用户名: 密码: 验证码:
北京野鸭湖湿地土壤中磷的形态分布和转化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地土壤中磷的形态分布特征和迁移转化行为对水体富营养化状态和湿地生态功能的发挥具有非常关键的作用,野鸭湖湿地自然保护区是北京地区面积最大的湿地,对保护官厅水库水质、调节气候具有重要作用。本文以野鸭湖湿地为对象,研究了湿地土壤中磷的形态分布特征、土壤对无机磷和有机磷的吸附行为和机理以及室内动态模拟条件下土壤-水界面不同形态磷的转化行为。
     采用化学连续提取法研究了不同形态磷随土壤深度(0-60cm)分布特征及表层土壤中(0-10cm)磷随植物生长季的形态变化规律,并分析了不同形态磷含量与土壤理化性质的相关性。结果表明,土壤总磷含量在352.3~836.1 mg-kg-1之间,无机磷约占总磷的72.76%,有机磷含量相对较低,约占总磷的27.24%;土壤总磷和大部分形态磷随土壤深度增加呈减少趋势。无机磷中的闭蓄态磷(Oc-P)随土壤深度增加明显降低,可能是与土壤中A1-P和Fe-P发生相互转化的结果,交换态磷(Ex-P)则来源于Oc-P和残渣态磷(Re-P)的分解。表层土壤中总磷和大部分形态磷与植物的生长周期存在密切关系,在植物快速生长期,磷的含量较低,而在植物凋落衰败期,磷含量则较高;表层土壤中Oc-P在植物凋落期明显增加,说明植物凋落物中的磷是表层土壤Oc-P的主要来源;稳定态有机磷是土壤有机磷的主要存在形态(占总有机磷的90.28%),其含量与土壤pH值呈负相关,与含水率和有机质呈显著正相关,而其它形态有机磷与土壤理化性质没有明显相关性,但是高稳定有机磷与其它有机磷之间可以相互转化。核磁共振磷谱分析得出野鸭湖湿地土壤中的磷主要以正磷酸盐和磷酸单酯的形式存在,并证明了土壤中稳定态有机磷主要以磷酸单酯形式存在(占总有机磷的92.98%)。
     在磷的吸附行为研究中,采用静态吸附和动态吸附柱两种方法,研究了不同环境因素下,土壤-水系统中磷的吸附行为和形态转化规律。静态吸附实验结果表明,土壤对无机磷和植酸的动力学吸附特性符合二级动力学方程;Langmuir交叉型等温式可较好地描述土壤对无机磷、植酸和β甘油磷酸的等温吸附过程;pH对磷吸附的影响表现为,随水体pH值增加,土壤对磷吸附量先缓慢增加后急剧减少,土壤对无机磷、植酸和β甘油磷酸的吸附最适pH在8左右;水体中低浓度有机质促进土壤对磷的吸附,其中有机质浓度为100mmg·L-1时土壤对正磷酸盐和植酸的吸附量较高,有机质浓度为50mg·L-1时则促进土壤对β甘油磷酸盐的吸附。土壤吸附磷后比表面积减小,吸附的磷主要聚集在微孔和中孔:根据吸附滞后环的类型,推断土壤的孔结构是片状离子堆积形成的狭缝孔;SEM-EDS分析得出土壤吸附的磷主要分布在永久电荷和可配位官能团聚集的土壤颗粒凸起部位;FT-IR和XRD分析表明,土壤中高岭石是参与土壤吸附无机磷和有机磷的主要矿物。
     动态吸附结果表明,上覆水的性质对表层土壤影响较大:除P0外,上壤中Ex-P、A1-P和Fe-P三种活性较高的无机磷随上覆水磷浓度的增加显著增加,而稳定态无机磷Oc-P和Ca-P增加较小;随着上覆水体有机质浓度的增加,土壤中EX-P和Fe-P均有所增加,这是由于有机质的增加促进了土壤中微生物的增殖,进而促进了土壤微生物对水体中磷的吸收;Ex-P、A1-P和Fe-P在灭菌上壤中的含量明显高于未火菌土壤,这是灭菌土壤比表面积较大、微孔较多以及矿物组成发生改变所致。再覆水过程和落干过程改变了土壤吸附磷的行为和土壤中磷的形态,使得再覆水后土壤中Ex-P表现出随上覆水有机质浓度的增加而减少,并且由于原上覆水水质、土壤微生物存活和土壤氧化还原条件的不同,落干后土壤中Ex-P、Al-P、Fe-P和Oc-P表现出不同的变化规律。
The distributions and the mobility-transformation of phosphorus (P) fractions in wetland soil play an important role in the water eutrophication and ecological balance of the wetland. Yeyahu wetland natural reserve with the largest area in Beijing is critical to the water quality of Guanting reservoir and climate changes. Thus Yeyahu wetland is selected as the objects. The distribution characteristics of P fractions, the adsorption behaviors and mechanism of the inorganic and organic P, the transformation of P fraction on the soil-water interface under different simulating conditions were investigated.
     The chemical sequential extraction method was performed in the research of the distribution characteristics of P fractions as the seasonal variations and the soil profile depth. And the mathematical statistical method was used for the correlation analysis between soil properties and P fractions. The results showed that the total P was in the range of 352.3~836.1 mg·kg-1, and the inorganic and organic P accounted for 72.76% and 27.24% of total P, respectively; total P and most of P fractions decreased with the soil profile depths. Occluded P (Oc-P) as the inorganic P fraction showed obvious decrease with soil depth, which was probably due the transformation to the Al-bound P (Al-P) and Fe-bound P (Fe-P), and the exchangeable P (Ex-P) was derived from the decomposition of Oc-P and residual P (Re-P). Total P and most P fractions were significantly correlated with the growth cycle of the vegetations. In the growth period, the concentration of P was lower, while in the litter period, P was much higher. Furthermore, Oc-P in the surface soil was the highest in the litter period, which indicated that P in vegetations was the main source to Oc-P in the soil. The resistant organic P (OP) was the main occurrence of OP in soil, accounting for 90.28% of total OP, and it was negatively correlated with the pH value and positively with water contents and organic matter, however, the other OP fractions were not correlated with soil properties. It also revealed that OP fractions in soil could be interchangeable under particular conditions.The results of the nuclear magnetic resonance (NMR) revealed orth-P and mono-P were the major occurrence of P in Yeyahu wetland soil, and indicated the resistance OP accounting for 92.98% of total OP occurred in the form of mono-P in wetland soil.
     The behaviors of P and the transformation of P fractions were studied by static adsorption experiments and dynamic adsorption experiments, respectively. The results of the static adsorption revealed that the kinetic adsorption process of inorganic P and phytate could be described by second order kinetic equation; and the isothermal adsorption process of inorganic P, phytate, andβ-glycerophosphate could be well described by Langmuir cross-shaped adsorption isothermal equation. The water pH had an impact on the P adsorption, with the increase of pH, the adsorption capability slowly increased in the beginning, subsequently, the capability decreased sharply. The optimum pH of inorganic P, phytate, andβ-glycerophosphate adsorption were about 8. The adsorption of P could be promoted in the water with lower dissolved organic matter (DOM), the adsorption capabilities of inorganic P and phytate were higher in the water of 100mg·L-1 DOM, while that ofβ-glycerophosphate was higher in the water of 50mg·L-1 DOM; the specific surface area of soil particles decreased after the adsorption, and the absorbed P aggregated in micro- and meso-pore; according to the hysteresis loop of adsorption, the pore structure of soil particles was inferred as slit pore formed by schistose ion accumulation; by the SEM-EDS, the adsorbed P on the soil surface was distributed on the raised part with much more permanent charges and functional groups; the results obtained by FT-IR and XRD indicated that kaolinite in soil participated the adsorption process of inorganic and organic P.
     The results of dynamic adsorption revealed that the surface soil was readily effected by the properties of the overlying water; Ex-P, Al-P and Fe-P as labile P fractions in soil remarkably increased with the P concentration of overlying water, while the resistant fractions Oc-P and Ca-P increased inconspicuously; with the increase of the DOM in overlying water, Ex-P and Fe-P increased in soil, for the reason that micro-organism multiplied in the situation with sufficient organic matter and absorbed amount of P in overlying water; the contents of Ex-P, Al-P and Fe-P was larger in sterilized soil than that in unsterilized soil due to the greater specific surface area, more micropore and the change of mineral composition of the sterilized soil. The second water-lying and soil drying could influence the absorption behavior of P and the distribution of P fractions. In the second waterlying, the relationship between Ex-P and DOM varied, and Ex-P decrease with the concentration increase of DOM; after soil drying, Ex-P, Al-P, Fe-P and Oc-P in soil showed different variation patterns due to the different former properties of the overlying water, soil micro-organism and soil redox conditions.
引文
[1]安志装,介晓磊,李有田,等.不同水分和添加物料对石灰性土壤无机磷形态转化的影响[J].植物营养与肥料学报,2002,8(1):58-64.
    [2]蔡进功,郭志刚,李从先,等.水体中有机质的类型与有机质的沉积作用[J].同济大学学报(自然科学版),2005,33(9):1213-1218.
    [3]陈桂珠,陈桂葵,谭凤仪,等.白骨壤模拟湿地系统对污水的净化效应[J].海洋环境科学,2000,19(4):23-26.
    [4]陈静,王学军,朱立军.红土吸附砷对其动电电位的影响[J].环境污染防治技术与设备,2004,5(2):35-37.
    [5]陈明洪.泥沙颗粒吸附磷的规律及微观形貌变化研究[D].清华大学,2008.
    [6]陈世宝,朱永官,马义兵.磷对降低土壤中铅的生物有效性的x衍射及电镜分析[J].环境科学学报,2006,26(6):924-929.
    [7]陈淑珠,钱红,张经.沉积物对磷酸盐的吸附与释放[J].青岛海洋大学学报,1997,27(3):413-418.
    [8]陈亚东,梁成华,王延松,等.氧化还原条件对湿地土壤磷吸附与解吸特性的影响[J].生态学杂志,2010,29(4):724-729.
    [9]戴劲草,萧子敬,黄继泰.多孔粘土复合材料的孔结构和孔径分布[J].复合材料学报,2001,18(2):18-21.
    [10]代伟伟,刘义新.改性坡缕石粘土的全孔分布研究[J].岩石矿物学杂志,2005,24(6):526-530.
    [11]杜昌文,周桂勤,邓晶,等.基于中红外光谱的土壤矿物表征及其鉴定[J].农业机械学报,2009,(9):154-158.
    [12]范业宽,李世俊Bowman-Cole土壤有机磷分组法的改进[J].土壤通报,2004,35(6):743-749.
    [13]付永清,周易勇.沉积物磷形态的分组分离及其生态学意义[J].湖泊科学,1999,11(4):376-381.
    [14]高丽,杨浩,周健民,等.滇池沉积物磷酸盐吸附和矿物学特征的研究[J].农业环境科学学报,2004,23(2):259-262.
    [15]国家林业局调查规划设计院.北京野鸭湖湿地自然保护区总体规划[R].国家林业局调查规划设计院,2005,(12).
    [16]贺铁,李世俊Bowman-Cole土壤有机磷分组法的探讨[J].土壤学报,1987,24(2):152-159.
    [17]胡智弢,孙红文,谭媛.湖泊沉咱们物对N和P的吸附特性及影响因素研究[J].农业环境科学学报,2004,23(6):1212-1216.
    [18]侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应[D].华东师范大学,2004.
    [19]侯立军,刘敏,许世远.环境因素对苏州河市区段底泥内源磷释放的影响[J].上海环境科学, 2003,22(4):258-260.
    [20]黄岁梁.泥沙运动在重金属污染物迁移转化中的作用[D].水利水电科学研究院,1994.
    [21]黄文典.河流悬移质对污染物吸附及生物降解影响试验研究[D].四川大学水力学及河流动力学,2005.
    [22]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J],中国农业科学,1989,22(3):58-66.
    [23]隽英华,武志杰,陈利军等.东北4种典型土壤粘粒矿物的初步表征[J].光谱学与光谱分析,2010,30(7):1918-1921.
    [24]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.
    [25]李敏,倪晋仁,王光谦,等.环境因素对长江日水域沉积物吸附磷酸盐的影响研究[J].应用基础与工程科学学报,2005,13(1):19-25.
    [26]李敏,王光谦,倪晋仁,等.长江口沉积物对磷酸盐吸附的等温模型[J].清华大学学报(自然科学版),2005,45(9):1026-1029.
    [27]李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物对磷吸附行为的研究[J].海洋学报,2004,26(1):132-136.
    [28]李絮花.石灰性土壤无机磷分级方法选择的研究[J].山东农业大学报,1996,27(2):185-190.
    [29]梁海清.湖泊沉积物有机磷、有机碳形态及其迁移、转化[D].内蒙古农业大学,2007.
    [30]刘建玲,张福锁,杨奋翩.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报.2000,6(2):179-186.
    [31]刘杰JMS-CCDAF-N对腐酸的去除及絮凝体表面分形的研究[D].北京林业大学,2006.
    [32]刘晋勇.富营养化人工湖底泥磷的形态及迁移转化规律研究[D].清华大学,2008.
    [33]刘敏,候立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特性[J].地理学报,2002,57(4):397-406.
    [34]刘敏,侯立军,许世远,等.河口滨岸潮滩沉积物-水界面 N,P的扩散通量[J].海洋环境科学,2001,20(3):19-23.
    [35]刘启贞,李九发,陆维昌,等.河口细颗泥沙有机絮凝的研究综述及机理计述[J].海洋通报,2006,25(2):74-80.
    [36]刘世亮,介晓磊,李有田,等.作物根际土壤有机磷的分组及有效性研究[J].河南农业大学学报,2002,36(1):27-31.
    [37]刘树堂,韩晓日,迟睿,等.长期定化施肥对无石灰性潮土磷素状况的影响[J].水土保持学报,2005,19(5):43-46,60.
    [38]吕平毓,黄文典,李嘉.河流悬移质对含磷污梁物吸附试验研究[J].水利水电技术,2005,36(10):93-96.
    [39]马志敏.三峡区典型消落带土壤无机磷研究[D].西南大学,2009.
    [40]梅裕,毕水红,胡征宇.环境因子对香溪河库湾淹没土壤磷释放的影响[J].环境科学与技术, 2012,35(3):11-15.
    [41]钱常萍,陈振楼,胡玲珍,等.崇明东滩沉积物再悬浮对沉积物-水界面氮、磷交换行为的影响[J].环境科学,2003,(24):114-119.
    [42]屈凡柱,于君宝,陈小兵,等.湿地土壤磷分级方法研究[J].土壤通报,2012,43(1):243-248.
    [43]曲秀兰,邵煜庭,甄清香.石灰性土壤无机磷分级方法的应用[J].土壤,1992,(5):275-277.
    [44]绍兴华,张建忠,洪森荣,等.土壤中影响磷吸附因素研究进展[J].安徽农业科学,2007,35(12):3609-3611.
    [45]石孝洪.三峡水库消落区土壤磷释放特征及环境风险[D].西南农业大学,2004.
    [46]宋金明,罗延馨,李鹏程.渤海沉积物-海水界面附近磷与硅的生物地球化学循环模式[J].海洋科学,2000,24(12):30-32.
    [47]孙桂芳,金继远,石元亮.土壤磷素形态及其生物有效性研究[J].中国土壤与肥料,2011(2):1-9.
    [48]孙华,熊德祥.鲁南砂姜黑土及其有机无机复合体的有机磷研究[J].土壤通报,1998,29(2):61-64.
    [49]汤鸿霄,钱易,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上卷水体颗粒物)[M].北京:中国环境科学出版社,2000.
    [50]汤艳杰,贾建业,谢先德.粘土矿物的环境意义[J].地学前沿,2002,9(2):337-344.
    [51]王爱萍.长江口滨海湿地磷的迁移转化及净化功能的研究[D].同济大学,2005.
    [52]王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同pH下对磷酸盐的等温吸附特征[J].环境科学学报,2005,18(1):53-58.
    [53]王圣瑞,金相灿,赵海超,等.湖泊沉积物中水溶性有机质对吸附磷的影响[J].土壤学报,2005,42(5):805-811.
    [54]王晓丽,包华影,郭博书.黄河沉积物对磷的吸附行为[J].生态环境学报,2009,18(6):2076-2080.
    [55]王旭东,张一平,李祖荫.有机磷在LOU土中组成变异的研究[J].土壤肥料,1997,(5):16-18.
    [56]王云慧,张璇,欧阳威,等.夏灌对内蒙古河套灌区土壤中磷元素迁移的影响[J].农业工程学报,2010,26(4):93-99.
    [57]文啓孝,程励励,彭福泉.土壤碳水化合物的研究[J].土壤学报,1965,13(3):274-282.
    [58]吴丰昌,白占国,万国江,等.贵州百花湖沉积物中磷的再迁移作用[J].环境科学进展,1996,(4):58-41.
    [59]吴晓娜.西湖沉积物中磷的形态及迁移转化的沉积剖面研究[D].浙江大学,2006.
    [60]夏建国,仲雨猛,曹晓霞.干湿交替条件下土壤磷师范及其与土壤性质的关系[J].水土保持学报,2011,25(4):238-242,248.
    [61]熊汉锋.梁子湖湿地土壤-水-植物系统碳氮磷转化研究[D].华中农业大学,2005.
    [62]熊恒多,李世俊,范业宽.酸性水稻土有机磷分组法的探讨[J].土壤学报,1993,30(4):390-399.
    [63]许光眉,施周,邓军.石英砂负载氧化铁吸附除锑、磷的XRD.FTIR以及XPS研究[J].环境科学学报,2007,27(3):402-407.
    [64]徐明德,韦鹤平,李敏,等.长江口泥沙与沉积物对磷酸盐的吸附和解吸研究[J].太原理工大学学报,2006,37(1):48-51.
    [65]徐明岗.土壤离子吸附[J].土壤肥料,1997,(6):3-7.
    [66]徐仁扣,肖双成,赵安珍.基于Zeta电位的水稻土吸附Pb(Ⅱ)和Cd(Ⅱ)能力的比较[J].环境化学,2008,27(6):742-745.
    [67]严继民,张启元,高敬琮.吸附与凝聚:固体的表面与孔[M].北京:科学出版社,1986.
    [68]杨宏伟,郭博书,邰朝鲁门,等.黄河入河沙漠颗粒物对磷酸盐的吸附特性[J].环境科学,2010,31(8):1890-1896.
    [69]杨杰.通辽市污灌区土壤磷素的空间分布特征及迁移转化规律研究[D].北京交通大学,2010.
    [70]叶常明.多介质环境污染研究[M].北京:科学出版社,1997.
    [71]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境化学,2005,24(1):7-11.
    [72]赵吴琼.长期施肥土壤有机磷形态变化及有效性研究田[D].东北农业大学,2007.
    [73]张波,翟路,林杰,等.南京城市湖泊湿地的水质动态及其评价[J].泓地科学与管理,2011,7(1):29-32,39.
    [74]张鸿,陈光荣,吴振斌,等.两种人工湿地中氮磷净化率与细菌分布关系的初步研究[J].华中师范大学(自然科学版),1999,33(4):575-578.
    [75]张志剑,王光火,王坷.模拟水田的土壤磷素溶解特征及其流失机制[J].土壤学报,2001,38(1):139-143.
    [76]赵桂瑜,周琪.钢渣吸附除磷机理研究[J].水处理技术,2009,35(11):45-47.
    [77]赵文谦,晁晓波,黄勤生.泥沙吸附石油的数学模型与试验研究[J].水利学报,1997,(12):50-57.
    [78]朱广伟.浅水湖泊沉积物磷释放的重要因子-铁和水动力[J].农业环境科学学报,2003,22(6):762-764.
    [79]朱广伟,陈英旭,周根娣.运河(杭州段)沉积物磷释放的模拟试验[J].湖泊科学,2002,14(4):343-349.
    [80]Abekoe,M.K.,Tiessen,H..Phosphorus forms,lateritic nodules and soil properties along a hillslope in northern Ghana[J].Catena,1998,(33):1-15.
    [81]Ahlgren,J.,Rcitzel,K.,Danielsson,R.,et al..Biogenic phosphorus in ligotrophic mountain lake sediments:differences in composition measured with NMR spectroscopy[J].Water Research, 2006a.(40):3705-3712.
    [82]Ahlgren, J., Tranvik, L., Gogoll, A., et al.. Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR[J]. Environmental Science & Technology,2005, (39) 867-872.
    [83]Amelung, W., Rodionov, A., Urusevskaja, I.S., et al.. Forms of organic phosphorus in zonal steppe soils of Russia assessed by 31P NMR[J]. Geoderma,2001, (103):335-350.
    [84]Araujo, M.S.B., Schaefer, C.E.R., Sampaio, E.V.S.B.. Soil phosphorus fractions from topsequences of semi-arid Latosols and Luvisols in northeastern Braizil. Gederma[J],2004, (119): 309-321.
    [85]Bai, X.L., Ding, S.M., Fan, C.X., et al.. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China[J]. Environmental Pollution,2009, (157):2507-2513.
    [86]Borie, F., Rubio, R., Rouanet, J.L., Morales, A., Borie, G., Rojas, C.. Effects of tillage systems on soils characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol[J]. Soil Tillage Resource,2006, (88):253-261.
    [87]Bowman, R.A., Cole, C.V.. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science,1978, (125):95-101.
    [88]Cade-Menum, B.J.. Characterizing phosphorus in environmental and agriculture samples by 31P nuclear magnetic resonance spectroscopy[J]. Talanta,2005, (66):359-371.
    [89]Cade-Menun, B.J., Liu, C.W., Nunlist, R., et al.. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy:Extractants, metals, and phosphorus relaxation times[J]. J. Environ. Qual., 2002, (31):457-465.
    [90]Carman, R., Edlund, G., Damberg, C.. Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments:a 31P NMR study[J]. Chemical Geology,2000, (163):101-114.
    [91]Chakraborti, R.K., Atkinson, J.F., Van Benschoten,.I.E.. Characterization of alum floc by image analysis[J]. Environmental Science and Technology,2000, (34):3969-3976.
    [92]Chang, S.C., Jackson, M.L.. Fractionation of soil phosphorus[J]. Soil Sci.,1957, (84),133-144.
    [93]Chiu, C.Y., Pai, C.W., Yang, K.L.. Chracterization of phosphorus in sub-alpine forest and adjacent grassland soils by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Pedobiologia,2005, (49):655-663.
    [94]Christophoridis, C., Fytianos, K.. Conditions affecting the release of phosphorus from surface lake sediments[J]. Journal of Environmental Quality,2006, (35):1181-1192.
    |95] Crews, T.E.. The supply of phosphorus from native, inorganic phosphorus pools in continuously cultivated Mexican agroecosystems[J]. Agriculture, Ecosystems and Environment,1996, (57) 197-208.
    [96]Crouse, D.A., H. Sierzputowska-Gracz, and R.L. Mikkelsen. Optimization of sample pH and temperature for phosphorus-31 nuclear magnetic resonance spectroscopy of poultry manure extracts[J]. Commun. Soil Sci. Plant Anal.,2000, (31):229-240.
    [97]Eckert, W.,Nishri, A., Parparova, R.. Factors regulating the flux of phosphate at the sediment water interface of a subtropical calcareous lake:A simulation study with intact sediment cores[J]. Water Air & Soil Pollution,1997, (99):401-409.
    [98]Ehlers, K., Bakken, L.R., Frostegard, A., et al.. Phosphorus limitation in a Fcrralsol:impact on microbial activity and cell internal P pools[J]. Soil Biol. Biochem.,2010, (42):558-566.
    [99]Escudey, M., Galindo, G.. Chemical forms of phosphorus of volcanic as hderived soils in Chile[J]. Communications in Soil Science and Plant Analysis,2001,32 (56):601-616.
    [100]Falcao, M., Vale, C.. Sediment-water exchange of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon (Ria Formosa) [J]. I lydrobiology,1998. (373):193-201.
    [101]Fan, Y.K., Xiong, H.D., Li, S.J.. Some improvement of the fractionation method of organic phosphorus in calcareous soils[J]. Geoderma,1999, (93):195-206.
    [102]Fisher Ⅲ, M.M.. Biogeochemical transformation of phosphorus in wetland soils[D]. University of Florida,2007.
    [103]Gachter, R., Myer, J.. The role of microorganisms in mobilization and fixation of P in sediments[J]. Hydrobiologia,1993, (253); 103-121.
    [104]Golterman, H. L.. The sequential extraction of Ca-and Fe-bound phosphates[J]. Verh. Internal. Verein. Limnol.,1988, (23):904-909.
    [105]Hartikainen, H.. Phosphorus and its reactions in terrestrial soils and lake sediments[J]. Journal of the Science Agricultural Society of Finland,1979, (51):537-624.
    [106]HayeS, J.E., Riehardson, A.E., Simpson, R.J.. Components of organic phosphorus in soil extracts that are hydrolyzed by Phytase and acid phosphates[J]. Biol Pert Soils.,2000, (32) 279-286.
    [107]Hedley, M.J., Stewart, J.W.B., Chauhan, B.S.. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal,1982, (46):970-976.
    [108]Hieltjes, A.H.M., Lijklema, L.. Fractionation of inorganic phosphates in calcareous sediments[J]. Journal of Environmental Quality,1980, (9):405-407.
    [109]Holmboe, N., Kristensen, E., Andersen, F.O.. Anoxic decomposition in sediments from a tropical mangrove forest and the temperate Wadden Sea:implications of N and P addition experiments[J]. Estuar. Coast. Shelf Sci.,2001, (53):125-140.
    [110]Hong, J.K., Yamane, K.. Proposal for a more suitable method to extractsoil organic phosphorus[J]. Soil Science and Plant Nutrition,1980, (26):383-390.
    [111]Horst, W., Kamh, M., Jibrin, J., Chude, V.. Agronomic measures for increasing P availability to crops[J]. Plant Soil,2001, (237):211-223.
    [112]Huang, Q.H., Lai, T., Wu, Q., et al.. Effect of long-term fertilization on forms of organic phosphorus in paddy soil derived from red earth[J]. Plant Nut Fert Sci.,2003,9(1):63-66.
    [113]Hupfer, M., Gachter, R., Giovanoli, R.. Tranformation of phosphorus species in settling and during early sediment diagenesis[J]. Aquat. Sci.,1995, (57):305-324.
    [114]Ibia, T.O., Udo, E.J.. Phosphorus forms and fixation capacity of representative soils in Akwa Ibom State of Nigeria[J]. Geoderma,1993, (58):95-106.
    [115]Ivanoff, D.B., Reddy, K.R., Robinson, S.. Chemical fractionation of organic phosphorus in selected Histolsols[J]. Soil Science,1998, (163):36-45.
    [116]Jaroniec, M., Solovyov, L.A.. Improvement of the Kruk-Jaroniec-Sayari Method for pore size analysis of ordered silicas with cylindrical mesopores[J]. Langmuir,2006, (22):6757-6760.
    [117]Jastrzebsji, W., Sitarz, M., Rokita, M., et al.. Infrared spectroscopy of different phosphates structures[J]. Spectrochimica Acta,2011, (79):722-727.
    [118]Jawson, M.D., Franzluebbers, A.J., Galusha, D.K.. Soil fumigation within monoculture and rotations:Response of corn and mycorrhizae[J]. Agron.J.,1993, (85):1740-1180.
    [119]Jiang, X., Jin X.C., Yao, Y., Li, L.H.. Wu Fengchang. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediments and water interface of Taihu Lake, China[J]. Water Research,2008, (42):2251-2259.
    [120]Jiang, C.H., Wu, D., Hu, J.W., et al.. Application of chemical fractionation and X-ray powder diffraction to study phosphorus speciation in sediments from Lake Hongfeng, China[J]. Chinese Science Bulletin,2011,56 (20):2098-2108.
    [121]Jin, X.C., Wang, S.R., Pang, Y., Wu, F.C., Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution,2006, (139):288-295.
    [122]Kaiserli, A., Voutsa, D., Samara, C.. Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia. N. Greece[J]. Chemosphere,2002, (46):1147-1155.
    [123]Katarina, B., Erasmus, O., Elisabetta, B., Phosphorus sorption in relation to soil properties in some cultivated Swedish soils[J]. Nutrient cycling in agroecosystems,2001, (59):39-46.
    [124]Keppler, F., Eiden, R., Niedan, V., et al.. Halocarbons produced by natural oxidation processes during degration of organic matter[J]. Nature,2000, (403):298-301.
    [125]Laima, M., Brossard, D., Sauriau, P.G., et al.. The influence of long emerszon on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-olero Bay, France[J]. Marine Environmental Research,2002, (53):381-402.
    [126]Lan, Z.M., Lin, X.J., Wang, F., et al.. Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Biol Fertil Soils,2012, (1) (in press)
    [127]Lee-Hyung, K., Euiso, C., Kyung-lk, G., et al.. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul Korea[J]. Science of the Total Environment,2004. (321):115-125.
    [128]Linquist, B.A., Ruark, M.D., Hill, J.E.. Soil order and management practices control soil phosphorus fractions in managed wetland ecosystem. Nutrient cycle agroecosystem,2011, (90): 51-62.
    [129]Liu, C., Li, Y., Luan, Z., et al.. Adsorption removal of phosphate from aqueous solution by active red mud[J]. Journal of Environmental Sciences,2007,19 (10):1166-1170.
    [130]Liu, F., Huang, C.Y., He T.B., et al.. Dynamics of upland field P poolunde a long-term application of fertilizer P in yellow soil area and their effects on P concentration in runoff[J]. Chin J Appl Ecol.,2003,14 (2):196-200.
    [131]Lopez-Pineiro, A., Garcia-Navarro, A.. Phosphate fractions and availability in Vertisols of south-western Spain[J]. Soil Sci.,2001, (166):548-556.
    [132]Ma, B., Zhou, Z.Y., Zhang, C.P., et al.. Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert[J]. Journal of Arid Environments,2009, (73):55-61.
    [133]Magid, J.. Vegetation effects on phosphorus fractions in set-aside soils[J]. Plant and soil,1993 (149):111-119.
    [134]Makarov, M.I., Haumaier, L., Zech,W.. Nature of soil organic phosphorus:an assessment of peak assignments in the diester region of 31 P-NMR spectra[J]. Soil Biology & Biochemistry,2002 (34):1467-1477.
    [135]Marshall Sarah K, Laboski Carrie A M. Sorption of inorganic and total phosphorus from dairy and swine slurries to soil [J]. Environmental Quality,2006, (35):1836-1843.
    [136]Muukkonen, P., Hartikainen, H., Lahti, K., et al.. Influence of no-tillage on the distribution and liability of phosphorus in Finnish clay soils[J]. Agriculture, Ecosystem and Environment,2007 (120):299-306.
    [137]Newman, R.H., Tate, K.R.. Soil phosphorus characterization by 31P nuclear magnetic resonance[J|. Commun. Soil Sci. Plant Anal.,1980, (11):835-842.
    [138]Ojekami. A., Ige, D., Hao, X.Y., et al.. Phosphorus mobility in a soil with long term manure application[J]. Journal of agricultural science,2011,3 (3):225-38.
    [139]Olila G, Reddy K R. Influence of pH on phosphorus retention in oxidized lake sediments[J]. Soil science society of American journal,1995, (59):946-959.
    [140]Olscn, S. I,., Sommers, I.. E.. Methods of soil analysis, Part2, phosphorus[M]. Agron. Monogr.,1982.
    [141]Otero, X.L., Macias, E.. Spatial variation in pyritization of trace metals in salt-marsh soils[J]. Biogeochemistry,2003, (62):59-86.
    [142]Othuluri, J., Kissel, D., Whitney, D., et al.. Phosphorus up take from soil test phosphorus levels[J]. Agronomy Journal,1986, (78):991-994.
    [1431 Pan,G., Michael, D.K., Barak, H.. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean Seawater[J]. Environmental Science & Technology, 2002, (36):3519-3524.
    [144]Pant, H.K., P.R. Warman, and J. Nowak.. Identification of soil organic phosphorus by 31P nuclear magnetic resonance spectroscopy[J]. Commun. Soil Sci. Plant Anal.,1999, (30) 757-772.
    [145]Pellegrini, J.B.R., Santos, D.R., Goncalves, C.S., et al.. Impact of anthropic pressure on soil phosphorus availabilty, concentration, and phosphorus forms in sediments in Southern Brazilian watershed. Journal of soils sediments,2010, (10):451-460.
    [146]Perfect, E., Kay, B.D.. Application of fractals in soil and tillage research:a review[J]. Soil and Tillage Research,1995, (36):1-20.
    [147]Pettersson, K.. Phosphorus characteristics of settling and suspended particles in Lake Erken[J]. Sci. Total Environ.,2001, (266):79-86.
    [148]Psenner, R.. Fractionation of phosphorus in suspended matter and sediment[J]. Ergeb. Limnol., 1988, (30):98-113.
    [149]Psenner, R.. Phosphorus fractionation:advantages and limits of the methods for the study of sediment P and interactions[J]. Arch Hydrogiol,1988, (30):43-59.
    [150]Reed, S.C., Brown, D.. Subsurface flow wetlands-performance evaluation[J]. Water Environment Research,1995,67 (2):244-248.
    [151]Reddy, D.D., Rao, A.S., Rupa, T.R.. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol[J]. Bioresour Technol.,2000, (75):113-118.
    [152]Reddy, D.D., Rao, A.S., Takkar, P.N.. Effeets of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation[J]. Biol Fert Soils.1999, (28):150-155.
    [153]Richardson, A.E., Simpson, R.J.. Soil microorganisms mediating phosphorus availabilty[J]. American society of plant biologists,2011, (156):989-996.
    [154]Rodriguez, D., Goudrian, J., Qyarzabal, M.. Phosphorus nutrition and water stress tolerance in wheat plant[J]. Joumal of Plant Nutrition,1996, (I):29-39.
    [155]Ruiz, J.M., Delgado, A., Torrent, J.. Iron-related phosphorus in overfertilized European soils[J].J. Environ. Qual.,1997, (26):1548-1554.
    [156) Russell, J.D.. Infrared spectroscopy of ferrihydrite evidence for the presence of structural hydroxyl groups[J]. Clay Miner,1979, (14):109-114.
    [157]Ruttenberg, K.C.. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography,1992, (37):1460-1482.
    [158]Rydin, E.. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research,2000, (34):2037-2042.
    [159]Sakadevan, K., Bavor, H.J.. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research,1998,32 (2):393-398.
    [160]Sharpley, A.N., Smith, S.J.. Prediction of bioavailable phosphorus loss in agricultural runof[J]. Journal of Environmental Quality,1992, (21):32-37.
    [161]Shaheen, S.M., Tsadilas., C.D., Stamatiadis, S.. Inorganic phosphorus forms in some entisols and aridisols of Egypt[J]. Geoderma,2007, (142):217-225.
    [162]Solomon, D., Lehmann, J., Mamo, T., et al.. Phosphorus forms and dynamics influenced by land use changes in the sub-humid Ethiopian highlands[J]. Gederma,2002, (105):21-48.
    [163]Steinman, A., Rediske, R., Reddy, K.R.. The reduction of internal phosphorus loading using alum in Spring Lake, Michigan[J]. Journal of Environmental Quality,2004, (33):2040-2048.
    [164]Sundareshwar, P.V., Morris, J.T., Pellechia, P.J.Cohen, H.J., Porter, D.E., Jones, B.C. Occurrence and ecological implications of pyrophosphate in estuariess[J]. Limnology and Oceanography,2001, (46):1570-1577.
    [165]Sun, S.J., Huang, S.L., Sun, X.M., et al.. Phosphorus fractions and its release in the sediments of Haihe River,China[J]. Journal of Environmental Sciences,2009, (21):291-295.
    1166] Suzumura, M., Kamatani, A.. Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments:implications for the phosphorus cycle[J]. Geochimica et CosmochimicaActa,1995, (59):1021-1026.
    [167]Taranto, M.T., Adams, M.A., Polglase, P.J.. Sequential fractionation and characterization (31P-NMR) of phosphorus-amended soils in Banksia inlegrifolia (L.f.) woodland and adjacent pasture[J]. Soil Biol. Biochcm.,2000, (32):169-177.
    1168] Tian, Y.B., Song, G.Y., Ai, T.C.. Wetland soil and its ecological functions[J]. Chinese Journal of Ecology,2002,21 (6):36-39.
    [169]Tiessen,11., Moir, J.O.. Characterization of available phosphorus by sequential extraction[M]. In:Carter, M.R. Ed.., Soil Sampling and Methods of Analysis. Can. Soc. Soil Sci. Lewis Publishers, Boca Raton.1993,75-86.
    11701 Turner, B.I... Organic phosphorus in Madagascan rice soils[J]. Geoderma,2006, (136) 279-288.
    [171]Turner, E.L., Cade-Menum, B.J., Candron. L.M., Newman, S.. Extraction of soil organic phosphorus[J]. Talanta,2005, (66):294-306.
    [172]Turner, B.L., Mahieu, N., Condron, L.M.. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts[J]. Soil science,2003, (67): 497-510.
    [173]Turner, B.L., Newman, S.. Phosphorus cycling in wetland soils:the importance of phosphate diesters[J]. Journal of Environmental Quality,2005, (34):1921-1929.
    [174]Tornblom, E., Rydin, E.. Bacterial and phosphorus dynamics in profundal Lake Erken sediments following the deposition of diatoms:a laboratory study[J]. Hydrobiologia,1998, (364): 55-63.
    [175]Wier, D.R., Black, C.A.. Mineralization of organic phosphorus in soils as effected by addition of inorganic phosphorus[J]. Soil Sci Soc Am Proc.,1968, (32):51-55.
    [176]Williams, J.D.H., Jaquet, J.M., Thomas, R.L.. Forms of phosphorus in surficial sediments of Lake Erie. J. Fish[J]. Res. Board Can.,1976, (33):413-429.
    [177]Williams,J.D., Syers,J.K., Walter,T.W.. Fractionation of soil inorganic phosphate by a modification of the Chang and Jackson procedure[J]. Proceedings of the Soil Science Society of America 1967, (31):736-739.
    [178]Yin, J.L., Shen, Q.R., Zhou, C.L., et al.. Effects of Pig slurry and phosphate fertilizer on organic-P fractions and their availability in calcareous soil[J]. Acta Pedol Sin.,2001,38 (3) 295-300.
    [179]Zhang, R.Y., Wu, F.C., Liu, C.Q., et al.. Characteristic of organic phosphorus fractions in different trophic sediments of lakes from middle and lower reaches of Yangtze River region and southwestern Plateau, China[J]. Environmental Pollution,2008, (152):366-372.
    [180]Zhang, Y.L., Shen, Q.R., Cao, C.Y.. Effects of organic manures on soil organic phosphorus fractions and their bioavailability[J]. J Nanjing Agric Univ.,1998,21 (3):259-263.
    [181]Zhang, Y.S., Ni, W.Z., Sun, X.. Influence of organic manure on organic phosphorus fraction in soils[J]. Pedosphere.,1993,3 (4):361-369.
    [182]Zhou, G.Y.. Yan, L.X.. Effects of longterm application of fertilizers on soil phosphorus morphology and transformation[J]. Acta Pedol Sin.,1993,30 (4):443-446.
    [183]Zhou, Q., Gibson. C.E., Zhu, Y.. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J]. Chemosphere,2001, (42):221-225.
    [184]Zhu, T., Jenssen, P.D., Mhlum, T., et al.. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands[J]. Water Science and Technology,1997,35 (5):103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700