,电子学报,1992,20(6):1-6.
    [81]Pricket M. J., Chen C. C., Principle of inverse synthetic aperture radar(ISAR) imaging, EASCON record,1980:340-345.
    [82]Xu R., Cao Z., Liu Y., A new method of motion compensation for ISAR, IEEE International. Radar Conference, Paris,1990:234-237.
    [83]毛引芳,吴一戎,以散射质心为基准的ISAR成像的运动补偿,电子科学学刊,1992,14(5):532-536.
    [84]Li X., Liu G., Ni J., Autofocusing of ISAR images based on entropy minimization, IEEE Transactions on Aerospace and Electronic Systems,1999, 35(4):1240-1251.
    [85]Wang J., Liu X., Zhou Z., Minimum-entropy phase adjustment for ISAR, IEE Proc.-Radar Sonar Navig.,2004,151(4):203-209.
    [86]邱晓晖,Heng Wang Cheng Alice, Yeo Siew Yam, ISAR成像快速最小熵相位补偿方法,电子与信息学报,2004,26(10):1656-1660.
    [87]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [88]刘爱芳,朱晓华,陆锦辉等.基于解线调处理的高速运动目标ISAR距离像补偿[J].宇航学报,2004,25(5):541-545.
    [89]Wood John C, Barry Daniel T. Radon transformation of time-frequency distribution for Analysis of multi-component signals[J]. IEEE Trans. On Signal Processing,1994,42(11):3166-3177.
    [90]Wang Minsheng, Chan Andrew K. Chui Charles K. Linear frequency modulated signal detection using randon-ambiguity transform[J]. IEEE Trans, on Signal Processing,1998,46 (3):571-586.
    [91]曹敏,付耀文,黄雅静,黎湘,庄钊文.弹道目标高分辨一维距离像运动补偿研究[J].电子与信息学报.2009,31(3):601-605.
    [92]Chen C C, Andrews H C. Target motion induced radar imaging[J]. IEEE Trans, on Aerospace and Electronic Systems,1980,16 (1):2-14.
    [93]Jain A, Patel I. SAR/ISAR imaging of a non-uniformly rotating target[J]. IEEE Trans. on Aerospace and Electronic Systems.1992,28(1):317-320.
    [94]Wang Y., Ling H., and Chen V. C., ISAR motion compensation via adaptive joint time-frequency technique, IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):670-677.
    [95]Chen V. C., Qian S., Joint time-frequency analysis for radar range-Doppler imaging, IEEE Transaction on Aerospace and Electronic System,1998,34(2):486-499.
    [96]Lu G. Y., Bao Z., New method for ISAR range-instantaneous-Doppler imaging, In:Proc of International Conference on Signal Processing,1998:1481-1484.
    [97]Bao Z., Wang G. Y., Luo L., Inverse synthetic aperture radar imaging of maneuvering targets, Optical Engineering,1998,37 (5):1582-1588.
    [98]Bao Z., Wang G. Y, Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition, Optical Engineering,1999,38(9):1534-1541.
    [99]刘爱芳,朱晓华,陆锦辉,刘中,基于离散匹配傅里叶变换的合成孔径雷达成像算法,兵工学报,2004(7):458-461.
    [100]刘丹丹,吴桂生,基于Gabor变换的ISAR成像算法研究,舰船电子工程,2006,26(1):169-171.
    [101]Berizzi F, Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems.1996,32(3):1185-1191.
    [102]范录宏.逆合成孔径雷达成像与抗干扰技术研究[D].南京:南京航天航空大学,2006.
    [103]Bao Z, Sun C Y, Xing M D. Time-Frequency Approaches to ISAR Imaging of Maneuvering Targets and Their Limitation[J]. IEEE Transaction on Aerospace Electronic System.2001,37(3):1091-1099.
    [104]Berizzi F, Diani M. Target angular motion effect on ISAR imaging[J]. IEE Proceeding -Radar, Sonar Navigation.1997,144(2):87-95.
    [105]Chen V C, Lipps R. ISAR imaging of small craft with roll, pitch and yaw analysis[J]. IEEE International Radar Conference.2000:493-498.
    [106]张毅.弹道导弹弹道学.长沙:国防科技大学出版社,1999.
    [107]August W, Rihaczek, Stephen J, Hershkowitz. Theory and practice of radar targetidenfitication. Boston, London, Artech House,2000.
    [108]Li H, Yang S H, Using rangeprofiles as feature vectors to identify aerospaceobjets. IEEE Trans.on AP.1993,41(2):261-268.
    [109]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [110]冯德军,陶华敏,刘中,等.对宽带高分辨雷达的转发式干扰方法.现代雷达,2005,27(11):19-23.
    [111]D. J Fouts, p. e. Pace,C. Karow, et al. A single-chip false target radarimage generator for countering wideband image radar. IEEE Journal of Solid Shate CIRCUITS,2001,37(6); 751-758.
    [112]P. E. Pace, D. J. Fouts, S. Ekestrm, et al. Digital false-target image synthesizer for countering ISAR. IEE Proceedings-Radar, Sonar and Navigation,2002, 149(5):248-257.
    [113]Fernando A, L. D. Performance analysis of aigital image synthesizer as a counter-measure against inverse syntheticradar. Mamter's Tesis, Naval Postgraduate School, Monterey CA,2002.
    [114]第一作者,Li Xiang, Togneri Roberto. Micro-Motion Effect in Inverse Synthetic Aperture Radar Imaging of Ballistic Mid-course Targets [J]. Journal of Central South University of Technology,2012(19):1548-1557.
    [115]Xing保铮,王根原,罗琳,逆合成孔径雷达的距离-瞬时多普勒成像方法[J],电子学报,1998,26(12),pp.79-83.
    [117]Z. Bao, G.Wang, and L. Luo, Inverse synthetic aperture radar F. Berizzi, E. Dalle Mese, M. Diani, M成萍,姜义成,许荣庆,基于自适应chirplet变换的ISAR瞬时成像的快速算法[J],电子与信息学报,2005,(27)12:pp.1867-1871.
    [120]Y. Zheng, M. Xing, Z. Bao, Imaging of Maneuvering Targets Based on B. Subiza, E. Gimeno-Nieves, J. M. Lopez-Sanchez, J. Fortuny-Guasch, An approach to SAR imaging by means of non-uniform FFTs, IEEE Proceedings of IGARSS,2003, pp. 4089-4091.
    [122]Tropp J A. Algorithms for simultaneous sparse approximation part II: convex relaxation[J]. Elsevier Tropp J A, Gilbert A C. Signal recovery fromDonoho D L, Tsaig Y, Drori I. Sparse solution of underdetermined linearequations by Stagewise Orthogonal Matching Pursuit[R]. Technical Report of Department of Statistics, Standford University,2006.
    [125]Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing,2007,4(2):310-316..
    [126]Chen Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete FourierFigueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE SelectedGilbert A, Strauss M, Tropp J. One sketch for all:Fast algorithms for compressed sensing. San Diego:Proceedings of 39th ACM Symposium Theory of Computing,Needell D, Tropp J A. Cosamp:Iterative signal recovery from incomplete and inaccurate samples[J]. Elsevier Journal of Applied and Computational Harmonic Analysis,2009,26(3):301-321.
    [131]Cabrera S D Gorodnistsky I F, Rao B D.Rao B D, Kreutz2Delgado K. An affine scaling methodology for best basis selection[J]. IEEE Trans. on SP,1999,47(1)
    [134]杜小勇,胡卫东,郁文贤,推广的正则化FOCUSS算法及其收敛性分析,系统工程与电子技术,2005年5月,vol.27,No.5:922-925.
    [135]范录宏.逆合成孔径雷达成像与干扰技术研究[D].电子科技大学,2006.
    [136]罗鹏飞,张文明.随机信号分析与处理[M].北京:清华大学出版社,2006.
    [137]NordenE.Huang,ZhaohuaWu,Steven R.Long. On Instantaneous Frequency [M].2006.
    [138]Norden E. Huang,Zheng Shen,Steven R. Long,Manli C.Wu,Hsing H.Shih,Quanan Zheng,Nai-Chyuan Yen,Chi Chao Tung,Henry H.Liu.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. R. Soc.QiuhuiChen, Norden Huang, Sherman Riemenschneider,Yuesheng Xu.AB-spline approach for empirical mode compositions[J].Advances in Computation Mathematics.2006,24:171-195.
    [140]Norden E. Huang,ZhengShen,Steven.R.Long.A new view of nonlinear water:The Hilbert Spectrum[J].1999,31:417-457.
    [141]S.Sinclair,G.G.S.Pegram.Empirical Mode

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700